/** * Marlin 3D Printer Firmware * * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * Copyright (c) 2016 Bob Cousins bobcousins42@googlemail.com * Copyright (c) 2015-2016 Nico Tonnhofer wurstnase.reprap@gmail.com * Copyright (c) 2016 Victor Perez victor_pv@hotmail.com * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #if defined(ARDUINO_ARCH_STM32) && !defined(STM32GENERIC) #include "../../inc/MarlinConfig.h" #if BOTH(EEPROM_SETTINGS, FLASH_EEPROM_EMULATION) #include "../shared/eeprom_api.h" // Only STM32F4 can support wear leveling at this time #ifndef STM32F4xx #undef FLASH_EEPROM_LEVELING #endif /** * The STM32 HAL supports chips that deal with "pages" and some with "sectors" and some that * even have multiple "banks" of flash. * * This code is a bit of a mashup of * framework-arduinoststm32/cores/arduino/stm32/stm32_eeprom.c * hal/hal_lpc1768/persistent_store_flash.cpp * * This has only be written against those that use a single "sector" design. * * Those that deal with "pages" could be made to work. Looking at the STM32F07 for example, there are * 128 "pages", each 2kB in size. If we continued with our EEPROM being 4Kb, we'd always need to operate * on 2 of these pages. Each write, we'd use 2 different pages from a pool of pages until we are done. */ #if ENABLED(FLASH_EEPROM_LEVELING) #include "stm32_def.h" #define DEBUG_OUT ENABLED(EEPROM_CHITCHAT) #include "src/core/debug_out.h" #ifndef EEPROM_SIZE #define EEPROM_SIZE 0x1000 // 4kB #endif #ifndef FLASH_SECTOR #define FLASH_SECTOR (FLASH_SECTOR_TOTAL - 1) #endif #ifndef FLASH_UNIT_SIZE #define FLASH_UNIT_SIZE 0x20000 // 128kB #endif #define FLASH_ADDRESS_START (FLASH_END - ((FLASH_SECTOR_TOTAL - FLASH_SECTOR) * FLASH_UNIT_SIZE) + 1) #define FLASH_ADDRESS_END (FLASH_ADDRESS_START + FLASH_UNIT_SIZE - 1) #define EEPROM_SLOTS (FLASH_UNIT_SIZE/EEPROM_SIZE) #define SLOT_ADDRESS(slot) (FLASH_ADDRESS_START + (slot * EEPROM_SIZE)) #define UNLOCK_FLASH() if (!flash_unlocked) { \ HAL_FLASH_Unlock(); \ __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_OPERR | FLASH_FLAG_WRPERR | \ FLASH_FLAG_PGAERR | FLASH_FLAG_PGPERR | FLASH_FLAG_PGSERR); \ flash_unlocked = true; \ } #define LOCK_FLASH() if (flash_unlocked) { HAL_FLASH_Lock(); flash_unlocked = false; } #define EMPTY_UINT32 ((uint32_t)-1) #define EMPTY_UINT8 ((uint8_t)-1) static uint8_t ram_eeprom[EEPROM_SIZE] __attribute__((aligned(4))) = {0}; static int current_slot = -1; static_assert(0 == EEPROM_SIZE % 4, "EEPROM_SIZE must be a multiple of 4"); // Ensure copying as uint32_t is safe static_assert(0 == FLASH_UNIT_SIZE % EEPROM_SIZE, "EEPROM_SIZE must divide evenly into your FLASH_UNIT_SIZE"); static_assert(FLASH_UNIT_SIZE >= EEPROM_SIZE, "FLASH_UNIT_SIZE must be greater than or equal to your EEPROM_SIZE"); static_assert(IS_FLASH_SECTOR(FLASH_SECTOR), "FLASH_SECTOR is invalid"); static_assert(IS_POWER_OF_2(FLASH_UNIT_SIZE), "FLASH_UNIT_SIZE should be a power of 2, please check your chip's spec sheet"); #endif static bool eeprom_data_written = false; bool PersistentStore::access_start() { #if ENABLED(FLASH_EEPROM_LEVELING) if (current_slot == -1 || eeprom_data_written) { // This must be the first time since power on that we have accessed the storage, or someone // loaded and called write_data and never called access_finish. // Lets go looking for the slot that holds our configuration. if (eeprom_data_written) DEBUG_ECHOLN("Dangling EEPROM write_data"); uint32_t address = FLASH_ADDRESS_START; while (address <= FLASH_ADDRESS_END) { uint32_t address_value = (*(__IO uint32_t*)address); if (address_value != EMPTY_UINT32) { current_slot = (address - FLASH_ADDRESS_START) / EEPROM_SIZE; break; } address += sizeof(uint32_t); } if (current_slot == -1) { // We didn't find anything, so we'll just intialize to empty for (int i = 0; i < EEPROM_SIZE; i++) ram_eeprom[i] = EMPTY_UINT8; current_slot = EEPROM_SLOTS; } else { // load current settings uint8_t *eeprom_data = (uint8_t *)SLOT_ADDRESS(current_slot); for (int i = 0; i < EEPROM_SIZE; i++) ram_eeprom[i] = eeprom_data[i]; DEBUG_ECHOLNPAIR("EEPROM loaded from slot ", current_slot, "."); } eeprom_data_written = false; } #else eeprom_buffer_fill(); #endif return true; } bool PersistentStore::access_finish() { if (eeprom_data_written) { #if ENABLED(FLASH_EEPROM_LEVELING) HAL_StatusTypeDef status = HAL_ERROR; bool flash_unlocked = false; if (--current_slot < 0) { // all slots have been used, erase everything and start again FLASH_EraseInitTypeDef EraseInitStruct; uint32_t SectorError = 0; EraseInitStruct.TypeErase = FLASH_TYPEERASE_SECTORS; EraseInitStruct.VoltageRange = FLASH_VOLTAGE_RANGE_3; EraseInitStruct.Sector = FLASH_SECTOR; EraseInitStruct.NbSectors = 1; current_slot = EEPROM_SLOTS - 1; UNLOCK_FLASH(); status = HAL_FLASHEx_Erase(&EraseInitStruct, &SectorError); if (status != HAL_OK) { DEBUG_ECHOLNPAIR("HAL_FLASHEx_Erase=", status); DEBUG_ECHOLNPAIR("GetError=", HAL_FLASH_GetError()); DEBUG_ECHOLNPAIR("SectorError=", SectorError); LOCK_FLASH(); return false; } } UNLOCK_FLASH(); uint32_t offset = 0; uint32_t address = SLOT_ADDRESS(current_slot); uint32_t address_end = address + EEPROM_SIZE; uint32_t data = 0; bool success = true; while (address < address_end) { memcpy(&data, ram_eeprom + offset, sizeof(uint32_t)); status = HAL_FLASH_Program(FLASH_TYPEPROGRAM_WORD, address, data); if (status == HAL_OK) { address += sizeof(uint32_t); offset += sizeof(uint32_t); } else { DEBUG_ECHOLNPAIR("HAL_FLASH_Program=", status); DEBUG_ECHOLNPAIR("GetError=", HAL_FLASH_GetError()); DEBUG_ECHOLNPAIR("address=", address); success = false; break; } } LOCK_FLASH(); if (success) { eeprom_data_written = false; DEBUG_ECHOLNPAIR("EEPROM saved to slot ", current_slot, "."); } return success; #else eeprom_buffer_flush(); eeprom_data_written = false; #endif } return true; } bool PersistentStore::write_data(int &pos, const uint8_t *value, size_t size, uint16_t *crc) { while (size--) { uint8_t v = *value; #if ENABLED(FLASH_EEPROM_LEVELING) if (v != ram_eeprom[pos]) { ram_eeprom[pos] = v; eeprom_data_written = true; } #else if (v != eeprom_buffered_read_byte(pos)) { eeprom_buffered_write_byte(pos, v); eeprom_data_written = true; } #endif crc16(crc, &v, 1); pos++; value++; } return false; } bool PersistentStore::read_data(int &pos, uint8_t* value, size_t size, uint16_t *crc, const bool writing/*=true*/) { do { const uint8_t c = ( #if ENABLED(FLASH_EEPROM_LEVELING) ram_eeprom[pos] #else eeprom_buffered_read_byte(pos) #endif ); if (writing) *value = c; crc16(crc, &c, 1); pos++; value++; } while (--size); return false; } size_t PersistentStore::capacity() { return ( #if ENABLED(FLASH_EEPROM_LEVELING) EEPROM_SIZE #else E2END + 1 #endif ); } #endif // EEPROM_SETTINGS && FLASH_EEPROM_EMULATION #endif // ARDUINO_ARCH_STM32 && !STM32GENERIC