/** * Marlin 3D Printer Firmware * Copyright (c) 2021 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * Based on Based on Adafruit MAX31865 library: * * This is a library for the Adafruit PT100/P1000 RTD Sensor w/MAX31865 * Designed specifically to work with the Adafruit RTD Sensor * https://www.adafruit.com/products/3328 * * This sensor uses SPI to communicate, 4 pins are required to interface. * * Adafruit invests time and resources providing this open source code, * please support Adafruit and open-source hardware by purchasing * products from Adafruit! * * Written by Limor Fried/Ladyada for Adafruit Industries. * * Modifications by JoAnn Manges (@GadgetAngel) * Copyright (c) 2020, JoAnn Manges * All rights reserved. */ // Useful for RTD debugging. //#define MAX31865_DEBUG //#define MAX31865_DEBUG_SPI #include "../inc/MarlinConfig.h" #if HAS_MAX31865 && !USE_ADAFRUIT_MAX31865 #include "MAX31865.h" #ifdef TARGET_LPC1768 #include #endif // The maximum speed the MAX31865 can do is 5 MHz SPISettings MAX31865::spiConfig = SPISettings( TERN(TARGET_LPC1768, SPI_QUARTER_SPEED, TERN(ARDUINO_ARCH_STM32, SPI_CLOCK_DIV4, 500000)), MSBFIRST, SPI_MODE1 // CPOL0 CPHA1 ); #ifndef LARGE_PINMAP /** * Create the interface object using software (bitbang) SPI for PIN values * less than or equal to 127. * * @param spi_cs the SPI CS pin to use * @param spi_mosi the SPI MOSI pin to use * @param spi_miso the SPI MISO pin to use * @param spi_clk the SPI clock pin to use */ MAX31865::MAX31865(int8_t spi_cs, int8_t spi_mosi, int8_t spi_miso, int8_t spi_clk) { _cs = spi_cs; _mosi = spi_mosi; _miso = spi_miso; _sclk = spi_clk; } /** * Create the interface object using hardware SPI for PIN for PIN values less * than or equal to 127. * * @param spi_cs the SPI CS pin to use along with the default SPI device */ MAX31865::MAX31865(int8_t spi_cs) { _cs = spi_cs; _sclk = _miso = _mosi = -1; } #else // LARGE_PINMAP /** * Create the interface object using software (bitbang) SPI for PIN values * which are larger than 127. If you have PIN values less than or equal to * 127 use the other call for SW SPI. * * @param spi_cs the SPI CS pin to use * @param spi_mosi the SPI MOSI pin to use * @param spi_miso the SPI MISO pin to use * @param spi_clk the SPI clock pin to use * @param pin_mapping set to 1 for positive pin values */ MAX31865::MAX31865(uint32_t spi_cs, uint32_t spi_mosi, uint32_t spi_miso, uint32_t spi_clk, uint8_t pin_mapping) { _cs = spi_cs; _mosi = spi_mosi; _miso = spi_miso; _sclk = spi_clk; } /** * Create the interface object using hardware SPI for PIN values which are * larger than 127. If you have PIN values less than or equal to 127 use * the other call for HW SPI. * * @param spi_cs the SPI CS pin to use along with the default SPI device * @param pin_mapping set to 1 for positive pin values */ MAX31865::MAX31865(uint32_t spi_cs, uint8_t pin_mapping) { _cs = spi_cs; _sclk = _miso = _mosi = -1UL; //-1UL or 0xFFFFFFFF or 4294967295 } #endif // LARGE_PINMAP /** * * Instance & Class methods * */ /** * Initialize the SPI interface and set the number of RTD wires used * * @param wires The number of wires in enum format. Can be MAX31865_2WIRE, MAX31865_3WIRE, or MAX31865_4WIRE. * @param zero The resistance of the RTD at 0 degC, in ohms. * @param ref The resistance of the reference resistor, in ohms. */ void MAX31865::begin(max31865_numwires_t wires, float zero, float ref) { Rzero = zero; Rref = ref; OUT_WRITE(_cs, HIGH); if (_sclk != TERN(LARGE_PINMAP, -1UL, -1)) { softSpiBegin(SPI_QUARTER_SPEED); // Define pin modes for Software SPI } else { #ifdef MAX31865_DEBUG SERIAL_ECHOLNPGM("Initializing MAX31865 Hardware SPI"); #endif SPI.begin(); // Start and configure hardware SPI } setWires(wires); enableBias(false); autoConvert(false); clearFault(); #ifdef MAX31865_DEBUG_SPI SERIAL_ECHOLNPGM( TERN(LARGE_PINMAP, "LARGE_PINMAP", "Regular") " begin call with _cs: ", _cs, " _miso: ", _miso, " _sclk: ", _sclk, " _mosi: ", _mosi, " config: ", readRegister8(MAX31865_CONFIG_REG) ); #endif } /** * Read the raw 8-bit FAULTSTAT register * * @return The raw unsigned 8-bit FAULT status register */ uint8_t MAX31865::readFault() { return readRegister8(MAX31865_FAULTSTAT_REG); } /** * Clear all faults in FAULTSTAT. */ void MAX31865::clearFault() { setConfig(MAX31865_CONFIG_FAULTSTAT, 1); } /** * Whether we want to have continuous conversions (50/60 Hz) * * @param b If true, auto conversion is enabled */ void MAX31865::autoConvert(bool b) { setConfig(MAX31865_CONFIG_MODEAUTO, b); } /** * Whether we want filter out 50Hz noise or 60Hz noise * * @param b If true, 50Hz noise is filtered, else 60Hz(default) */ void MAX31865::enable50HzFilter(bool b) { setConfig(MAX31865_CONFIG_FILT50HZ, b); } /** * Enable the bias voltage on the RTD sensor * * @param b If true bias is enabled, else disabled */ void MAX31865::enableBias(bool b) { setConfig(MAX31865_CONFIG_BIAS, b); // From the datasheet: // Note that if VBIAS is off (to reduce supply current between conversions), any filter // capacitors at the RTDIN inputs need to charge before an accurate conversion can be // performed. Therefore, enable VBIAS and wait at least 10.5 time constants of the input // RC network plus an additional 1ms before initiating the conversion. if (b) DELAY_US(11500); //11.5ms } /** * Start a one-shot temperature reading. */ void MAX31865::oneShot() { setConfig(MAX31865_CONFIG_1SHOT, 1); // From the datasheet: // Note that a single conversion requires approximately 52ms in 60Hz filter // mode or 62.5ms in 50Hz filter mode to complete. 1-Shot is a self-clearing bit. // TODO: switch this out depending on the filter mode. DELAY_US(65000); // 65ms } /** * How many wires we have in our RTD setup, can be MAX31865_2WIRE, * MAX31865_3WIRE, or MAX31865_4WIRE * * @param wires The number of wires in enum format */ void MAX31865::setWires(max31865_numwires_t wires) { uint8_t t = readRegister8(MAX31865_CONFIG_REG); if (wires == MAX31865_3WIRE) t |= MAX31865_CONFIG_3WIRE; else // 2 or 4 wire t &= ~MAX31865_CONFIG_3WIRE; writeRegister8(MAX31865_CONFIG_REG, t); } /** * Read the raw 16-bit value from the RTD_REG in one shot mode. This will include * the fault bit, D0. * * @return The raw unsigned 16-bit register value with ERROR bit attached, NOT temperature! */ uint16_t MAX31865::readRaw() { clearFault(); enableBias(true); oneShot(); uint16_t rtd = readRegister16(MAX31865_RTDMSB_REG); #ifdef MAX31865_DEBUG SERIAL_ECHOLNPGM("RTD MSB:", (rtd >> 8), " RTD LSB:", (rtd & 0x00FF)); #endif // Disable the bias to lower power dissipation between reads. // If the ref resistor heats up, the temperature reading will be skewed. enableBias(false); return rtd; } /** * Calculate and return the resistance value of the connected RTD. * * @param refResistor The value of the matching reference resistor, usually 430 or 4300 * @return The raw RTD resistance value, NOT temperature! */ float MAX31865::readResistance() { // Strip the error bit (D0) and convert to a float ratio. // less precise method: (readRaw() * Rref) >> 16 return (((readRaw() >> 1) / 32768.0f) * Rref); } /** * Read the RTD and pass it to temperature(float) for calculation. * * @return Temperature in C */ float MAX31865::temperature() { return temperature(readResistance()); } /** * Given the 15-bit ADC value, calculate the resistance and pass it to temperature(float) for calculation. * * @return Temperature in C */ float MAX31865::temperature(uint16_t adcVal) { return temperature(((adcVal) / 32768.0f) * Rref); } /** * Calculate the temperature in C from the RTD resistance. * Uses the technique outlined in this PDF: * http://www.analog.com/media/en/technical-documentation/application-notes/AN709_0.pdf * * @param Rrtd the resistance value in ohms * @return the temperature in degC */ float MAX31865::temperature(float Rrtd) { float temp = (RTD_Z1 + sqrt(RTD_Z2 + (RTD_Z3 * Rrtd))) / RTD_Z4; // From the PDF... // // The previous equation is valid only for temperatures of 0°C and above. // The equation for RRTD(t) that defines negative temperature behavior is a // fourth-order polynomial (after expanding the third term) and is quite // impractical to solve for a single expression of temperature as a function // of resistance. // if (temp < 0) { Rrtd = (Rrtd / Rzero) * 100; // normalize to 100 ohm float rpoly = Rrtd; temp = -242.02 + (2.2228 * rpoly); rpoly *= Rrtd; // square temp += 2.5859e-3 * rpoly; rpoly *= Rrtd; // ^3 temp -= 4.8260e-6 * rpoly; rpoly *= Rrtd; // ^4 temp -= 2.8183e-8 * rpoly; rpoly *= Rrtd; // ^5 temp += 1.5243e-10 * rpoly; } return temp; } // // private: // /** * Set a value in the configuration register. * * @param config 8-bit value for the config item * @param enable whether to enable or disable the value */ void MAX31865::setConfig(uint8_t config, bool enable) { uint8_t t = readRegister8(MAX31865_CONFIG_REG); if (enable) t |= config; else t &= ~config; // disable writeRegister8(MAX31865_CONFIG_REG, t); } /** * Read a single byte from the specified register address. * * @param addr the register address * @return the register contents */ uint8_t MAX31865::readRegister8(uint8_t addr) { uint8_t ret = 0; readRegisterN(addr, &ret, 1); return ret; } /** * Read two bytes: 1 from the specified register address, and 1 from the next address. * * @param addr the first register address * @return both register contents as a single 16-bit int */ uint16_t MAX31865::readRegister16(uint8_t addr) { uint8_t buffer[2] = {0, 0}; readRegisterN(addr, buffer, 2); uint16_t ret = buffer[0]; ret <<= 8; ret |= buffer[1]; return ret; } /** * Read +n+ bytes from a specified address into +buffer+. Set D7 to 0 to specify a read. * * @param addr the first register address * @param buffer storage for the read bytes * @param n the number of bytes to read */ void MAX31865::readRegisterN(uint8_t addr, uint8_t buffer[], uint8_t n) { addr &= 0x7F; // make sure top bit is not set if (_sclk == TERN(LARGE_PINMAP, -1UL, -1)) SPI.beginTransaction(spiConfig); else WRITE(_sclk, LOW); WRITE(_cs, LOW); #ifdef TARGET_LPC1768 DELAY_CYCLES(_spi_speed); #endif spiTransfer(addr); while (n--) { buffer[0] = spiTransfer(0xFF); #ifdef MAX31865_DEBUG_SPI SERIAL_ECHOLNPGM("buffer read ", n, " data: ", buffer[0]); #endif buffer++; } if (_sclk == TERN(LARGE_PINMAP, -1UL, -1)) SPI.endTransaction(); WRITE(_cs, HIGH); } /** * Write an 8-bit value to a register. Set D7 to 1 to specify a write. * * @param addr the address to write to * @param data the data to write */ void MAX31865::writeRegister8(uint8_t addr, uint8_t data) { if (_sclk == TERN(LARGE_PINMAP, -1UL, -1)) SPI.beginTransaction(spiConfig); else WRITE(_sclk, LOW); WRITE(_cs, LOW); #ifdef TARGET_LPC1768 DELAY_CYCLES(_spi_speed); #endif spiTransfer(addr | 0x80); // make sure top bit is set spiTransfer(data); if (_sclk == TERN(LARGE_PINMAP, -1UL, -1)) SPI.endTransaction(); WRITE(_cs, HIGH); } /** * Transfer SPI data +x+ and read the response. From the datasheet... * Input data (SDI) is latched on the internal strobe edge and output data (SDO) is * shifted out on the shift edge. There is one clock for each bit transferred. * Address and data bits are transferred in groups of eight, MSB first. * * @param x an 8-bit chunk of data to write * @return the 8-bit response */ uint8_t MAX31865::spiTransfer(uint8_t x) { if (_sclk == TERN(LARGE_PINMAP, -1UL, -1)) return SPI.transfer(x); #ifdef TARGET_LPC1768 return swSpiTransfer(x, _spi_speed, _sclk, _miso, _mosi); #else uint8_t reply = 0; for (int i = 7; i >= 0; i--) { WRITE(_sclk, HIGH); DELAY_NS_VAR(_spi_delay); reply <<= 1; WRITE(_mosi, x & _BV(i)); DELAY_NS_VAR(_spi_delay); if (READ(_miso)) reply |= 1; WRITE(_sclk, LOW); DELAY_NS_VAR(_spi_delay); } return reply; #endif } void MAX31865::softSpiBegin(const uint8_t spi_speed) { #ifdef MAX31865_DEBUG SERIAL_ECHOLNPGM("Initializing MAX31865 Software SPI"); #endif #ifdef TARGET_LPC1768 swSpiBegin(_sclk, _miso, _mosi); _spi_speed = swSpiInit(spi_speed, _sclk, _mosi); #else _spi_delay = (100UL << spi_speed) / 3; // Calculate delay in ns. Top speed is ~10MHz, or 100ns delay between bits. OUT_WRITE(_sclk, LOW); SET_OUTPUT(_mosi); SET_INPUT(_miso); #endif } #endif // HAS_MAX31865 && !USE_ADAFRUIT_MAX31865