/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #if defined(ARDUINO_ARCH_STM32) && !defined(STM32GENERIC) #include "../../inc/MarlinConfig.h" #if ENABLED(SDIO_SUPPORT) #include #include #if NONE(STM32F103xE, STM32F103xG, STM32F4xx, STM32F7xx) #error "ERROR - Only STM32F103xE, STM32F103xG, STM32F4xx or STM32F7xx CPUs supported" #endif #if HAS_SD_HOST_DRIVE // use USB drivers extern "C" { int8_t SD_MSC_Read(uint8_t lun, uint8_t *buf, uint32_t blk_addr, uint16_t blk_len); int8_t SD_MSC_Write(uint8_t lun, uint8_t *buf, uint32_t blk_addr, uint16_t blk_len); extern SD_HandleTypeDef hsd; } bool SDIO_Init() { return hsd.State == HAL_SD_STATE_READY; // return pass/fail status } bool SDIO_ReadBlock(uint32_t block, uint8_t *src) { int8_t status = SD_MSC_Read(0, (uint8_t*)src, block, 1); // read one 512 byte block return (bool) status; } bool SDIO_WriteBlock(uint32_t block, const uint8_t *src) { int8_t status = SD_MSC_Write(0, (uint8_t*)src, block, 1); // write one 512 byte block return (bool) status; } #else // !USBD_USE_CDC_COMPOSITE // use local drivers #if defined(STM32F103xE) || defined(STM32F103xG) #include #include #elif defined(STM32F4xx) #include #include #include #include #elif defined(STM32F7xx) #include #include #include #include #else #error "ERROR - Only STM32F103xE, STM32F103xG, STM32F4xx or STM32F7xx CPUs supported" #endif SD_HandleTypeDef hsd; // create SDIO structure /* SDIO_INIT_CLK_DIV is 118 SDIO clock frequency is 48MHz / (TRANSFER_CLOCK_DIV + 2) SDIO init clock frequency should not exceed 400KHz = 48MHz / (118 + 2) Default TRANSFER_CLOCK_DIV is 2 (118 / 40) Default SDIO clock frequency is 48MHz / (2 + 2) = 12 MHz This might be too fast for stable SDIO operations MKS Robin board seems to have stable SDIO with BusWide 1bit and ClockDiv 8 i.e. 4.8MHz SDIO clock frequency Additional testing is required as there are clearly some 4bit initialization problems */ #ifndef USBD_OK #define USBD_OK 0 #endif // Target Clock, configurable. Default is 18MHz, from STM32F1 #ifndef SDIO_CLOCK #define SDIO_CLOCK 18000000 /* 18 MHz */ #endif // SDIO retries, configurable. Default is 3, from STM32F1 #ifndef SDIO_READ_RETRIES #define SDIO_READ_RETRIES 3 #endif // SDIO Max Clock (naming from STM Manual, don't change) #define SDIOCLK 48000000 static uint32_t clock_to_divider(uint32_t clk) { // limit the SDIO master clock to 8/3 of PCLK2. See STM32 Manuals // Also limited to no more than 48Mhz (SDIOCLK). const uint32_t pclk2 = HAL_RCC_GetPCLK2Freq(); clk = min(clk, (uint32_t)(pclk2 * 8 / 3)); clk = min(clk, (uint32_t)SDIOCLK); // Round up divider, so we don't run the card over the speed supported, // and subtract by 2, because STM32 will add 2, as written in the manual: // SDIO_CK frequency = SDIOCLK / [CLKDIV + 2] return pclk2 / clk + (pclk2 % clk != 0) - 2; } void go_to_transfer_speed() { SD_InitTypeDef Init; /* Default SDIO peripheral configuration for SD card initialization */ Init.ClockEdge = hsd.Init.ClockEdge; Init.ClockBypass = hsd.Init.ClockBypass; Init.ClockPowerSave = hsd.Init.ClockPowerSave; Init.BusWide = hsd.Init.BusWide; Init.HardwareFlowControl = hsd.Init.HardwareFlowControl; Init.ClockDiv = clock_to_divider(SDIO_CLOCK); /* Initialize SDIO peripheral interface with default configuration */ SDIO_Init(hsd.Instance, Init); } void SD_LowLevel_Init(void) { uint32_t tempreg; __HAL_RCC_SDIO_CLK_ENABLE(); __HAL_RCC_GPIOC_CLK_ENABLE(); //enable GPIO clocks __HAL_RCC_GPIOD_CLK_ENABLE(); //enable GPIO clocks GPIO_InitTypeDef GPIO_InitStruct; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = 1; //GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; #if DISABLED(STM32F1xx) GPIO_InitStruct.Alternate = GPIO_AF12_SDIO; #endif GPIO_InitStruct.Pin = GPIO_PIN_8 | GPIO_PIN_12; // D0 & SCK HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); #if PINS_EXIST(SDIO_D1, SDIO_D2, SDIO_D3) // define D1-D3 only if have a four bit wide SDIO bus GPIO_InitStruct.Pin = GPIO_PIN_9 | GPIO_PIN_10 | GPIO_PIN_11; // D1-D3 HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); #endif // Configure PD.02 CMD line GPIO_InitStruct.Pin = GPIO_PIN_2; HAL_GPIO_Init(GPIOD, &GPIO_InitStruct); #if DISABLED(STM32F1xx) // TODO: use __HAL_RCC_SDIO_RELEASE_RESET() and __HAL_RCC_SDIO_CLK_ENABLE(); RCC->APB2RSTR &= ~RCC_APB2RSTR_SDIORST_Msk; // take SDIO out of reset RCC->APB2ENR |= RCC_APB2RSTR_SDIORST_Msk; // enable SDIO clock // Enable the DMA2 Clock #endif //Initialize the SDIO (with initial <400Khz Clock) tempreg = 0; //Reset value tempreg |= SDIO_CLKCR_CLKEN; // Clock enabled tempreg |= SDIO_INIT_CLK_DIV; // Clock Divider. Clock = 48000 / (118 + 2) = 400Khz // Keep the rest at 0 => HW_Flow Disabled, Rising Clock Edge, Disable CLK ByPass, Bus Width = 0, Power save Disable SDIO->CLKCR = tempreg; // Power up the SDIO SDIO_PowerState_ON(SDIO); } void HAL_SD_MspInit(SD_HandleTypeDef *hsd) { // application specific init UNUSED(hsd); // Prevent unused argument(s) compilation warning __HAL_RCC_SDIO_CLK_ENABLE(); // turn on SDIO clock } bool SDIO_Init() { uint8_t retryCnt = SDIO_READ_RETRIES; bool status; hsd.Instance = SDIO; hsd.State = HAL_SD_STATE_RESET; SD_LowLevel_Init(); uint8_t retry_Cnt = retryCnt; for (;;) { TERN_(USE_WATCHDOG, HAL_watchdog_refresh()); status = (bool) HAL_SD_Init(&hsd); if (!status) break; if (!--retry_Cnt) return false; // return failing status if retries are exhausted } go_to_transfer_speed(); #if PINS_EXIST(SDIO_D1, SDIO_D2, SDIO_D3) // go to 4 bit wide mode if pins are defined retry_Cnt = retryCnt; for (;;) { TERN_(USE_WATCHDOG, HAL_watchdog_refresh()); if (!HAL_SD_ConfigWideBusOperation(&hsd, SDIO_BUS_WIDE_4B)) break; // some cards are only 1 bit wide so a pass here is not required if (!--retry_Cnt) break; } if (!retry_Cnt) { // wide bus failed, go back to one bit wide mode hsd.State = (HAL_SD_StateTypeDef) 0; // HAL_SD_STATE_RESET SD_LowLevel_Init(); retry_Cnt = retryCnt; for (;;) { TERN_(USE_WATCHDOG, HAL_watchdog_refresh()); status = (bool) HAL_SD_Init(&hsd); if (!status) break; if (!--retry_Cnt) return false; // return failing status if retries are exhausted } } #endif return true; } /* void init_SDIO_pins(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; // SDIO GPIO Configuration // PC8 ------> SDIO_D0 // PC12 ------> SDIO_CK // PD2 ------> SDIO_CMD GPIO_InitStruct.Pin = GPIO_PIN_8; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; GPIO_InitStruct.Alternate = GPIO_AF12_SDIO; HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); GPIO_InitStruct.Pin = GPIO_PIN_12; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; GPIO_InitStruct.Alternate = GPIO_AF12_SDIO; HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); GPIO_InitStruct.Pin = GPIO_PIN_2; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; GPIO_InitStruct.Alternate = GPIO_AF12_SDIO; HAL_GPIO_Init(GPIOD, &GPIO_InitStruct); } */ //bool SDIO_init() { return (bool) (SD_SDIO_Init() ? 1 : 0);} //bool SDIO_Init_C() { return (bool) (SD_SDIO_Init() ? 1 : 0);} bool SDIO_ReadBlock(uint32_t block, uint8_t *dst) { hsd.Instance = SDIO; uint8_t retryCnt = SDIO_READ_RETRIES; bool status; for (;;) { TERN_(USE_WATCHDOG, HAL_watchdog_refresh()); status = (bool) HAL_SD_ReadBlocks(&hsd, (uint8_t*)dst, block, 1, 1000); // read one 512 byte block with 500mS timeout status |= (bool) HAL_SD_GetCardState(&hsd); // make sure all is OK if (!status) break; // return passing status if (!--retryCnt) break; // return failing status if retries are exhausted } return status; /* return (bool) ((status_read | status_card) ? 1 : 0); if (SDIO_GetCardState() != SDIO_CARD_TRANSFER) return false; if (blockAddress >= SdCard.LogBlockNbr) return false; if ((0x03 & (uint32_t)data)) return false; // misaligned data if (SdCard.CardType != CARD_SDHC_SDXC) { blockAddress *= 512U; } if (!SDIO_CmdReadSingleBlock(blockAddress)) { SDIO_CLEAR_FLAG(SDIO_ICR_CMD_FLAGS); dma_disable(SDIO_DMA_DEV, SDIO_DMA_CHANNEL); return false; } while (!SDIO_GET_FLAG(SDIO_STA_DATAEND | SDIO_STA_TRX_ERROR_FLAGS)) {} dma_disable(SDIO_DMA_DEV, SDIO_DMA_CHANNEL); if (SDIO->STA & SDIO_STA_RXDAVL) { while (SDIO->STA & SDIO_STA_RXDAVL) (void)SDIO->FIFO; SDIO_CLEAR_FLAG(SDIO_ICR_CMD_FLAGS | SDIO_ICR_DATA_FLAGS); return false; } if (SDIO_GET_FLAG(SDIO_STA_TRX_ERROR_FLAGS)) { SDIO_CLEAR_FLAG(SDIO_ICR_CMD_FLAGS | SDIO_ICR_DATA_FLAGS); return false; } SDIO_CLEAR_FLAG(SDIO_ICR_CMD_FLAGS | SDIO_ICR_DATA_FLAGS); */ return true; } bool SDIO_WriteBlock(uint32_t block, const uint8_t *src) { hsd.Instance = SDIO; uint8_t retryCnt = SDIO_READ_RETRIES; bool status; for (;;) { status = (bool) HAL_SD_WriteBlocks(&hsd, (uint8_t*)src, block, 1, 500); // write one 512 byte block with 500mS timeout status |= (bool) HAL_SD_GetCardState(&hsd); // make sure all is OK if (!status) break; // return passing status if (!--retryCnt) break; // return failing status if retries are exhausted } return status; } #endif // !USBD_USE_CDC_COMPOSITE #endif // SDIO_SUPPORT #endif // ARDUINO_ARCH_STM32 && !STM32GENERIC