/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #include "../../../inc/MarlinConfig.h" #if ENABLED(AUTO_BED_LEVELING_UBL) #include "../bedlevel.h" #include "../../../MarlinCore.h" #include "../../../HAL/shared/eeprom_api.h" #include "../../../libs/hex_print.h" #include "../../../module/settings.h" #include "../../../lcd/ultralcd.h" #include "../../../module/stepper.h" #include "../../../module/planner.h" #include "../../../module/motion.h" #include "../../../module/probe.h" #include "../../../gcode/gcode.h" #include "../../../libs/least_squares_fit.h" #if HAS_MULTI_HOTEND #include "../../../module/tool_change.h" #endif #define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE) #include "../../../core/debug_out.h" #if ENABLED(EXTENSIBLE_UI) #include "../../../lcd/extui/ui_api.h" #endif #include #define UBL_G29_P31 #if HAS_LCD_MENU bool unified_bed_leveling::lcd_map_control = false; void unified_bed_leveling::steppers_were_disabled() { if (lcd_map_control) { lcd_map_control = false; ui.defer_status_screen(false); } } void ubl_map_screen(); #endif #define SIZE_OF_LITTLE_RAISE 1 #define BIG_RAISE_NOT_NEEDED 0 int unified_bed_leveling::g29_verbose_level, unified_bed_leveling::g29_phase_value, unified_bed_leveling::g29_repetition_cnt, unified_bed_leveling::g29_storage_slot = 0, unified_bed_leveling::g29_map_type; bool unified_bed_leveling::g29_c_flag; float unified_bed_leveling::g29_card_thickness = 0, unified_bed_leveling::g29_constant = 0; xy_bool_t unified_bed_leveling::xy_seen; xy_pos_t unified_bed_leveling::g29_pos; #if HAS_BED_PROBE int unified_bed_leveling::g29_grid_size; #endif /** * G29: Unified Bed Leveling by Roxy * * Parameters understood by this leveling system: * * A Activate Activate the Unified Bed Leveling system. * * B # Business Use the 'Business Card' mode of the Manual Probe subsystem with P2. * Note: A non-compressible Spark Gap feeler gauge is recommended over a business card. * In this mode of G29 P2, a business or index card is used as a shim that the nozzle can * grab onto as it is lowered. In principle, the nozzle-bed distance is the same when the * same resistance is felt in the shim. You can omit the numerical value on first invocation * of G29 P2 B to measure shim thickness. Subsequent use of 'B' will apply the previously- * measured thickness by default. * * C Continue G29 P1 C continues the generation of a partially-constructed Mesh without invalidating * previous measurements. * * C G29 P2 C tells the Manual Probe subsystem to not use the current nozzle * location in its search for the closest unmeasured Mesh Point. Instead, attempt to * start at one end of the uprobed points and Continue sequentially. * * G29 P3 C specifies the Constant for the fill. Otherwise, uses a "reasonable" value. * * C Current G29 Z C uses the Current location (instead of bed center or nearest edge). * * D Disable Disable the Unified Bed Leveling system. * * E Stow_probe Stow the probe after each sampled point. * * F # Fade Fade the amount of Mesh Based Compensation over a specified height. At the * specified height, no correction is applied and natural printer kenimatics take over. If no * number is specified for the command, 10mm is assumed to be reasonable. * * H # Height With P2, 'H' specifies the Height to raise the nozzle after each manual probe of the bed. * If omitted, the nozzle will raise by Z_CLEARANCE_BETWEEN_PROBES. * * H # Offset With P4, 'H' specifies the Offset above the mesh height to place the nozzle. * If omitted, Z_CLEARANCE_BETWEEN_PROBES will be used. * * I # Invalidate Invalidate the specified number of Mesh Points near the given 'X' 'Y'. If X or Y are omitted, * the nozzle location is used. If no 'I' value is given, only the point nearest to the location * is invalidated. Use 'T' to produce a map afterward. This command is useful to invalidate a * portion of the Mesh so it can be adjusted using other UBL tools. When attempting to invalidate * an isolated bad mesh point, the 'T' option shows the nozzle position in the Mesh with (#). You * can move the nozzle around and use this feature to select the center of the area (or cell) to * invalidate. * * J # Grid Perform a Grid Based Leveling of the current Mesh using a grid with n points on a side. * Not specifying a grid size will invoke the 3-Point leveling function. * * L Load Load Mesh from the previously activated location in the EEPROM. * * L # Load Load Mesh from the specified location in the EEPROM. Set this location as activated * for subsequent Load and Store operations. * * The P or Phase commands are used for the bulk of the work to setup a Mesh. In general, your Mesh will * start off being initialized with a G29 P0 or a G29 P1. Further refinement of the Mesh happens with * each additional Phase that processes it. * * P0 Phase 0 Zero Mesh Data and turn off the Mesh Compensation System. This reverts the * 3D Printer to the same state it was in before the Unified Bed Leveling Compensation * was turned on. Setting the entire Mesh to Zero is a special case that allows * a subsequent G or T leveling operation for backward compatibility. * * P1 Phase 1 Invalidate entire Mesh and continue with automatic generation of the Mesh data using * the Z-Probe. Usually the probe can't reach all areas that the nozzle can reach. For delta * printers only the areas where the probe and nozzle can both reach will be automatically probed. * * Unreachable points will be handled in Phase 2 and Phase 3. * * Use 'C' to leave the previous mesh intact and automatically probe needed points. This allows you * to invalidate parts of the Mesh but still use Automatic Probing. * * The 'X' and 'Y' parameters prioritize where to try and measure points. If omitted, the current * probe position is used. * * Use 'T' (Topology) to generate a report of mesh generation. * * P1 will suspend Mesh generation if the controller button is held down. Note that you may need * to press and hold the switch for several seconds if moves are underway. * * P2 Phase 2 Probe unreachable points. * * Use 'H' to set the height between Mesh points. If omitted, Z_CLEARANCE_BETWEEN_PROBES is used. * Smaller values will be quicker. Move the nozzle down till it barely touches the bed. Make sure the * nozzle is clean and unobstructed. Use caution and move slowly. This can damage your printer! * (Uses SIZE_OF_LITTLE_RAISE mm if the nozzle is moving less than BIG_RAISE_NOT_NEEDED mm.) * * The 'H' value can be negative if the Mesh dips in a large area. Press and hold the * controller button to terminate the current Phase 2 command. You can then re-issue "G29 P 2" * with an 'H' parameter more suitable for the area you're manually probing. Note that the command * tries to start in a corner of the bed where movement will be predictable. Override the distance * calculation location with the X and Y parameters. You can print a Mesh Map (G29 T) to see where * the mesh is invalidated and where the nozzle needs to move to complete the command. Use 'C' to * indicate that the search should be based on the current position. * * The 'B' parameter for this command is described above. It places the manual probe subsystem into * Business Card mode where the thickness of a business card is measured and then used to accurately * set the nozzle height in all manual probing for the duration of the command. A Business card can * be used, but you'll get better results with a flexible Shim that doesn't compress. This makes it * easier to produce similar amounts of force and get more accurate measurements. Google if you're * not sure how to use a shim. * * The 'T' (Map) parameter helps track Mesh building progress. * * NOTE: P2 requires an LCD controller! * * P3 Phase 3 Fill the unpopulated regions of the Mesh with a fixed value. There are two different paths to * go down: * * - If a 'C' constant is specified, the closest invalid mesh points to the nozzle will be filled, * and a repeat count can then also be specified with 'R'. * * - Leaving out 'C' invokes Smart Fill, which scans the mesh from the edges inward looking for * invalid mesh points. Adjacent points are used to determine the bed slope. If the bed is sloped * upward from the invalid point, it takes the value of the nearest point. If sloped downward, it's * replaced by a value that puts all three points in a line. This version of G29 P3 is a quick, easy * and (usually) safe way to populate unprobed mesh regions before continuing to G26 Mesh Validation * Pattern. Note that this populates the mesh with unverified values. Pay attention and use caution. * * P4 Phase 4 Fine tune the Mesh. The Delta Mesh Compensation System assumes the existence of * an LCD Panel. It is possible to fine tune the mesh without an LCD Panel using * G42 and M421. See the UBL documentation for further details. * * Phase 4 is meant to be used with G26 Mesh Validation to fine tune the mesh by direct editing * of Mesh Points. Raise and lower points to fine tune the mesh until it gives consistently reliable * adhesion. * * P4 moves to the closest Mesh Point (and/or the given X Y), raises the nozzle above the mesh height * by the given 'H' offset (or default 0), and waits while the controller is used to adjust the nozzle * height. On click the displayed height is saved in the mesh. * * Start Phase 4 at a specific location with X and Y. Adjust a specific number of Mesh Points with * the 'R' (Repeat) parameter. (If 'R' is left out, the whole matrix is assumed.) This command can be * terminated early (e.g., after editing the area of interest) by pressing and holding the encoder button. * * The general form is G29 P4 [R points] [X position] [Y position] * * The H [offset] parameter is useful if a shim is used to fine-tune the mesh. For a 0.4mm shim the * command would be G29 P4 H0.4. The nozzle is moved to the shim height, you adjust height to the shim, * and on click the height minus the shim thickness will be saved in the mesh. * * !!Use with caution, as a very poor mesh could cause the nozzle to crash into the bed!! * * NOTE: P4 is not available unless you have LCD support enabled! * * P5 Phase 5 Find Mean Mesh Height and Standard Deviation. Typically, it is easier to use and * work with the Mesh if it is Mean Adjusted. You can specify a C parameter to * Correct the Mesh to a 0.00 Mean Height. Adding a C parameter will automatically * execute a G29 P6 C . * * P6 Phase 6 Shift Mesh height. The entire Mesh's height is adjusted by the height specified * with the C parameter. Being able to adjust the height of a Mesh is useful tool. It * can be used to compensate for poorly calibrated Z-Probes and other errors. Ideally, * you should have the Mesh adjusted for a Mean Height of 0.00 and the Z-Probe measuring * 0.000 at the Z Home location. * * Q Test Load specified Test Pattern to assist in checking correct operation of system. This * command is not anticipated to be of much value to the typical user. It is intended * for developers to help them verify correct operation of the Unified Bed Leveling System. * * R # Repeat Repeat this command the specified number of times. If no number is specified the * command will be repeated GRID_MAX_POINTS_X * GRID_MAX_POINTS_Y times. * * S Store Store the current Mesh in the Activated area of the EEPROM. It will also store the * current state of the Unified Bed Leveling system in the EEPROM. * * S # Store Store the current Mesh at the specified location in EEPROM. Activate this location * for subsequent Load and Store operations. Valid storage slot numbers begin at 0 and * extend to a limit related to the available EEPROM storage. * * S -1 Store Print the current Mesh as G-code that can be used to restore the mesh anytime. * * T Topology Display the Mesh Map Topology. * 'T' can be used alone (e.g., G29 T) or in combination with most of the other commands. * This option works with all Phase commands (e.g., G29 P4 R 5 T X 50 Y100 C -.1 O) * This parameter can also specify a Map Type. T0 (the default) is user-readable. T1 * is suitable to paste into a spreadsheet for a 3D graph of the mesh. * * U Unlevel Perform a probe of the outer perimeter to assist in physically leveling unlevel beds. * Only used for G29 P1 T U. This speeds up the probing of the edge of the bed. Useful * when the entire bed doesn't need to be probed because it will be adjusted. * * V # Verbosity Set the verbosity level (0-4) for extra details. (Default 0) * * X # X Location for this command * * Y # Y Location for this command * * With UBL_DEVEL_DEBUGGING: * * K # Kompare Kompare current Mesh with stored Mesh #, replacing current Mesh with the result. * This command literally performs a diff between two Meshes. * * Q-1 Dump EEPROM Dump the UBL contents stored in EEPROM as HEX format. Useful for developers to help * verify correct operation of the UBL. * * W What? Display valuable UBL data. * * * Release Notes: * You MUST do M502, M500 to initialize the storage. Failure to do this will cause all * kinds of problems. Enabling EEPROM Storage is required. * * When you do a G28 and G29 P1 to automatically build your first mesh, you are going to notice that * UBL probes points increasingly further from the starting location. (The starting location defaults * to the center of the bed.) In contrast, ABL and MBL follow a zigzag pattern. The spiral pattern is * especially better for Delta printers, since it populates the center of the mesh first, allowing for * a quicker test print to verify settings. You don't need to populate the entire mesh to use it. * After all, you don't want to spend a lot of time generating a mesh only to realize the resolution * or probe offsets are incorrect. Mesh-generation gathers points starting closest to the nozzle unless * an (X,Y) coordinate pair is given. * * Unified Bed Leveling uses a lot of EEPROM storage to hold its data, and it takes some effort to get * the mesh just right. To prevent this valuable data from being destroyed as the EEPROM structure * evolves, UBL stores all mesh data at the end of EEPROM. * * UBL is founded on Edward Patel's Mesh Bed Leveling code. A big 'Thanks!' to him and the creators of * 3-Point and Grid Based leveling. Combining their contributions we now have the functionality and * features of all three systems combined. */ void unified_bed_leveling::G29() { bool probe_deployed = false; if (g29_parameter_parsing()) return; // Abort on parameter error const int8_t p_val = parser.intval('P', -1); const bool may_move = p_val == 1 || p_val == 2 || p_val == 4 || parser.seen('J'); TERN_(HAS_MULTI_HOTEND, const uint8_t old_tool_index = active_extruder); // Check for commands that require the printer to be homed if (may_move) { planner.synchronize(); if (axes_should_home()) gcode.home_all_axes(); TERN_(HAS_MULTI_HOTEND, if (active_extruder) tool_change(0)); } // Invalidate Mesh Points. This command is a little bit asymmetrical because // it directly specifies the repetition count and does not use the 'R' parameter. if (parser.seen('I')) { uint8_t cnt = 0; g29_repetition_cnt = parser.has_value() ? parser.value_int() : 1; if (g29_repetition_cnt >= GRID_MAX_POINTS) { set_all_mesh_points_to_value(NAN); } else { while (g29_repetition_cnt--) { if (cnt > 20) { cnt = 0; idle(); } const mesh_index_pair closest = find_closest_mesh_point_of_type(REAL, g29_pos); const xy_int8_t &cpos = closest.pos; if (cpos.x < 0) { // No more REAL mesh points to invalidate, so we ASSUME the user // meant to invalidate the ENTIRE mesh, which cannot be done with // find_closest_mesh_point loop which only returns REAL points. set_all_mesh_points_to_value(NAN); SERIAL_ECHOLNPGM("Entire Mesh invalidated.\n"); break; // No more invalid Mesh Points to populate } z_values[cpos.x][cpos.y] = NAN; TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(cpos, 0.0f)); cnt++; } } SERIAL_ECHOLNPGM("Locations invalidated.\n"); } if (parser.seen('Q')) { const int test_pattern = parser.has_value() ? parser.value_int() : -99; if (!WITHIN(test_pattern, -1, 2)) { SERIAL_ECHOLNPGM("Invalid test_pattern value. (-1 to 2)\n"); return; } SERIAL_ECHOLNPGM("Loading test_pattern values.\n"); switch (test_pattern) { #if ENABLED(UBL_DEVEL_DEBUGGING) case -1: g29_eeprom_dump(); break; #endif case 0: GRID_LOOP(x, y) { // Create a bowl shape similar to a poorly-calibrated Delta const float p1 = 0.5f * (GRID_MAX_POINTS_X) - x, p2 = 0.5f * (GRID_MAX_POINTS_Y) - y; z_values[x][y] += 2.0f * HYPOT(p1, p2); TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(x, y, z_values[x][y])); } break; case 1: LOOP_L_N(x, GRID_MAX_POINTS_X) { // Create a diagonal line several Mesh cells thick that is raised z_values[x][x] += 9.999f; z_values[x][x + (x < (GRID_MAX_POINTS_Y) - 1) ? 1 : -1] += 9.999f; // We want the altered line several mesh points thick #if ENABLED(EXTENSIBLE_UI) ExtUI::onMeshUpdate(x, x, z_values[x][x]); ExtUI::onMeshUpdate(x, (x + (x < (GRID_MAX_POINTS_Y) - 1) ? 1 : -1), z_values[x][x + (x < (GRID_MAX_POINTS_Y) - 1) ? 1 : -1]); #endif } break; case 2: // Allow the user to specify the height because 10mm is a little extreme in some cases. for (uint8_t x = (GRID_MAX_POINTS_X) / 3; x < 2 * (GRID_MAX_POINTS_X) / 3; x++) // Create a rectangular raised area in for (uint8_t y = (GRID_MAX_POINTS_Y) / 3; y < 2 * (GRID_MAX_POINTS_Y) / 3; y++) { // the center of the bed z_values[x][y] += parser.seen('C') ? g29_constant : 9.99f; TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(x, y, z_values[x][y])); } break; } } #if HAS_BED_PROBE if (parser.seen('J')) { save_ubl_active_state_and_disable(); tilt_mesh_based_on_probed_grid(g29_grid_size == 0); // Zero size does 3-Point restore_ubl_active_state_and_leave(); #if ENABLED(UBL_G29_J_RECENTER) do_blocking_move_to_xy(0.5f * ((MESH_MIN_X) + (MESH_MAX_X)), 0.5f * ((MESH_MIN_Y) + (MESH_MAX_Y))); #endif report_current_position(); probe_deployed = true; } #endif // HAS_BED_PROBE if (parser.seen('P')) { if (WITHIN(g29_phase_value, 0, 1) && storage_slot == -1) { storage_slot = 0; SERIAL_ECHOLNPGM("Default storage slot 0 selected."); } switch (g29_phase_value) { case 0: // // Zero Mesh Data // reset(); SERIAL_ECHOLNPGM("Mesh zeroed."); break; #if HAS_BED_PROBE case 1: { // // Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe // if (!parser.seen('C')) { invalidate(); SERIAL_ECHOLNPGM("Mesh invalidated. Probing mesh."); } if (g29_verbose_level > 1) { SERIAL_ECHOPAIR("Probing around (", g29_pos.x); SERIAL_CHAR(','); SERIAL_DECIMAL(g29_pos.y); SERIAL_ECHOLNPGM(").\n"); } const xy_pos_t near_probe_xy = g29_pos + probe.offset_xy; probe_entire_mesh(near_probe_xy, parser.seen('T'), parser.seen('E'), parser.seen('U')); report_current_position(); probe_deployed = true; } break; #endif // HAS_BED_PROBE case 2: { #if HAS_LCD_MENU // // Manually Probe Mesh in areas that can't be reached by the probe // SERIAL_ECHOLNPGM("Manually probing unreachable points."); do_z_clearance(Z_CLEARANCE_BETWEEN_PROBES); if (parser.seen('C') && !xy_seen) { /** * Use a good default location for the path. * The flipped > and < operators in these comparisons is intentional. * It should cause the probed points to follow a nice path on Cartesian printers. * It may make sense to have Delta printers default to the center of the bed. * Until that is decided, this can be forced with the X and Y parameters. */ g29_pos.set( #if IS_KINEMATIC X_HOME_POS, Y_HOME_POS #else probe.offset_xy.x > 0 ? X_BED_SIZE : 0, probe.offset_xy.y < 0 ? Y_BED_SIZE : 0 #endif ); } if (parser.seen('B')) { g29_card_thickness = parser.has_value() ? parser.value_float() : measure_business_card_thickness(float(Z_CLEARANCE_BETWEEN_PROBES)); if (ABS(g29_card_thickness) > 1.5f) { SERIAL_ECHOLNPGM("?Error in Business Card measurement."); return; } probe_deployed = true; } if (!position_is_reachable(g29_pos)) { SERIAL_ECHOLNPGM("XY outside printable radius."); return; } const float height = parser.floatval('H', Z_CLEARANCE_BETWEEN_PROBES); manually_probe_remaining_mesh(g29_pos, height, g29_card_thickness, parser.seen('T')); SERIAL_ECHOLNPGM("G29 P2 finished."); report_current_position(); #else SERIAL_ECHOLNPGM("?P2 is only available when an LCD is present."); return; #endif } break; case 3: { /** * Populate invalid mesh areas. Proceed with caution. * Two choices are available: * - Specify a constant with the 'C' parameter. * - Allow 'G29 P3' to choose a 'reasonable' constant. */ if (g29_c_flag) { if (g29_repetition_cnt >= GRID_MAX_POINTS) { set_all_mesh_points_to_value(g29_constant); } else { while (g29_repetition_cnt--) { // this only populates reachable mesh points near const mesh_index_pair closest = find_closest_mesh_point_of_type(INVALID, g29_pos); const xy_int8_t &cpos = closest.pos; if (cpos.x < 0) { // No more REAL INVALID mesh points to populate, so we ASSUME // user meant to populate ALL INVALID mesh points to value GRID_LOOP(x, y) if (isnan(z_values[x][y])) z_values[x][y] = g29_constant; break; // No more invalid Mesh Points to populate } else { z_values[cpos.x][cpos.y] = g29_constant; TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(cpos, g29_constant)); } } } } else { const float cvf = parser.value_float(); switch ((int)truncf(cvf * 10.0f) - 30) { // 3.1 -> 1 #if ENABLED(UBL_G29_P31) case 1: { // P3.1 use least squares fit to fill missing mesh values // P3.10 zero weighting for distance, all grid points equal, best fit tilted plane // P3.11 10X weighting for nearest grid points versus farthest grid points // P3.12 100X distance weighting // P3.13 1000X distance weighting, approaches simple average of nearest points const float weight_power = (cvf - 3.10f) * 100.0f, // 3.12345 -> 2.345 weight_factor = weight_power ? POW(10.0f, weight_power) : 0; smart_fill_wlsf(weight_factor); } break; #endif case 0: // P3 or P3.0 default: // and anything P3.x that's not P3.1 smart_fill_mesh(); // Do a 'Smart' fill using nearby known values break; } } break; } case 4: // Fine Tune (i.e., Edit) the Mesh #if HAS_LCD_MENU fine_tune_mesh(g29_pos, parser.seen('T')); #else SERIAL_ECHOLNPGM("?P4 is only available when an LCD is present."); return; #endif break; case 5: adjust_mesh_to_mean(g29_c_flag, g29_constant); break; case 6: shift_mesh_height(); break; } } #if ENABLED(UBL_DEVEL_DEBUGGING) // // Much of the 'What?' command can be eliminated. But until we are fully debugged, it is // good to have the extra information. Soon... we prune this to just a few items // if (parser.seen('W')) g29_what_command(); // // When we are fully debugged, this may go away. But there are some valid // use cases for the users. So we can wait and see what to do with it. // if (parser.seen('K')) // Kompare Current Mesh Data to Specified Stored Mesh g29_compare_current_mesh_to_stored_mesh(); #endif // UBL_DEVEL_DEBUGGING // // Load a Mesh from the EEPROM // if (parser.seen('L')) { // Load Current Mesh Data g29_storage_slot = parser.has_value() ? parser.value_int() : storage_slot; int16_t a = settings.calc_num_meshes(); if (!a) { SERIAL_ECHOLNPGM("?EEPROM storage not available."); return; } if (!WITHIN(g29_storage_slot, 0, a - 1)) { SERIAL_ECHOLNPAIR("?Invalid storage slot.\n?Use 0 to ", a - 1); return; } settings.load_mesh(g29_storage_slot); storage_slot = g29_storage_slot; SERIAL_ECHOLNPGM("Done."); } // // Store a Mesh in the EEPROM // if (parser.seen('S')) { // Store (or Save) Current Mesh Data g29_storage_slot = parser.has_value() ? parser.value_int() : storage_slot; if (g29_storage_slot == -1) // Special case, the user wants to 'Export' the mesh to the return report_current_mesh(); // host program to be saved on the user's computer int16_t a = settings.calc_num_meshes(); if (!a) { SERIAL_ECHOLNPGM("?EEPROM storage not available."); goto LEAVE; } if (!WITHIN(g29_storage_slot, 0, a - 1)) { SERIAL_ECHOLNPAIR("?Invalid storage slot.\n?Use 0 to ", a - 1); goto LEAVE; } settings.store_mesh(g29_storage_slot); storage_slot = g29_storage_slot; SERIAL_ECHOLNPGM("Done."); } if (parser.seen('T')) display_map(g29_map_type); LEAVE: #if HAS_LCD_MENU ui.reset_alert_level(); ui.quick_feedback(); ui.reset_status(); ui.release(); #endif #ifdef Z_PROBE_END_SCRIPT if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT); if (probe_deployed) { planner.synchronize(); gcode.process_subcommands_now_P(PSTR(Z_PROBE_END_SCRIPT)); } #else UNUSED(probe_deployed); #endif TERN_(HAS_MULTI_HOTEND, tool_change(old_tool_index)); return; } void unified_bed_leveling::adjust_mesh_to_mean(const bool cflag, const float value) { float sum = 0; int n = 0; GRID_LOOP(x, y) if (!isnan(z_values[x][y])) { sum += z_values[x][y]; n++; } const float mean = sum / n; // // Sum the squares of difference from mean // float sum_of_diff_squared = 0; GRID_LOOP(x, y) if (!isnan(z_values[x][y])) sum_of_diff_squared += sq(z_values[x][y] - mean); SERIAL_ECHOLNPAIR("# of samples: ", n); SERIAL_ECHOLNPAIR_F("Mean Mesh Height: ", mean, 6); const float sigma = SQRT(sum_of_diff_squared / (n + 1)); SERIAL_ECHOLNPAIR_F("Standard Deviation: ", sigma, 6); if (cflag) GRID_LOOP(x, y) if (!isnan(z_values[x][y])) { z_values[x][y] -= mean + value; TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(x, y, z_values[x][y])); } } void unified_bed_leveling::shift_mesh_height() { GRID_LOOP(x, y) if (!isnan(z_values[x][y])) { z_values[x][y] += g29_constant; TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(x, y, z_values[x][y])); } } #if HAS_BED_PROBE /** * Probe all invalidated locations of the mesh that can be reached by the probe. * This attempts to fill in locations closest to the nozzle's start location first. */ void unified_bed_leveling::probe_entire_mesh(const xy_pos_t &near, const bool do_ubl_mesh_map, const bool stow_probe, const bool do_furthest) { probe.deploy(); // Deploy before ui.capture() to allow for PAUSE_BEFORE_DEPLOY_STOW TERN_(HAS_LCD_MENU, ui.capture()); save_ubl_active_state_and_disable(); // No bed level correction so only raw data is obtained uint8_t count = GRID_MAX_POINTS; mesh_index_pair best; do { if (do_ubl_mesh_map) display_map(g29_map_type); const int point_num = (GRID_MAX_POINTS) - count + 1; SERIAL_ECHOLNPAIR("\nProbing mesh point ", point_num, "/", int(GRID_MAX_POINTS), ".\n"); TERN_(HAS_DISPLAY, ui.status_printf_P(0, PSTR(S_FMT " %i/%i"), GET_TEXT(MSG_PROBING_MESH), point_num, int(GRID_MAX_POINTS))); #if HAS_LCD_MENU if (ui.button_pressed()) { ui.quick_feedback(false); // Preserve button state for click-and-hold SERIAL_ECHOLNPGM("\nMesh only partially populated.\n"); ui.wait_for_release(); ui.quick_feedback(); ui.release(); probe.stow(); // Release UI before stow to allow for PAUSE_BEFORE_DEPLOY_STOW return restore_ubl_active_state_and_leave(); } #endif best = do_furthest ? find_furthest_invalid_mesh_point() : find_closest_mesh_point_of_type(INVALID, near, true); if (best.pos.x >= 0) { // mesh point found and is reachable by probe TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(best.pos, ExtUI::PROBE_START)); const float measured_z = probe.probe_at_point( best.meshpos(), stow_probe ? PROBE_PT_STOW : PROBE_PT_RAISE, g29_verbose_level ); z_values[best.pos.x][best.pos.y] = measured_z; #if ENABLED(EXTENSIBLE_UI) ExtUI::onMeshUpdate(best.pos, ExtUI::PROBE_FINISH); ExtUI::onMeshUpdate(best.pos, measured_z); #endif } SERIAL_FLUSH(); // Prevent host M105 buffer overrun. } while (best.pos.x >= 0 && --count); // Release UI during stow to allow for PAUSE_BEFORE_DEPLOY_STOW TERN_(HAS_LCD_MENU, ui.release()); probe.stow(); TERN_(HAS_LCD_MENU, ui.capture()); probe.move_z_after_probing(); restore_ubl_active_state_and_leave(); do_blocking_move_to_xy( constrain(near.x - probe.offset_xy.x, MESH_MIN_X, MESH_MAX_X), constrain(near.y - probe.offset_xy.y, MESH_MIN_Y, MESH_MAX_Y) ); } #endif // HAS_BED_PROBE #if HAS_LCD_MENU typedef void (*clickFunc_t)(); bool click_and_hold(const clickFunc_t func=nullptr) { if (ui.button_pressed()) { ui.quick_feedback(false); // Preserve button state for click-and-hold const millis_t nxt = millis() + 1500UL; while (ui.button_pressed()) { // Loop while the encoder is pressed. Uses hardware flag! idle(); // idle, of course if (ELAPSED(millis(), nxt)) { // After 1.5 seconds ui.quick_feedback(); if (func) (*func)(); ui.wait_for_release(); return true; } } } serial_delay(15); return false; } void unified_bed_leveling::move_z_with_encoder(const float &multiplier) { ui.wait_for_release(); while (!ui.button_pressed()) { idle(); gcode.reset_stepper_timeout(); // Keep steppers powered if (encoder_diff) { do_blocking_move_to_z(current_position.z + float(encoder_diff) * multiplier); encoder_diff = 0; } } } float unified_bed_leveling::measure_point_with_encoder() { KEEPALIVE_STATE(PAUSED_FOR_USER); move_z_with_encoder(0.01f); return current_position.z; } static void echo_and_take_a_measurement() { SERIAL_ECHOLNPGM(" and take a measurement."); } float unified_bed_leveling::measure_business_card_thickness(float in_height) { ui.capture(); save_ubl_active_state_and_disable(); // Disable bed level correction for probing do_blocking_move_to(0.5f * (MESH_MAX_X - (MESH_MIN_X)), 0.5f * (MESH_MAX_Y - (MESH_MIN_Y)), in_height); //, _MIN(planner.settings.max_feedrate_mm_s[X_AXIS], planner.settings.max_feedrate_mm_s[Y_AXIS]) * 0.5f); planner.synchronize(); SERIAL_ECHOPGM("Place shim under nozzle"); LCD_MESSAGEPGM(MSG_UBL_BC_INSERT); ui.return_to_status(); echo_and_take_a_measurement(); const float z1 = measure_point_with_encoder(); do_blocking_move_to_z(current_position.z + SIZE_OF_LITTLE_RAISE); planner.synchronize(); SERIAL_ECHOPGM("Remove shim"); LCD_MESSAGEPGM(MSG_UBL_BC_REMOVE); echo_and_take_a_measurement(); const float z2 = measure_point_with_encoder(); do_blocking_move_to_z(current_position.z + Z_CLEARANCE_BETWEEN_PROBES); const float thickness = ABS(z1 - z2); if (g29_verbose_level > 1) { SERIAL_ECHOPAIR_F("Business Card is ", thickness, 4); SERIAL_ECHOLNPGM("mm thick."); } restore_ubl_active_state_and_leave(); return thickness; } void unified_bed_leveling::manually_probe_remaining_mesh(const xy_pos_t &pos, const float &z_clearance, const float &thick, const bool do_ubl_mesh_map) { ui.capture(); save_ubl_active_state_and_disable(); // No bed level correction so only raw data is obtained do_blocking_move_to_xy_z(current_position, z_clearance); ui.return_to_status(); mesh_index_pair location; const xy_int8_t &lpos = location.pos; do { location = find_closest_mesh_point_of_type(INVALID, pos); // It doesn't matter if the probe can't reach the NAN location. This is a manual probe. if (!location.valid()) continue; const xyz_pos_t ppos = { mesh_index_to_xpos(lpos.x), mesh_index_to_ypos(lpos.y), Z_CLEARANCE_BETWEEN_PROBES }; if (!position_is_reachable(ppos)) break; // SHOULD NOT OCCUR (find_closest_mesh_point only returns reachable points) LCD_MESSAGEPGM(MSG_UBL_MOVING_TO_NEXT); do_blocking_move_to(ppos); do_z_clearance(z_clearance); KEEPALIVE_STATE(PAUSED_FOR_USER); ui.capture(); if (do_ubl_mesh_map) display_map(g29_map_type); // show user where we're probing serialprintPGM(parser.seen('B') ? GET_TEXT(MSG_UBL_BC_INSERT) : GET_TEXT(MSG_UBL_BC_INSERT2)); const float z_step = 0.01f; // existing behavior: 0.01mm per click, occasionally step //const float z_step = planner.steps_to_mm[Z_AXIS]; // approx one step each click move_z_with_encoder(z_step); if (click_and_hold()) { SERIAL_ECHOLNPGM("\nMesh only partially populated."); do_z_clearance(Z_CLEARANCE_DEPLOY_PROBE); return restore_ubl_active_state_and_leave(); } z_values[lpos.x][lpos.y] = current_position.z - thick; TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(location, z_values[lpos.x][lpos.y])); if (g29_verbose_level > 2) SERIAL_ECHOLNPAIR_F("Mesh Point Measured at: ", z_values[lpos.x][lpos.y], 6); SERIAL_FLUSH(); // Prevent host M105 buffer overrun. } while (location.valid()); if (do_ubl_mesh_map) display_map(g29_map_type); // show user where we're probing restore_ubl_active_state_and_leave(); do_blocking_move_to_xy_z(pos, Z_CLEARANCE_DEPLOY_PROBE); } inline void set_message_with_feedback(PGM_P const msg_P) { ui.set_status_P(msg_P); ui.quick_feedback(); } void abort_fine_tune() { ui.return_to_status(); do_z_clearance(Z_CLEARANCE_BETWEEN_PROBES); set_message_with_feedback(GET_TEXT(MSG_EDITING_STOPPED)); } void unified_bed_leveling::fine_tune_mesh(const xy_pos_t &pos, const bool do_ubl_mesh_map) { if (!parser.seen('R')) // fine_tune_mesh() is special. If no repetition count flag is specified g29_repetition_cnt = 1; // do exactly one mesh location. Otherwise use what the parser decided. #if ENABLED(UBL_MESH_EDIT_MOVES_Z) const float h_offset = parser.seenval('H') ? parser.value_linear_units() : 0; if (!WITHIN(h_offset, 0, 10)) { SERIAL_ECHOLNPGM("Offset out of bounds. (0 to 10mm)\n"); return; } #endif mesh_index_pair location; if (!position_is_reachable(pos)) { SERIAL_ECHOLNPGM("(X,Y) outside printable radius."); return; } save_ubl_active_state_and_disable(); LCD_MESSAGEPGM(MSG_UBL_FINE_TUNE_MESH); ui.capture(); // Take over control of the LCD encoder do_blocking_move_to_xy_z(pos, Z_CLEARANCE_BETWEEN_PROBES); // Move to the given XY with probe clearance TERN_(UBL_MESH_EDIT_MOVES_Z, do_blocking_move_to_z(h_offset)); // Move Z to the given 'H' offset MeshFlags done_flags{0}; const xy_int8_t &lpos = location.pos; do { location = find_closest_mesh_point_of_type(SET_IN_BITMAP, pos, false, &done_flags); if (lpos.x < 0) break; // Stop when there are no more reachable points done_flags.mark(lpos); // Mark this location as 'adjusted' so a new // location is used on the next loop const xyz_pos_t raw = { mesh_index_to_xpos(lpos.x), mesh_index_to_ypos(lpos.y), Z_CLEARANCE_BETWEEN_PROBES }; if (!position_is_reachable(raw)) break; // SHOULD NOT OCCUR (find_closest_mesh_point_of_type only returns reachable) do_blocking_move_to(raw); // Move the nozzle to the edit point with probe clearance TERN_(UBL_MESH_EDIT_MOVES_Z, do_blocking_move_to_z(h_offset)); // Move Z to the given 'H' offset before editing KEEPALIVE_STATE(PAUSED_FOR_USER); if (do_ubl_mesh_map) display_map(g29_map_type); // Display the current point ui.refresh(); float new_z = z_values[lpos.x][lpos.y]; if (isnan(new_z)) new_z = 0; // Invalid points begin at 0 new_z = FLOOR(new_z * 1000) * 0.001f; // Chop off digits after the 1000ths place lcd_mesh_edit_setup(new_z); do { idle(); new_z = lcd_mesh_edit(); TERN_(UBL_MESH_EDIT_MOVES_Z, do_blocking_move_to_z(h_offset + new_z)); // Move the nozzle as the point is edited SERIAL_FLUSH(); // Prevent host M105 buffer overrun. } while (!ui.button_pressed()); if (!lcd_map_control) ui.return_to_status(); // Just editing a single point? Return to status if (click_and_hold(abort_fine_tune)) break; // Button held down? Abort editing z_values[lpos.x][lpos.y] = new_z; // Save the updated Z value TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(location, new_z)); serial_delay(20); // No switch noise ui.refresh(); } while (lpos.x >= 0 && --g29_repetition_cnt > 0); if (do_ubl_mesh_map) display_map(g29_map_type); restore_ubl_active_state_and_leave(); do_blocking_move_to_xy_z(pos, Z_CLEARANCE_BETWEEN_PROBES); LCD_MESSAGEPGM(MSG_UBL_DONE_EDITING_MESH); SERIAL_ECHOLNPGM("Done Editing Mesh"); if (lcd_map_control) ui.goto_screen(ubl_map_screen); else ui.return_to_status(); } #endif // HAS_LCD_MENU bool unified_bed_leveling::g29_parameter_parsing() { bool err_flag = false; TERN_(HAS_LCD_MENU, set_message_with_feedback(GET_TEXT(MSG_UBL_DOING_G29))); g29_constant = 0; g29_repetition_cnt = 0; if (parser.seen('R')) { g29_repetition_cnt = parser.has_value() ? parser.value_int() : GRID_MAX_POINTS; NOMORE(g29_repetition_cnt, GRID_MAX_POINTS); if (g29_repetition_cnt < 1) { SERIAL_ECHOLNPGM("?(R)epetition count invalid (1+).\n"); return UBL_ERR; } } g29_verbose_level = parser.seen('V') ? parser.value_int() : 0; if (!WITHIN(g29_verbose_level, 0, 4)) { SERIAL_ECHOLNPGM("?(V)erbose level implausible (0-4).\n"); err_flag = true; } if (parser.seen('P')) { const int pv = parser.value_int(); #if !HAS_BED_PROBE if (pv == 1) { SERIAL_ECHOLNPGM("G29 P1 requires a probe.\n"); err_flag = true; } else #endif { g29_phase_value = pv; if (!WITHIN(g29_phase_value, 0, 6)) { SERIAL_ECHOLNPGM("?(P)hase value invalid (0-6).\n"); err_flag = true; } } } if (parser.seen('J')) { #if HAS_BED_PROBE g29_grid_size = parser.has_value() ? parser.value_int() : 0; if (g29_grid_size && !WITHIN(g29_grid_size, 2, 9)) { SERIAL_ECHOLNPGM("?Invalid grid size (J) specified (2-9).\n"); err_flag = true; } #else SERIAL_ECHOLNPGM("G29 J action requires a probe.\n"); err_flag = true; #endif } xy_seen.x = parser.seenval('X'); float sx = xy_seen.x ? parser.value_float() : current_position.x; xy_seen.y = parser.seenval('Y'); float sy = xy_seen.y ? parser.value_float() : current_position.y; if (xy_seen.x != xy_seen.y) { SERIAL_ECHOLNPGM("Both X & Y locations must be specified.\n"); err_flag = true; } // If X or Y are not valid, use center of the bed values if (!WITHIN(sx, X_MIN_BED, X_MAX_BED)) sx = X_CENTER; if (!WITHIN(sy, Y_MIN_BED, Y_MAX_BED)) sy = Y_CENTER; if (err_flag) return UBL_ERR; g29_pos.set(sx, sy); /** * Activate or deactivate UBL * Note: UBL's G29 restores the state set here when done. * Leveling is being enabled here with old data, possibly * none. Error handling should disable for safety... */ if (parser.seen('A')) { if (parser.seen('D')) { SERIAL_ECHOLNPGM("?Can't activate and deactivate at the same time.\n"); return UBL_ERR; } set_bed_leveling_enabled(true); report_state(); } else if (parser.seen('D')) { set_bed_leveling_enabled(false); report_state(); } // Set global 'C' flag and its value if ((g29_c_flag = parser.seen('C'))) g29_constant = parser.value_float(); #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) if (parser.seenval('F')) { const float fh = parser.value_float(); if (!WITHIN(fh, 0, 100)) { SERIAL_ECHOLNPGM("?(F)ade height for Bed Level Correction not plausible.\n"); return UBL_ERR; } set_z_fade_height(fh); } #endif g29_map_type = parser.intval('T'); if (!WITHIN(g29_map_type, 0, 2)) { SERIAL_ECHOLNPGM("Invalid map type.\n"); return UBL_ERR; } return UBL_OK; } static uint8_t ubl_state_at_invocation = 0; #if ENABLED(UBL_DEVEL_DEBUGGING) static uint8_t ubl_state_recursion_chk = 0; #endif void unified_bed_leveling::save_ubl_active_state_and_disable() { #if ENABLED(UBL_DEVEL_DEBUGGING) ubl_state_recursion_chk++; if (ubl_state_recursion_chk != 1) { SERIAL_ECHOLNPGM("save_ubl_active_state_and_disabled() called multiple times in a row."); TERN_(HAS_LCD_MENU, set_message_with_feedback(GET_TEXT(MSG_UBL_SAVE_ERROR))); return; } #endif ubl_state_at_invocation = planner.leveling_active; set_bed_leveling_enabled(false); } void unified_bed_leveling::restore_ubl_active_state_and_leave() { TERN_(HAS_LCD_MENU, ui.release()); #if ENABLED(UBL_DEVEL_DEBUGGING) if (--ubl_state_recursion_chk) { SERIAL_ECHOLNPGM("restore_ubl_active_state_and_leave() called too many times."); TERN_(HAS_LCD_MENU, set_message_with_feedback(GET_TEXT(MSG_UBL_RESTORE_ERROR))); return; } #endif set_bed_leveling_enabled(ubl_state_at_invocation); } mesh_index_pair unified_bed_leveling::find_furthest_invalid_mesh_point() { bool found_a_NAN = false, found_a_real = false; mesh_index_pair farthest { -1, -1, -99999.99 }; GRID_LOOP(i, j) { if (!isnan(z_values[i][j])) continue; // Skip valid mesh points // Skip unreachable points if (!probe.can_reach(mesh_index_to_xpos(i), mesh_index_to_ypos(j))) continue; found_a_NAN = true; xy_int8_t near { -1, -1 }; float d1, d2 = 99999.9f; GRID_LOOP(k, l) { if (isnan(z_values[k][l])) continue; found_a_real = true; // Add in a random weighting factor that scrambles the probing of the // last half of the mesh (when every unprobed mesh point is one index // from a probed location). d1 = HYPOT(i - k, j - l) + (1.0f / ((millis() % 47) + 13)); if (d1 < d2) { // Invalid mesh point (i,j) is closer to the defined point (k,l) d2 = d1; near.set(i, j); } } // // At this point d2 should have the near defined mesh point to invalid mesh point (i,j) // if (found_a_real && near.x >= 0 && d2 > farthest.distance) { farthest.pos = near; // Found an invalid location farther from the defined mesh point farthest.distance = d2; } } // GRID_LOOP if (!found_a_real && found_a_NAN) { // if the mesh is totally unpopulated, start the probing farthest.pos.set((GRID_MAX_POINTS_X) / 2, (GRID_MAX_POINTS_Y) / 2); farthest.distance = 1; } return farthest; } mesh_index_pair unified_bed_leveling::find_closest_mesh_point_of_type(const MeshPointType type, const xy_pos_t &pos, const bool probe_relative/*=false*/, MeshFlags *done_flags/*=nullptr*/) { mesh_index_pair closest; closest.invalidate(); closest.distance = -99999.9f; // Get the reference position, either nozzle or probe const xy_pos_t ref = probe_relative ? pos + probe.offset_xy : pos; float best_so_far = 99999.99f; GRID_LOOP(i, j) { if ( (type == (isnan(z_values[i][j]) ? INVALID : REAL)) || (type == SET_IN_BITMAP && !done_flags->marked(i, j)) ) { // Found a Mesh Point of the specified type! const xy_pos_t mpos = { mesh_index_to_xpos(i), mesh_index_to_ypos(j) }; // If using the probe as the reference there are some unreachable locations. // Also for round beds, there are grid points outside the bed the nozzle can't reach. // Prune them from the list and ignore them till the next Phase (manual nozzle probing). if (!(probe_relative ? probe.can_reach(mpos) : position_is_reachable(mpos))) continue; // Reachable. Check if it's the best_so_far location to the nozzle. const xy_pos_t diff = current_position - mpos; const float distance = (ref - mpos).magnitude() + diff.magnitude() * 0.1f; // factor in the distance from the current location for the normal case // so the nozzle isn't running all over the bed. if (distance < best_so_far) { best_so_far = distance; // Found a closer location with the desired value type. closest.pos.set(i, j); closest.distance = best_so_far; } } } // GRID_LOOP return closest; } /** * 'Smart Fill': Scan from the outward edges of the mesh towards the center. * If an invalid location is found, use the next two points (if valid) to * calculate a 'reasonable' value for the unprobed mesh point. */ bool unified_bed_leveling::smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) { const float v = z_values[x][y]; if (isnan(v)) { // A NAN... const int8_t dx = x + xdir, dy = y + ydir; const float v1 = z_values[dx][dy]; if (!isnan(v1)) { // ...next to a pair of real values? const float v2 = z_values[dx + xdir][dy + ydir]; if (!isnan(v2)) { z_values[x][y] = v1 < v2 ? v1 : v1 + v1 - v2; TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(x, y, z_values[x][y])); return true; } } } return false; } typedef struct { uint8_t sx, ex, sy, ey; bool yfirst; } smart_fill_info; void unified_bed_leveling::smart_fill_mesh() { static const smart_fill_info info0 PROGMEM = { 0, GRID_MAX_POINTS_X, 0, GRID_MAX_POINTS_Y - 2, false }, // Bottom of the mesh looking up info1 PROGMEM = { 0, GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y - 1, 0, false }, // Top of the mesh looking down info2 PROGMEM = { 0, GRID_MAX_POINTS_X - 2, 0, GRID_MAX_POINTS_Y, true }, // Left side of the mesh looking right info3 PROGMEM = { GRID_MAX_POINTS_X - 1, 0, 0, GRID_MAX_POINTS_Y, true }; // Right side of the mesh looking left static const smart_fill_info * const info[] PROGMEM = { &info0, &info1, &info2, &info3 }; LOOP_L_N(i, COUNT(info)) { const smart_fill_info *f = (smart_fill_info*)pgm_read_ptr(&info[i]); const int8_t sx = pgm_read_byte(&f->sx), sy = pgm_read_byte(&f->sy), ex = pgm_read_byte(&f->ex), ey = pgm_read_byte(&f->ey); if (pgm_read_byte(&f->yfirst)) { const int8_t dir = ex > sx ? 1 : -1; for (uint8_t y = sy; y != ey; ++y) for (uint8_t x = sx; x != ex; x += dir) if (smart_fill_one(x, y, dir, 0)) break; } else { const int8_t dir = ey > sy ? 1 : -1; for (uint8_t x = sx; x != ex; ++x) for (uint8_t y = sy; y != ey; y += dir) if (smart_fill_one(x, y, 0, dir)) break; } } } #if HAS_BED_PROBE //#define VALIDATE_MESH_TILT #include "../../../libs/vector_3.h" void unified_bed_leveling::tilt_mesh_based_on_probed_grid(const bool do_3_pt_leveling) { const float x_min = probe.min_x(), x_max = probe.max_x(), y_min = probe.min_y(), y_max = probe.max_y(), dx = (x_max - x_min) / (g29_grid_size - 1), dy = (y_max - y_min) / (g29_grid_size - 1); xy_float_t points[3]; probe.get_three_points(points); float measured_z; bool abort_flag = false; #ifdef VALIDATE_MESH_TILT float z1, z2, z3; // Needed for algorithm validation below #endif struct linear_fit_data lsf_results; incremental_LSF_reset(&lsf_results); if (do_3_pt_leveling) { SERIAL_ECHOLNPGM("Tilting mesh (1/3)"); TERN_(HAS_DISPLAY, ui.status_printf_P(0, PSTR(S_FMT " 1/3"), GET_TEXT(MSG_LCD_TILTING_MESH))); measured_z = probe.probe_at_point(points[0], PROBE_PT_RAISE, g29_verbose_level); if (isnan(measured_z)) abort_flag = true; else { measured_z -= get_z_correction(points[0]); #ifdef VALIDATE_MESH_TILT z1 = measured_z; #endif if (g29_verbose_level > 3) { serial_spaces(16); SERIAL_ECHOLNPAIR("Corrected_Z=", measured_z); } incremental_LSF(&lsf_results, points[0], measured_z); } if (!abort_flag) { SERIAL_ECHOLNPGM("Tilting mesh (2/3)"); TERN_(HAS_DISPLAY, ui.status_printf_P(0, PSTR(S_FMT " 2/3"), GET_TEXT(MSG_LCD_TILTING_MESH))); measured_z = probe.probe_at_point(points[1], PROBE_PT_RAISE, g29_verbose_level); #ifdef VALIDATE_MESH_TILT z2 = measured_z; #endif if (isnan(measured_z)) abort_flag = true; else { measured_z -= get_z_correction(points[1]); if (g29_verbose_level > 3) { serial_spaces(16); SERIAL_ECHOLNPAIR("Corrected_Z=", measured_z); } incremental_LSF(&lsf_results, points[1], measured_z); } } if (!abort_flag) { SERIAL_ECHOLNPGM("Tilting mesh (3/3)"); TERN_(HAS_DISPLAY, ui.status_printf_P(0, PSTR(S_FMT " 3/3"), GET_TEXT(MSG_LCD_TILTING_MESH))); measured_z = probe.probe_at_point(points[2], PROBE_PT_STOW, g29_verbose_level); #ifdef VALIDATE_MESH_TILT z3 = measured_z; #endif if (isnan(measured_z)) abort_flag = true; else { measured_z -= get_z_correction(points[2]); if (g29_verbose_level > 3) { serial_spaces(16); SERIAL_ECHOLNPAIR("Corrected_Z=", measured_z); } incremental_LSF(&lsf_results, points[2], measured_z); } } probe.stow(); probe.move_z_after_probing(); if (abort_flag) { SERIAL_ECHOLNPGM("?Error probing point. Aborting operation."); return; } } else { // !do_3_pt_leveling bool zig_zag = false; const uint16_t total_points = sq(g29_grid_size); uint16_t point_num = 1; xy_pos_t rpos; LOOP_L_N(ix, g29_grid_size) { rpos.x = x_min + ix * dx; LOOP_L_N(iy, g29_grid_size) { rpos.y = y_min + dy * (zig_zag ? g29_grid_size - 1 - iy : iy); if (!abort_flag) { SERIAL_ECHOLNPAIR("Tilting mesh point ", point_num, "/", total_points, "\n"); TERN_(HAS_DISPLAY, ui.status_printf_P(0, PSTR(S_FMT " %i/%i"), GET_TEXT(MSG_LCD_TILTING_MESH), point_num, total_points)); measured_z = probe.probe_at_point(rpos, parser.seen('E') ? PROBE_PT_STOW : PROBE_PT_RAISE, g29_verbose_level); // TODO: Needs error handling abort_flag = isnan(measured_z); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { const xy_pos_t lpos = rpos.asLogical(); DEBUG_CHAR('('); DEBUG_ECHO_F(rpos.x, 7); DEBUG_CHAR(','); DEBUG_ECHO_F(rpos.y, 7); DEBUG_ECHOPAIR_F(") logical: (", lpos.x, 7); DEBUG_CHAR(','); DEBUG_ECHO_F(lpos.y, 7); DEBUG_ECHOPAIR_F(") measured: ", measured_z, 7); DEBUG_ECHOPAIR_F(" correction: ", get_z_correction(rpos), 7); } #endif measured_z -= get_z_correction(rpos) /* + probe.offset.z */ ; if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR_F(" final >>>---> ", measured_z, 7); if (g29_verbose_level > 3) { serial_spaces(16); SERIAL_ECHOLNPAIR("Corrected_Z=", measured_z); } incremental_LSF(&lsf_results, rpos, measured_z); } point_num++; } zig_zag ^= true; } } probe.stow(); probe.move_z_after_probing(); if (abort_flag || finish_incremental_LSF(&lsf_results)) { SERIAL_ECHOPGM("Could not complete LSF!"); return; } vector_3 normal = vector_3(lsf_results.A, lsf_results.B, 1).get_normal(); if (g29_verbose_level > 2) { SERIAL_ECHOPAIR_F("bed plane normal = [", normal.x, 7); SERIAL_CHAR(','); SERIAL_ECHO_F(normal.y, 7); SERIAL_CHAR(','); SERIAL_ECHO_F(normal.z, 7); SERIAL_ECHOLNPGM("]"); } matrix_3x3 rotation = matrix_3x3::create_look_at(vector_3(lsf_results.A, lsf_results.B, 1)); GRID_LOOP(i, j) { float mx = mesh_index_to_xpos(i), my = mesh_index_to_ypos(j), mz = z_values[i][j]; if (DEBUGGING(LEVELING)) { DEBUG_ECHOPAIR_F("before rotation = [", mx, 7); DEBUG_CHAR(','); DEBUG_ECHO_F(my, 7); DEBUG_CHAR(','); DEBUG_ECHO_F(mz, 7); DEBUG_ECHOPGM("] ---> "); DEBUG_DELAY(20); } apply_rotation_xyz(rotation, mx, my, mz); if (DEBUGGING(LEVELING)) { DEBUG_ECHOPAIR_F("after rotation = [", mx, 7); DEBUG_CHAR(','); DEBUG_ECHO_F(my, 7); DEBUG_CHAR(','); DEBUG_ECHO_F(mz, 7); DEBUG_ECHOLNPGM("]"); DEBUG_DELAY(20); } z_values[i][j] = mz - lsf_results.D; TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(i, j, z_values[i][j])); } if (DEBUGGING(LEVELING)) { rotation.debug(PSTR("rotation matrix:\n")); DEBUG_ECHOPAIR_F("LSF Results A=", lsf_results.A, 7); DEBUG_ECHOPAIR_F(" B=", lsf_results.B, 7); DEBUG_ECHOLNPAIR_F(" D=", lsf_results.D, 7); DEBUG_DELAY(55); DEBUG_ECHOPAIR_F("bed plane normal = [", normal.x, 7); DEBUG_CHAR(','); DEBUG_ECHO_F(normal.y, 7); DEBUG_CHAR(','); DEBUG_ECHO_F(normal.z, 7); DEBUG_ECHOLNPGM("]"); DEBUG_EOL(); /** * Use the code below to check the validity of the mesh tilting algorithm. * 3-Point Mesh Tilt uses the same algorithm as grid-based tilting, but only * three points are used in the calculation. This guarantees that each probed point * has an exact match when get_z_correction() for that location is calculated. * The Z error between the probed point locations and the get_z_correction() * numbers for those locations should be 0. */ #ifdef VALIDATE_MESH_TILT auto d_from = []{ DEBUG_ECHOPGM("D from "); }; auto normed = [&](const xy_pos_t &pos, const float &zadd) { return normal.x * pos.x + normal.y * pos.y + zadd; }; auto debug_pt = [](PGM_P const pre, const xy_pos_t &pos, const float &zadd) { d_from(); serialprintPGM(pre); DEBUG_ECHO_F(normed(pos, zadd), 6); DEBUG_ECHOLNPAIR_F(" Z error = ", zadd - get_z_correction(pos), 6); }; debug_pt(PSTR("1st point: "), probe_pt[0], normal.z * z1); debug_pt(PSTR("2nd point: "), probe_pt[1], normal.z * z2); debug_pt(PSTR("3rd point: "), probe_pt[2], normal.z * z3); d_from(); DEBUG_ECHOPGM("safe home with Z="); DEBUG_ECHOLNPAIR_F("0 : ", normed(safe_homing_xy, 0), 6); d_from(); DEBUG_ECHOPGM("safe home with Z="); DEBUG_ECHOLNPAIR_F("mesh value ", normed(safe_homing_xy, get_z_correction(safe_homing_xy)), 6); DEBUG_ECHOPAIR(" Z error = (", Z_SAFE_HOMING_X_POINT, ",", Z_SAFE_HOMING_Y_POINT); DEBUG_ECHOLNPAIR_F(") = ", get_z_correction(safe_homing_xy), 6); #endif } // DEBUGGING(LEVELING) } #endif // HAS_BED_PROBE #if ENABLED(UBL_G29_P31) void unified_bed_leveling::smart_fill_wlsf(const float &weight_factor) { // For each undefined mesh point, compute a distance-weighted least squares fit // from all the originally populated mesh points, weighted toward the point // being extrapolated so that nearby points will have greater influence on // the point being extrapolated. Then extrapolate the mesh point from WLSF. static_assert((GRID_MAX_POINTS_Y) <= 16, "GRID_MAX_POINTS_Y too big"); uint16_t bitmap[GRID_MAX_POINTS_X] = { 0 }; struct linear_fit_data lsf_results; SERIAL_ECHOPGM("Extrapolating mesh..."); const float weight_scaled = weight_factor * _MAX(MESH_X_DIST, MESH_Y_DIST); GRID_LOOP(jx, jy) if (!isnan(z_values[jx][jy])) SBI(bitmap[jx], jy); xy_pos_t ppos; LOOP_L_N(ix, GRID_MAX_POINTS_X) { ppos.x = mesh_index_to_xpos(ix); LOOP_L_N(iy, GRID_MAX_POINTS_Y) { ppos.y = mesh_index_to_ypos(iy); if (isnan(z_values[ix][iy])) { // undefined mesh point at (ppos.x,ppos.y), compute weighted LSF from original valid mesh points. incremental_LSF_reset(&lsf_results); xy_pos_t rpos; LOOP_L_N(jx, GRID_MAX_POINTS_X) { rpos.x = mesh_index_to_xpos(jx); LOOP_L_N(jy, GRID_MAX_POINTS_Y) { if (TEST(bitmap[jx], jy)) { rpos.y = mesh_index_to_ypos(jy); const float rz = z_values[jx][jy], w = 1.0f + weight_scaled / (rpos - ppos).magnitude(); incremental_WLSF(&lsf_results, rpos, rz, w); } } } if (finish_incremental_LSF(&lsf_results)) { SERIAL_ECHOLNPGM("Insufficient data"); return; } const float ez = -lsf_results.D - lsf_results.A * ppos.x - lsf_results.B * ppos.y; z_values[ix][iy] = ez; TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(ix, iy, z_values[ix][iy])); idle(); // housekeeping } } } SERIAL_ECHOLNPGM("done"); } #endif // UBL_G29_P31 #if ENABLED(UBL_DEVEL_DEBUGGING) /** * Much of the 'What?' command can be eliminated. But until we are fully debugged, it is * good to have the extra information. Soon... we prune this to just a few items */ void unified_bed_leveling::g29_what_command() { report_state(); if (storage_slot == -1) SERIAL_ECHOPGM("No Mesh Loaded."); else SERIAL_ECHOPAIR("Mesh ", storage_slot, " Loaded."); SERIAL_EOL(); serial_delay(50); #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) SERIAL_ECHOLNPAIR_F("Fade Height M420 Z", planner.z_fade_height, 4); #endif adjust_mesh_to_mean(g29_c_flag, g29_constant); #if HAS_BED_PROBE SERIAL_ECHOLNPAIR_F("Probe Offset M851 Z", probe.offset.z, 7); #endif SERIAL_ECHOLNPAIR("MESH_MIN_X " STRINGIFY(MESH_MIN_X) "=", MESH_MIN_X); serial_delay(50); SERIAL_ECHOLNPAIR("MESH_MIN_Y " STRINGIFY(MESH_MIN_Y) "=", MESH_MIN_Y); serial_delay(50); SERIAL_ECHOLNPAIR("MESH_MAX_X " STRINGIFY(MESH_MAX_X) "=", MESH_MAX_X); serial_delay(50); SERIAL_ECHOLNPAIR("MESH_MAX_Y " STRINGIFY(MESH_MAX_Y) "=", MESH_MAX_Y); serial_delay(50); SERIAL_ECHOLNPAIR("GRID_MAX_POINTS_X ", GRID_MAX_POINTS_X); serial_delay(50); SERIAL_ECHOLNPAIR("GRID_MAX_POINTS_Y ", GRID_MAX_POINTS_Y); serial_delay(50); SERIAL_ECHOLNPAIR("MESH_X_DIST ", MESH_X_DIST); SERIAL_ECHOLNPAIR("MESH_Y_DIST ", MESH_Y_DIST); serial_delay(50); SERIAL_ECHOPGM("X-Axis Mesh Points at: "); LOOP_L_N(i, GRID_MAX_POINTS_X) { SERIAL_ECHO_F(LOGICAL_X_POSITION(mesh_index_to_xpos(i)), 3); SERIAL_ECHOPGM(" "); serial_delay(25); } SERIAL_EOL(); SERIAL_ECHOPGM("Y-Axis Mesh Points at: "); LOOP_L_N(i, GRID_MAX_POINTS_Y) { SERIAL_ECHO_F(LOGICAL_Y_POSITION(mesh_index_to_ypos(i)), 3); SERIAL_ECHOPGM(" "); serial_delay(25); } SERIAL_EOL(); #if HAS_KILL SERIAL_ECHOLNPAIR("Kill pin on :", int(KILL_PIN), " state:", int(kill_state())); #endif SERIAL_EOL(); serial_delay(50); #if ENABLED(UBL_DEVEL_DEBUGGING) SERIAL_ECHOLNPAIR("ubl_state_at_invocation :", ubl_state_at_invocation, "\nubl_state_recursion_chk :", ubl_state_recursion_chk); serial_delay(50); SERIAL_ECHOLNPAIR("Meshes go from ", hex_address((void*)settings.meshes_start_index()), " to ", hex_address((void*)settings.meshes_end_index())); serial_delay(50); SERIAL_ECHOLNPAIR("sizeof(ubl) : ", (int)sizeof(ubl)); SERIAL_EOL(); SERIAL_ECHOLNPAIR("z_value[][] size: ", (int)sizeof(z_values)); SERIAL_EOL(); serial_delay(25); SERIAL_ECHOLNPAIR("EEPROM free for UBL: ", hex_address((void*)(settings.meshes_end_index() - settings.meshes_start_index()))); serial_delay(50); SERIAL_ECHOLNPAIR("EEPROM can hold ", settings.calc_num_meshes(), " meshes.\n"); serial_delay(25); #endif // UBL_DEVEL_DEBUGGING if (!sanity_check()) { echo_name(); SERIAL_ECHOLNPGM(" sanity checks passed."); } } /** * When we are fully debugged, the EEPROM dump command will get deleted also. But * right now, it is good to have the extra information. Soon... we prune this. */ void unified_bed_leveling::g29_eeprom_dump() { uint8_t cccc; SERIAL_ECHO_MSG("EEPROM Dump:"); persistentStore.access_start(); for (uint16_t i = 0; i < persistentStore.capacity(); i += 16) { if (!(i & 0x3)) idle(); print_hex_word(i); SERIAL_ECHOPGM(": "); for (uint16_t j = 0; j < 16; j++) { persistentStore.read_data(i + j, &cccc, sizeof(uint8_t)); print_hex_byte(cccc); SERIAL_CHAR(' '); } SERIAL_EOL(); } SERIAL_EOL(); persistentStore.access_finish(); } /** * When we are fully debugged, this may go away. But there are some valid * use cases for the users. So we can wait and see what to do with it. */ void unified_bed_leveling::g29_compare_current_mesh_to_stored_mesh() { const int16_t a = settings.calc_num_meshes(); if (!a) { SERIAL_ECHOLNPGM("?EEPROM storage not available."); return; } if (!parser.has_value() || !WITHIN(g29_storage_slot, 0, a - 1)) { SERIAL_ECHOLNPAIR("?Invalid storage slot.\n?Use 0 to ", a - 1); return; } g29_storage_slot = parser.value_int(); float tmp_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; settings.load_mesh(g29_storage_slot, &tmp_z_values); SERIAL_ECHOLNPAIR("Subtracting mesh in slot ", g29_storage_slot, " from current mesh."); GRID_LOOP(x, y) { z_values[x][y] -= tmp_z_values[x][y]; TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(x, y, z_values[x][y])); } } #endif // UBL_DEVEL_DEBUGGING #endif // AUTO_BED_LEVELING_UBL