/** * Marlin 3D Printer Firmware * Copyright (C) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * temperature.cpp - temperature control */ #include "temperature.h" #include "endstops.h" #include "../Marlin.h" #include "../lcd/ultralcd.h" #include "planner.h" #include "../core/language.h" #include "../HAL/shared/Delay.h" #define MAX6675_SEPARATE_SPI EITHER(HEATER_0_USES_MAX6675, HEATER_1_USES_MAX6675) && PIN_EXISTS(MAX6675_SCK, MAX6675_DO) #if MAX6675_SEPARATE_SPI #include "../libs/private_spi.h" #endif #if EITHER(BABYSTEPPING, PID_EXTRUSION_SCALING) #include "stepper.h" #endif #if ENABLED(BABYSTEPPING) #include "../feature/babystep.h" #if ENABLED(BABYSTEP_ALWAYS_AVAILABLE) #include "../gcode/gcode.h" #endif #endif #include "printcounter.h" #if ENABLED(FILAMENT_WIDTH_SENSOR) #include "../feature/filwidth.h" #endif #if ENABLED(EMERGENCY_PARSER) #include "../feature/emergency_parser.h" #endif #if ENABLED(PRINTER_EVENT_LEDS) #include "../feature/leds/printer_event_leds.h" #endif #if ENABLED(SINGLENOZZLE) #include "tool_change.h" #endif #if HOTEND_USES_THERMISTOR #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT) static void* heater_ttbl_map[2] = { (void*)HEATER_0_TEMPTABLE, (void*)HEATER_1_TEMPTABLE }; static constexpr uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN }; #else static void* heater_ttbl_map[HOTENDS] = ARRAY_BY_HOTENDS((void*)HEATER_0_TEMPTABLE, (void*)HEATER_1_TEMPTABLE, (void*)HEATER_2_TEMPTABLE, (void*)HEATER_3_TEMPTABLE, (void*)HEATER_4_TEMPTABLE, (void*)HEATER_5_TEMPTABLE); static constexpr uint8_t heater_ttbllen_map[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN, HEATER_3_TEMPTABLE_LEN, HEATER_4_TEMPTABLE_LEN, HEATER_5_TEMPTABLE_LEN); #endif #endif Temperature thermalManager; /** * Macros to include the heater id in temp errors. The compiler's dead-code * elimination should (hopefully) optimize out the unused strings. */ #if HAS_HEATED_BED #define _BED_PSTR(M,E) (E) == -1 ? PSTR(M) : #else #define _BED_PSTR(M,E) #endif #if HAS_HEATED_CHAMBER #define _CHAMBER_PSTR(M,E) (E) == -2 ? PSTR(M) : #else #define _CHAMBER_PSTR(M,E) #endif #define _E_PSTR(M,E,N) ((HOTENDS) >= (N) && (E) == (N)-1) ? PSTR(MSG_E##N " " M) : #define TEMP_ERR_PSTR(M,E) _BED_PSTR(M##_BED,E) _CHAMBER_PSTR(M##_CHAMBER,E) _E_PSTR(M,E,2) _E_PSTR(M,E,3) _E_PSTR(M,E,4) _E_PSTR(M,E,5) _E_PSTR(M,E,6) PSTR(MSG_E1 " " M) // public: #if ENABLED(NO_FAN_SLOWING_IN_PID_TUNING) bool Temperature::adaptive_fan_slowing = true; #endif hotend_info_t Temperature::temp_hotend[HOTENDS]; // = { 0 } #if ENABLED(AUTO_POWER_E_FANS) uint8_t Temperature::autofan_speed[HOTENDS]; // = { 0 } #endif #if ENABLED(AUTO_POWER_CHAMBER_FAN) uint8_t Temperature::chamberfan_speed; // = 0 #endif #if FAN_COUNT > 0 uint8_t Temperature::fan_speed[FAN_COUNT]; // = { 0 } #if ENABLED(EXTRA_FAN_SPEED) uint8_t Temperature::old_fan_speed[FAN_COUNT], Temperature::new_fan_speed[FAN_COUNT]; void Temperature::set_temp_fan_speed(const uint8_t fan, const uint16_t tmp_temp) { switch (tmp_temp) { case 1: set_fan_speed(fan, old_fan_speed[fan]); break; case 2: old_fan_speed[fan] = fan_speed[fan]; set_fan_speed(fan, new_fan_speed[fan]); break; default: new_fan_speed[fan] = MIN(tmp_temp, 255U); break; } } #endif #if ENABLED(PROBING_FANS_OFF) bool Temperature::fans_paused; // = false; #endif #if ENABLED(ADAPTIVE_FAN_SLOWING) uint8_t Temperature::fan_speed_scaler[FAN_COUNT] = ARRAY_N(FAN_COUNT, 128, 128, 128, 128, 128, 128); #endif #if HAS_LCD_MENU uint8_t Temperature::lcd_tmpfan_speed[ #if ENABLED(SINGLENOZZLE) MAX(EXTRUDERS, FAN_COUNT) #else FAN_COUNT #endif ]; // = { 0 } #endif void Temperature::set_fan_speed(uint8_t target, uint16_t speed) { NOMORE(speed, 255U); #if ENABLED(SINGLENOZZLE) if (target != active_extruder) { if (target < EXTRUDERS) singlenozzle_fan_speed[target] = speed; return; } target = 0; // Always use fan index 0 with SINGLENOZZLE #endif if (target >= FAN_COUNT) return; fan_speed[target] = speed; #if HAS_LCD_MENU lcd_tmpfan_speed[target] = speed; #endif } #if EITHER(PROBING_FANS_OFF, ADVANCED_PAUSE_FANS_PAUSE) void Temperature::set_fans_paused(const bool p) { static uint8_t saved_fan_speed[FAN_COUNT]; // = { 0 } if (p != fans_paused) { fans_paused = p; if (p) FANS_LOOP(i) { saved_fan_speed[i] = fan_speed[i]; fan_speed[i] = 0; } else FANS_LOOP(i) fan_speed[i] = saved_fan_speed[i]; } } #endif #endif // FAN_COUNT > 0 #if WATCH_HOTENDS heater_watch_t Temperature::watch_hotend[HOTENDS]; // = { { 0 } } #endif #if HEATER_IDLE_HANDLER heater_idle_t Temperature::hotend_idle[HOTENDS]; // = { { 0 } } #endif #if HAS_HEATED_BED bed_info_t Temperature::temp_bed; // = { 0 } // Init min and max temp with extreme values to prevent false errors during startup #ifdef BED_MINTEMP int16_t Temperature::mintemp_raw_BED = HEATER_BED_RAW_LO_TEMP; #endif #ifdef BED_MAXTEMP int16_t Temperature::maxtemp_raw_BED = HEATER_BED_RAW_HI_TEMP; #endif #if WATCH_BED heater_watch_t Temperature::watch_bed; // = { 0 } #endif #if DISABLED(PIDTEMPBED) millis_t Temperature::next_bed_check_ms; #endif #if HEATER_IDLE_HANDLER heater_idle_t Temperature::bed_idle; // = { 0 } #endif #endif // HAS_HEATED_BED #if HAS_TEMP_CHAMBER chamber_info_t Temperature::temp_chamber; // = { 0 } #if HAS_HEATED_CHAMBER #ifdef CHAMBER_MINTEMP int16_t Temperature::mintemp_raw_CHAMBER = HEATER_CHAMBER_RAW_LO_TEMP; #endif #ifdef CHAMBER_MAXTEMP int16_t Temperature::maxtemp_raw_CHAMBER = HEATER_CHAMBER_RAW_HI_TEMP; #endif #if WATCH_CHAMBER heater_watch_t Temperature::watch_chamber = { 0 }; millis_t Temperature::next_chamber_check_ms; #endif #endif // HAS_HEATED_CHAMBER #endif // HAS_TEMP_CHAMBER // Initialized by settings.load() #if ENABLED(PIDTEMP) //hotend_pid_t Temperature::pid[HOTENDS]; #endif #if ENABLED(PREVENT_COLD_EXTRUSION) bool Temperature::allow_cold_extrude = false; int16_t Temperature::extrude_min_temp = EXTRUDE_MINTEMP; #endif // private: #if EARLY_WATCHDOG bool Temperature::inited = false; #endif #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT) uint16_t Temperature::redundant_temperature_raw = 0; float Temperature::redundant_temperature = 0.0; #endif volatile bool Temperature::temp_meas_ready = false; #if ENABLED(PID_EXTRUSION_SCALING) int32_t Temperature::last_e_position, Temperature::lpq[LPQ_MAX_LEN]; lpq_ptr_t Temperature::lpq_ptr = 0; #endif #define TEMPDIR(N) ((HEATER_##N##_RAW_LO_TEMP) < (HEATER_##N##_RAW_HI_TEMP) ? 1 : -1) // Init mintemp and maxtemp with extreme values to prevent false errors during startup constexpr temp_range_t sensor_heater_0 { HEATER_0_RAW_LO_TEMP, HEATER_0_RAW_HI_TEMP, 0, 16383 }, sensor_heater_1 { HEATER_1_RAW_LO_TEMP, HEATER_1_RAW_HI_TEMP, 0, 16383 }, sensor_heater_2 { HEATER_2_RAW_LO_TEMP, HEATER_2_RAW_HI_TEMP, 0, 16383 }, sensor_heater_3 { HEATER_3_RAW_LO_TEMP, HEATER_3_RAW_HI_TEMP, 0, 16383 }, sensor_heater_4 { HEATER_4_RAW_LO_TEMP, HEATER_4_RAW_HI_TEMP, 0, 16383 }, sensor_heater_5 { HEATER_5_RAW_LO_TEMP, HEATER_5_RAW_HI_TEMP, 0, 16383 }; temp_range_t Temperature::temp_range[HOTENDS] = ARRAY_BY_HOTENDS(sensor_heater_0, sensor_heater_1, sensor_heater_2, sensor_heater_3, sensor_heater_4, sensor_heater_5); #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED uint8_t Temperature::consecutive_low_temperature_error[HOTENDS] = { 0 }; #endif #ifdef MILLISECONDS_PREHEAT_TIME millis_t Temperature::preheat_end_time[HOTENDS] = { 0 }; #endif #if ENABLED(FILAMENT_WIDTH_SENSOR) int8_t Temperature::meas_shift_index; // Index of a delayed sample in buffer #endif #if HAS_AUTO_FAN millis_t Temperature::next_auto_fan_check_ms = 0; #endif #if ENABLED(FAN_SOFT_PWM) uint8_t Temperature::soft_pwm_amount_fan[FAN_COUNT], Temperature::soft_pwm_count_fan[FAN_COUNT]; #endif #if ENABLED(FILAMENT_WIDTH_SENSOR) uint16_t Temperature::current_raw_filwidth = 0; // Measured filament diameter - one extruder only #endif #if ENABLED(PROBING_HEATERS_OFF) bool Temperature::paused; #endif // public: #if HAS_ADC_BUTTONS uint32_t Temperature::current_ADCKey_raw = 0; uint8_t Temperature::ADCKey_count = 0; #endif #if ENABLED(PID_EXTRUSION_SCALING) int16_t Temperature::lpq_len; // Initialized in configuration_store #endif #if HAS_PID_HEATING inline void say_default_() { SERIAL_ECHOPGM("#define DEFAULT_"); } /** * PID Autotuning (M303) * * Alternately heat and cool the nozzle, observing its behavior to * determine the best PID values to achieve a stable temperature. * Needs sufficient heater power to make some overshoot at target * temperature to succeed. */ void Temperature::PID_autotune(const float &target, const int8_t heater, const int8_t ncycles, const bool set_result/*=false*/) { float current = 0.0; int cycles = 0; bool heating = true; millis_t next_temp_ms = millis(), t1 = next_temp_ms, t2 = next_temp_ms; long t_high = 0, t_low = 0; long bias, d; PID_t tune_pid = { 0, 0, 0 }; float max = 0, min = 10000; #if HAS_PID_FOR_BOTH #define GHV(B,H) (heater < 0 ? (B) : (H)) #define SHV(B,H) do{ if (heater < 0) temp_bed.soft_pwm_amount = B; else temp_hotend[heater].soft_pwm_amount = H; }while(0) #define ONHEATINGSTART() (heater < 0 ? printerEventLEDs.onBedHeatingStart() : printerEventLEDs.onHotendHeatingStart()) #define ONHEATING(S,C,T) do{ if (heater < 0) printerEventLEDs.onBedHeating(S,C,T); else printerEventLEDs.onHotendHeating(S,C,T); }while(0) #elif ENABLED(PIDTEMPBED) #define GHV(B,H) B #define SHV(B,H) (temp_bed.soft_pwm_amount = B) #define ONHEATINGSTART() printerEventLEDs.onBedHeatingStart() #define ONHEATING(S,C,T) printerEventLEDs.onBedHeating(S,C,T) #else #define GHV(B,H) H #define SHV(B,H) (temp_hotend[heater].soft_pwm_amount = H) #define ONHEATINGSTART() printerEventLEDs.onHotendHeatingStart() #define ONHEATING(S,C,T) printerEventLEDs.onHotendHeating(S,C,T) #endif #if WATCH_BED || WATCH_HOTENDS #define HAS_TP_BED BOTH(THERMAL_PROTECTION_BED, PIDTEMPBED) #if HAS_TP_BED && BOTH(THERMAL_PROTECTION_HOTENDS, PIDTEMP) #define GTV(B,H) (heater < 0 ? (B) : (H)) #elif HAS_TP_BED #define GTV(B,H) (B) #else #define GTV(B,H) (H) #endif const uint16_t watch_temp_period = GTV(WATCH_BED_TEMP_PERIOD, WATCH_TEMP_PERIOD); const uint8_t watch_temp_increase = GTV(WATCH_BED_TEMP_INCREASE, WATCH_TEMP_INCREASE); const float watch_temp_target = target - float(watch_temp_increase + GTV(TEMP_BED_HYSTERESIS, TEMP_HYSTERESIS) + 1); millis_t temp_change_ms = next_temp_ms + watch_temp_period * 1000UL; float next_watch_temp = 0.0; bool heated = false; #endif #if HAS_AUTO_FAN next_auto_fan_check_ms = next_temp_ms + 2500UL; #endif if (target > GHV(BED_MAXTEMP, temp_range[heater].maxtemp) - 15) { SERIAL_ECHOLNPGM(MSG_PID_TEMP_TOO_HIGH); return; } SERIAL_ECHOLNPGM(MSG_PID_AUTOTUNE_START); disable_all_heaters(); SHV(bias = d = (MAX_BED_POWER) >> 1, bias = d = (PID_MAX) >> 1); wait_for_heatup = true; // Can be interrupted with M108 #if ENABLED(PRINTER_EVENT_LEDS) const float start_temp = GHV(temp_bed.current, temp_hotend[heater].current); LEDColor color = ONHEATINGSTART(); #endif #if ENABLED(NO_FAN_SLOWING_IN_PID_TUNING) adaptive_fan_slowing = false; #endif // PID Tuning loop while (wait_for_heatup) { const millis_t ms = millis(); if (temp_meas_ready) { // temp sample ready updateTemperaturesFromRawValues(); // Get the current temperature and constrain it current = GHV(temp_bed.current, temp_hotend[heater].current); NOLESS(max, current); NOMORE(min, current); #if ENABLED(PRINTER_EVENT_LEDS) ONHEATING(start_temp, current, target); #endif #if HAS_AUTO_FAN if (ELAPSED(ms, next_auto_fan_check_ms)) { checkExtruderAutoFans(); next_auto_fan_check_ms = ms + 2500UL; } #endif if (heating && current > target) { if (ELAPSED(ms, t2 + 5000UL)) { heating = false; SHV((bias - d) >> 1, (bias - d) >> 1); t1 = ms; t_high = t1 - t2; max = target; } } if (!heating && current < target) { if (ELAPSED(ms, t1 + 5000UL)) { heating = true; t2 = ms; t_low = t2 - t1; if (cycles > 0) { const long max_pow = GHV(MAX_BED_POWER, PID_MAX); bias += (d * (t_high - t_low)) / (t_low + t_high); bias = constrain(bias, 20, max_pow - 20); d = (bias > max_pow >> 1) ? max_pow - 1 - bias : bias; SERIAL_ECHOPAIR(MSG_BIAS, bias, MSG_D, d, MSG_T_MIN, min, MSG_T_MAX, max); if (cycles > 2) { float Ku = (4.0f * d) / (float(M_PI) * (max - min) * 0.5f), Tu = ((float)(t_low + t_high) * 0.001f); tune_pid.Kp = 0.6f * Ku; tune_pid.Ki = 2 * tune_pid.Kp / Tu; tune_pid.Kd = tune_pid.Kp * Tu * 0.125f; SERIAL_ECHOPAIR(MSG_KU, Ku, MSG_TU, Tu); SERIAL_ECHOLNPGM("\n" MSG_CLASSIC_PID); SERIAL_ECHOLNPAIR(MSG_KP, tune_pid.Kp, MSG_KI, tune_pid.Ki, MSG_KD, tune_pid.Kd); /** tune_pid.Kp = 0.33*Ku; tune_pid.Ki = tune_pid.Kp/Tu; tune_pid.Kd = tune_pid.Kp*Tu/3; SERIAL_ECHOLNPGM(" Some overshoot"); SERIAL_ECHOLNPAIR(" Kp: ", tune_pid.Kp, " Ki: ", tune_pid.Ki, " Kd: ", tune_pid.Kd, " No overshoot"); tune_pid.Kp = 0.2*Ku; tune_pid.Ki = 2*tune_pid.Kp/Tu; tune_pid.Kd = tune_pid.Kp*Tu/3; SERIAL_ECHOPAIR(" Kp: ", tune_pid.Kp, " Ki: ", tune_pid.Ki, " Kd: ", tune_pid.Kd); */ } } SHV((bias + d) >> 1, (bias + d) >> 1); cycles++; min = target; } } } // Did the temperature overshoot very far? #ifndef MAX_OVERSHOOT_PID_AUTOTUNE #define MAX_OVERSHOOT_PID_AUTOTUNE 20 #endif if (current > target + MAX_OVERSHOOT_PID_AUTOTUNE) { SERIAL_ECHOLNPGM(MSG_PID_TEMP_TOO_HIGH); break; } // Report heater states every 2 seconds if (ELAPSED(ms, next_temp_ms)) { #if HAS_TEMP_SENSOR print_heater_states(heater >= 0 ? heater : active_extruder); SERIAL_EOL(); #endif next_temp_ms = ms + 2000UL; // Make sure heating is actually working #if WATCH_BED || WATCH_HOTENDS if ( #if WATCH_BED && WATCH_HOTENDS true #elif WATCH_HOTENDS heater >= 0 #else heater < 0 #endif ) { if (!heated) { // If not yet reached target... if (current > next_watch_temp) { // Over the watch temp? next_watch_temp = current + watch_temp_increase; // - set the next temp to watch for temp_change_ms = ms + watch_temp_period * 1000UL; // - move the expiration timer up if (current > watch_temp_target) heated = true; // - Flag if target temperature reached } else if (ELAPSED(ms, temp_change_ms)) // Watch timer expired _temp_error(heater, PSTR(MSG_T_HEATING_FAILED), TEMP_ERR_PSTR(MSG_HEATING_FAILED_LCD, heater)); } else if (current < target - (MAX_OVERSHOOT_PID_AUTOTUNE)) // Heated, then temperature fell too far? _temp_error(heater, PSTR(MSG_T_THERMAL_RUNAWAY), TEMP_ERR_PSTR(MSG_THERMAL_RUNAWAY, heater)); } #endif } // every 2 seconds // Timeout after MAX_CYCLE_TIME_PID_AUTOTUNE minutes since the last undershoot/overshoot cycle #ifndef MAX_CYCLE_TIME_PID_AUTOTUNE #define MAX_CYCLE_TIME_PID_AUTOTUNE 20L #endif if (((ms - t1) + (ms - t2)) > (MAX_CYCLE_TIME_PID_AUTOTUNE * 60L * 1000L)) { SERIAL_ECHOLNPGM(MSG_PID_TIMEOUT); break; } if (cycles > ncycles && cycles > 2) { SERIAL_ECHOLNPGM(MSG_PID_AUTOTUNE_FINISHED); #if HAS_PID_FOR_BOTH const char * const estring = GHV(PSTR("bed"), PSTR("")); say_default_(); serialprintPGM(estring); SERIAL_ECHOLNPAIR("Kp ", tune_pid.Kp); say_default_(); serialprintPGM(estring); SERIAL_ECHOLNPAIR("Ki ", tune_pid.Ki); say_default_(); serialprintPGM(estring); SERIAL_ECHOLNPAIR("Kd ", tune_pid.Kd); #elif ENABLED(PIDTEMP) say_default_(); SERIAL_ECHOLNPAIR("Kp ", tune_pid.Kp); say_default_(); SERIAL_ECHOLNPAIR("Ki ", tune_pid.Ki); say_default_(); SERIAL_ECHOLNPAIR("Kd ", tune_pid.Kd); #else say_default_(); SERIAL_ECHOLNPAIR("bedKp ", tune_pid.Kp); say_default_(); SERIAL_ECHOLNPAIR("bedKi ", tune_pid.Ki); say_default_(); SERIAL_ECHOLNPAIR("bedKd ", tune_pid.Kd); #endif #define _SET_BED_PID() do { \ temp_bed.pid.Kp = tune_pid.Kp; \ temp_bed.pid.Ki = scalePID_i(tune_pid.Ki); \ temp_bed.pid.Kd = scalePID_d(tune_pid.Kd); \ }while(0) #define _SET_EXTRUDER_PID() do { \ PID_PARAM(Kp, heater) = tune_pid.Kp; \ PID_PARAM(Ki, heater) = scalePID_i(tune_pid.Ki); \ PID_PARAM(Kd, heater) = scalePID_d(tune_pid.Kd); \ updatePID(); }while(0) // Use the result? (As with "M303 U1") if (set_result) { #if HAS_PID_FOR_BOTH if (heater < 0) _SET_BED_PID(); else _SET_EXTRUDER_PID(); #elif ENABLED(PIDTEMP) _SET_EXTRUDER_PID(); #else _SET_BED_PID(); #endif } #if ENABLED(PRINTER_EVENT_LEDS) printerEventLEDs.onPidTuningDone(color); #endif goto EXIT_M303; } ui.update(); } disable_all_heaters(); #if ENABLED(PRINTER_EVENT_LEDS) printerEventLEDs.onPidTuningDone(color); #endif EXIT_M303: #if ENABLED(NO_FAN_SLOWING_IN_PID_TUNING) adaptive_fan_slowing = true; #endif return; } #endif // HAS_PID_HEATING /** * Class and Instance Methods */ Temperature::Temperature() { } int16_t Temperature::getHeaterPower(const int8_t heater) { return ( #if HAS_HEATED_CHAMBER #if HAS_HEATED_BED heater == -2 #else heater < 0 #endif ? temp_chamber.soft_pwm_amount : #endif #if HAS_HEATED_BED #if HAS_HEATED_CHAMBER heater == -1 #else heater < 0 #endif ? temp_bed.soft_pwm_amount : #endif temp_hotend[heater].soft_pwm_amount ); } #if HAS_AUTO_FAN #define AUTO_1_IS_0 (E1_AUTO_FAN_PIN == E0_AUTO_FAN_PIN) #define AUTO_2_IS_0 (E2_AUTO_FAN_PIN == E0_AUTO_FAN_PIN) #define AUTO_2_IS_1 (E2_AUTO_FAN_PIN == E1_AUTO_FAN_PIN) #define AUTO_3_IS_0 (E3_AUTO_FAN_PIN == E0_AUTO_FAN_PIN) #define AUTO_3_IS_1 (E3_AUTO_FAN_PIN == E1_AUTO_FAN_PIN) #define AUTO_3_IS_2 (E3_AUTO_FAN_PIN == E2_AUTO_FAN_PIN) #define AUTO_4_IS_0 (E4_AUTO_FAN_PIN == E0_AUTO_FAN_PIN) #define AUTO_4_IS_1 (E4_AUTO_FAN_PIN == E1_AUTO_FAN_PIN) #define AUTO_4_IS_2 (E4_AUTO_FAN_PIN == E2_AUTO_FAN_PIN) #define AUTO_4_IS_3 (E4_AUTO_FAN_PIN == E3_AUTO_FAN_PIN) #define AUTO_5_IS_0 (E5_AUTO_FAN_PIN == E0_AUTO_FAN_PIN) #define AUTO_5_IS_1 (E5_AUTO_FAN_PIN == E1_AUTO_FAN_PIN) #define AUTO_5_IS_2 (E5_AUTO_FAN_PIN == E2_AUTO_FAN_PIN) #define AUTO_5_IS_3 (E5_AUTO_FAN_PIN == E3_AUTO_FAN_PIN) #define AUTO_5_IS_4 (E5_AUTO_FAN_PIN == E4_AUTO_FAN_PIN) #define AUTO_CHAMBER_IS_0 (CHAMBER_AUTO_FAN_PIN == E0_AUTO_FAN_PIN) #define AUTO_CHAMBER_IS_1 (CHAMBER_AUTO_FAN_PIN == E1_AUTO_FAN_PIN) #define AUTO_CHAMBER_IS_2 (CHAMBER_AUTO_FAN_PIN == E2_AUTO_FAN_PIN) #define AUTO_CHAMBER_IS_3 (CHAMBER_AUTO_FAN_PIN == E3_AUTO_FAN_PIN) #define AUTO_CHAMBER_IS_4 (CHAMBER_AUTO_FAN_PIN == E4_AUTO_FAN_PIN) #define AUTO_CHAMBER_IS_5 (CHAMBER_AUTO_FAN_PIN == E5_AUTO_FAN_PIN) #define AUTO_CHAMBER_IS_E (AUTO_CHAMBER_IS_0 || AUTO_CHAMBER_IS_1 || AUTO_CHAMBER_IS_2 || AUTO_CHAMBER_IS_3 || AUTO_CHAMBER_IS_4 || AUTO_CHAMBER_IS_5) #define CHAMBER_FAN_INDEX HOTENDS void Temperature::checkExtruderAutoFans() { static const uint8_t fanBit[] PROGMEM = { 0 #if HOTENDS > 1 , AUTO_1_IS_0 ? 0 : 1 #endif #if HOTENDS > 2 , AUTO_2_IS_0 ? 0 : AUTO_2_IS_1 ? 1 : 2 #endif #if HOTENDS > 3 , AUTO_3_IS_0 ? 0 : AUTO_3_IS_1 ? 1 : AUTO_3_IS_2 ? 2 : 3, #endif #if HOTENDS > 4 , AUTO_4_IS_0 ? 0 : AUTO_4_IS_1 ? 1 : AUTO_4_IS_2 ? 2 : AUTO_4_IS_3 ? 3 : 4, #endif #if HOTENDS > 5 , AUTO_5_IS_0 ? 0 : AUTO_5_IS_1 ? 1 : AUTO_5_IS_2 ? 2 : AUTO_5_IS_3 ? 3 : AUTO_5_IS_4 ? 4 : 5 #endif #if HAS_AUTO_CHAMBER_FAN , AUTO_CHAMBER_IS_0 ? 0 : AUTO_CHAMBER_IS_1 ? 1 : AUTO_CHAMBER_IS_2 ? 2 : AUTO_CHAMBER_IS_3 ? 3 : AUTO_CHAMBER_IS_4 ? 4 : AUTO_CHAMBER_IS_5 ? 5 : 6 #endif }; uint8_t fanState = 0; HOTEND_LOOP() if (temp_hotend[e].current > EXTRUDER_AUTO_FAN_TEMPERATURE) SBI(fanState, pgm_read_byte(&fanBit[e])); #if HAS_AUTO_CHAMBER_FAN if (temp_chamber.current > CHAMBER_AUTO_FAN_TEMPERATURE) SBI(fanState, pgm_read_byte(&fanBit[CHAMBER_FAN_INDEX])); #endif #define _UPDATE_AUTO_FAN(P,D,A) do{ \ if (PWM_PIN(P##_AUTO_FAN_PIN) && A < 255) \ analogWrite(P##_AUTO_FAN_PIN, D ? A : 0); \ else \ WRITE(P##_AUTO_FAN_PIN, D); \ }while(0) uint8_t fanDone = 0; for (uint8_t f = 0; f < COUNT(fanBit); f++) { const uint8_t realFan = pgm_read_byte(&fanBit[f]); if (TEST(fanDone, realFan)) continue; const bool fan_on = TEST(fanState, realFan); switch (f) { #if HAS_AUTO_CHAMBER_FAN && !AUTO_CHAMBER_IS_E case CHAMBER_FAN_INDEX: chamberfan_speed = fan_on ? CHAMBER_AUTO_FAN_SPEED : 0; break; #endif default: #if ENABLED(AUTO_POWER_E_FANS) autofan_speed[realFan] = fan_on ? EXTRUDER_AUTO_FAN_SPEED : 0; #endif break; } switch (f) { #if HAS_AUTO_FAN_0 case 0: _UPDATE_AUTO_FAN(E0, fan_on, EXTRUDER_AUTO_FAN_SPEED); break; #endif #if HAS_AUTO_FAN_1 case 1: _UPDATE_AUTO_FAN(E1, fan_on, EXTRUDER_AUTO_FAN_SPEED); break; #endif #if HAS_AUTO_FAN_2 case 2: _UPDATE_AUTO_FAN(E2, fan_on, EXTRUDER_AUTO_FAN_SPEED); break; #endif #if HAS_AUTO_FAN_3 case 3: _UPDATE_AUTO_FAN(E3, fan_on, EXTRUDER_AUTO_FAN_SPEED); break; #endif #if HAS_AUTO_FAN_4 case 4: _UPDATE_AUTO_FAN(E4, fan_on, EXTRUDER_AUTO_FAN_SPEED); break; #endif #if HAS_AUTO_FAN_5 case 5: _UPDATE_AUTO_FAN(E5, fan_on, EXTRUDER_AUTO_FAN_SPEED); break; #endif #if HAS_AUTO_CHAMBER_FAN && !AUTO_CHAMBER_IS_E case CHAMBER_FAN_INDEX: _UPDATE_AUTO_FAN(CHAMBER, fan_on, CHAMBER_AUTO_FAN_SPEED); break; #endif } SBI(fanDone, realFan); } } #endif // HAS_AUTO_FAN // // Temperature Error Handlers // void Temperature::_temp_error(const int8_t heater, PGM_P const serial_msg, PGM_P const lcd_msg) { static bool killed = false; if (IsRunning()) { SERIAL_ERROR_START(); serialprintPGM(serial_msg); SERIAL_ECHOPGM(MSG_STOPPED_HEATER); if (heater >= 0) SERIAL_ECHO((int)heater); #if HAS_HEATED_CHAMBER else if (heater == -2) SERIAL_ECHOPGM(MSG_HEATER_CHAMBER); #endif else SERIAL_ECHOPGM(MSG_HEATER_BED); SERIAL_EOL(); } #if DISABLED(BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE) if (!killed) { Running = false; killed = true; kill(lcd_msg); } else disable_all_heaters(); // paranoia #endif } void Temperature::max_temp_error(const int8_t heater) { _temp_error(heater, PSTR(MSG_T_MAXTEMP), TEMP_ERR_PSTR(MSG_ERR_MAXTEMP, heater)); } void Temperature::min_temp_error(const int8_t heater) { _temp_error(heater, PSTR(MSG_T_MINTEMP), TEMP_ERR_PSTR(MSG_ERR_MINTEMP, heater)); } float Temperature::get_pid_output(const int8_t e) { #if HOTENDS == 1 #define _HOTEND_TEST true #else #define _HOTEND_TEST (e == active_extruder) #endif E_UNUSED(); float pid_output; #if ENABLED(PIDTEMP) #if DISABLED(PID_OPENLOOP) static hotend_pid_t work_pid[HOTENDS]; static float temp_iState[HOTENDS] = { 0 }, temp_dState[HOTENDS] = { 0 }; static bool pid_reset[HOTENDS] = { false }; float pid_error = temp_hotend[HOTEND_INDEX].target - temp_hotend[HOTEND_INDEX].current; work_pid[HOTEND_INDEX].Kd = PID_K2 * PID_PARAM(Kd, HOTEND_INDEX) * (temp_hotend[HOTEND_INDEX].current - temp_dState[HOTEND_INDEX]) + float(PID_K1) * work_pid[HOTEND_INDEX].Kd; temp_dState[HOTEND_INDEX] = temp_hotend[HOTEND_INDEX].current; if (temp_hotend[HOTEND_INDEX].target == 0 || pid_error < -(PID_FUNCTIONAL_RANGE) #if HEATER_IDLE_HANDLER || hotend_idle[HOTEND_INDEX].timed_out #endif ) { pid_output = 0; pid_reset[HOTEND_INDEX] = true; } else if (pid_error > PID_FUNCTIONAL_RANGE) { pid_output = BANG_MAX; pid_reset[HOTEND_INDEX] = true; } else { if (pid_reset[HOTEND_INDEX]) { temp_iState[HOTEND_INDEX] = 0.0; pid_reset[HOTEND_INDEX] = false; } temp_iState[HOTEND_INDEX] += pid_error; work_pid[HOTEND_INDEX].Kp = PID_PARAM(Kp, HOTEND_INDEX) * pid_error; work_pid[HOTEND_INDEX].Ki = PID_PARAM(Ki, HOTEND_INDEX) * temp_iState[HOTEND_INDEX]; pid_output = work_pid[HOTEND_INDEX].Kp + work_pid[HOTEND_INDEX].Ki - work_pid[HOTEND_INDEX].Kd; #if ENABLED(PID_EXTRUSION_SCALING) work_pid[HOTEND_INDEX].Kc = 0; if (_HOTEND_TEST) { const long e_position = stepper.position(E_AXIS); if (e_position > last_e_position) { lpq[lpq_ptr] = e_position - last_e_position; last_e_position = e_position; } else lpq[lpq_ptr] = 0; if (++lpq_ptr >= lpq_len) lpq_ptr = 0; work_pid[HOTEND_INDEX].Kc = (lpq[lpq_ptr] * planner.steps_to_mm[E_AXIS]) * PID_PARAM(Kc, HOTEND_INDEX); pid_output += work_pid[HOTEND_INDEX].Kc; } #endif // PID_EXTRUSION_SCALING if (pid_output > PID_MAX) { if (pid_error > 0) temp_iState[HOTEND_INDEX] -= pid_error; // conditional un-integration pid_output = PID_MAX; } else if (pid_output < 0) { if (pid_error < 0) temp_iState[HOTEND_INDEX] -= pid_error; // conditional un-integration pid_output = 0; } } #else // PID_OPENLOOP const float pid_output = constrain(temp_hotend[HOTEND_INDEX].target, 0, PID_MAX); #endif // PID_OPENLOOP #if ENABLED(PID_DEBUG) SERIAL_ECHO_START(); SERIAL_ECHOPAIR( MSG_PID_DEBUG, HOTEND_INDEX, MSG_PID_DEBUG_INPUT, temp_hotend[HOTEND_INDEX].current, MSG_PID_DEBUG_OUTPUT, pid_output ); #if DISABLED(PID_OPENLOOP) SERIAL_ECHOPAIR( MSG_PID_DEBUG_PTERM, work_pid[HOTEND_INDEX].Kp, MSG_PID_DEBUG_ITERM, work_pid[HOTEND_INDEX].Ki, MSG_PID_DEBUG_DTERM, work_pid[HOTEND_INDEX].Kd #if ENABLED(PID_EXTRUSION_SCALING) , MSG_PID_DEBUG_CTERM, work_pid[HOTEND_INDEX].Kc #endif ); #endif SERIAL_EOL(); #endif // PID_DEBUG #else /* PID off */ #if HEATER_IDLE_HANDLER #define _TIMED_OUT_TEST hotend_idle[HOTEND_INDEX].timed_out #else #define _TIMED_OUT_TEST false #endif pid_output = (!_TIMED_OUT_TEST && temp_hotend[HOTEND_INDEX].current < temp_hotend[HOTEND_INDEX].target) ? BANG_MAX : 0; #undef _TIMED_OUT_TEST #endif return pid_output; } #if ENABLED(PIDTEMPBED) float Temperature::get_pid_output_bed() { #if DISABLED(PID_OPENLOOP) static PID_t work_pid = { 0 }; static float temp_iState = 0, temp_dState = 0; float pid_error = temp_bed.target - temp_bed.current; temp_iState += pid_error; work_pid.Kp = temp_bed.pid.Kp * pid_error; work_pid.Ki = temp_bed.pid.Ki * temp_iState; work_pid.Kd = PID_K2 * temp_bed.pid.Kd * (temp_bed.current - temp_dState) + PID_K1 * work_pid.Kd; temp_dState = temp_bed.current; float pid_output = work_pid.Kp + work_pid.Ki - work_pid.Kd; if (pid_output > MAX_BED_POWER) { if (pid_error > 0) temp_iState -= pid_error; // conditional un-integration pid_output = MAX_BED_POWER; } else if (pid_output < 0) { if (pid_error < 0) temp_iState -= pid_error; // conditional un-integration pid_output = 0; } #else // PID_OPENLOOP const float pid_output = constrain(temp_bed.target, 0, MAX_BED_POWER); #endif // PID_OPENLOOP #if ENABLED(PID_BED_DEBUG) SERIAL_ECHO_START(); SERIAL_ECHOLNPAIR( " PID_BED_DEBUG : Input ", temp_bed.current, " Output ", pid_output, #if DISABLED(PID_OPENLOOP) MSG_PID_DEBUG_PTERM, work_pid.Kp, MSG_PID_DEBUG_ITERM, work_pid.Ki, MSG_PID_DEBUG_DTERM, work_pid.Kd, #endif ); #endif return pid_output; } #endif // PIDTEMPBED /** * Manage heating activities for extruder hot-ends and a heated bed * - Acquire updated temperature readings * - Also resets the watchdog timer * - Invoke thermal runaway protection * - Manage extruder auto-fan * - Apply filament width to the extrusion rate (may move) * - Update the heated bed PID output value */ void Temperature::manage_heater() { #if EARLY_WATCHDOG // If thermal manager is still not running, make sure to at least reset the watchdog! if (!inited) { watchdog_reset(); return; } #endif #if BOTH(PROBING_HEATERS_OFF, BED_LIMIT_SWITCHING) static bool last_pause_state; #endif #if ENABLED(EMERGENCY_PARSER) if (emergency_parser.killed_by_M112) kill(); #endif if (!temp_meas_ready) return; updateTemperaturesFromRawValues(); // also resets the watchdog #if ENABLED(HEATER_0_USES_MAX6675) if (temp_hotend[0].current > MIN(HEATER_0_MAXTEMP, HEATER_0_MAX6675_TMAX - 1.0)) max_temp_error(0); if (temp_hotend[0].current < MAX(HEATER_0_MINTEMP, HEATER_0_MAX6675_TMIN + .01)) min_temp_error(0); #endif #if ENABLED(HEATER_1_USES_MAX6675) if (temp_hotend[1].current > MIN(HEATER_1_MAXTEMP, HEATER_1_MAX6675_TMAX - 1.0)) max_temp_error(1); if (temp_hotend[1].current < MAX(HEATER_1_MINTEMP, HEATER_1_MAX6675_TMIN + .01)) min_temp_error(1); #endif #define HAS_THERMAL_PROTECTION (ENABLED(THERMAL_PROTECTION_HOTENDS) || HAS_THERMALLY_PROTECTED_BED || ENABLED(THERMAL_PROTECTION_CHAMBER)) #if HAS_THERMAL_PROTECTION || DISABLED(PIDTEMPBED) || HAS_AUTO_FAN || HEATER_IDLE_HANDLER millis_t ms = millis(); #endif #if HAS_THERMAL_PROTECTION #ifndef THERMAL_PROTECTION_GRACE_PERIOD #define THERMAL_PROTECTION_GRACE_PERIOD 0 // No grace period needed on well-behaved boards #endif #if THERMAL_PROTECTION_GRACE_PERIOD > 0 static millis_t grace_period = ms + THERMAL_PROTECTION_GRACE_PERIOD; if (ELAPSED(ms, grace_period)) grace_period = 0UL; #else static constexpr millis_t grace_period = 0UL; #endif #endif HOTEND_LOOP() { #if ENABLED(THERMAL_PROTECTION_HOTENDS) if (!grace_period && degHotend(e) > temp_range[e].maxtemp) _temp_error(e, PSTR(MSG_T_THERMAL_RUNAWAY), TEMP_ERR_PSTR(MSG_THERMAL_RUNAWAY, e)); #endif #if HEATER_IDLE_HANDLER hotend_idle[e].update(ms); #endif #if ENABLED(THERMAL_PROTECTION_HOTENDS) // Check for thermal runaway thermal_runaway_protection(tr_state_machine[e], temp_hotend[e].current, temp_hotend[e].target, e, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS); #endif temp_hotend[e].soft_pwm_amount = (temp_hotend[e].current > temp_range[e].mintemp || is_preheating(e)) && temp_hotend[e].current < temp_range[e].maxtemp ? (int)get_pid_output(e) >> 1 : 0; #if WATCH_HOTENDS // Make sure temperature is increasing if (watch_hotend[e].next_ms && ELAPSED(ms, watch_hotend[e].next_ms)) { // Time to check this extruder? if (degHotend(e) < watch_hotend[e].target) // Failed to increase enough? _temp_error(e, PSTR(MSG_T_HEATING_FAILED), TEMP_ERR_PSTR(MSG_HEATING_FAILED_LCD, e)); else // Start again if the target is still far off start_watching_heater(e); } #endif #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT) // Make sure measured temperatures are close together if (ABS(temp_hotend[0].current - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) _temp_error(0, PSTR(MSG_REDUNDANCY), PSTR(MSG_ERR_REDUNDANT_TEMP)); #endif } // HOTEND_LOOP #if HAS_AUTO_FAN if (ELAPSED(ms, next_auto_fan_check_ms)) { // only need to check fan state very infrequently checkExtruderAutoFans(); next_auto_fan_check_ms = ms + 2500UL; } #endif #if ENABLED(FILAMENT_WIDTH_SENSOR) /** * Filament Width Sensor dynamically sets the volumetric multiplier * based on a delayed measurement of the filament diameter. */ if (filament_sensor) { meas_shift_index = filwidth_delay_index[0] - meas_delay_cm; if (meas_shift_index < 0) meas_shift_index += MAX_MEASUREMENT_DELAY + 1; //loop around buffer if needed meas_shift_index = constrain(meas_shift_index, 0, MAX_MEASUREMENT_DELAY); planner.calculate_volumetric_for_width_sensor(measurement_delay[meas_shift_index]); } #endif // FILAMENT_WIDTH_SENSOR #if HAS_HEATED_BED #if ENABLED(THERMAL_PROTECTION_BED) if (!grace_period && degBed() > BED_MAXTEMP) _temp_error(-1, PSTR(MSG_T_THERMAL_RUNAWAY), TEMP_ERR_PSTR(MSG_THERMAL_RUNAWAY, -1)); #endif #if WATCH_BED // Make sure temperature is increasing if (watch_bed.elapsed(ms)) { // Time to check the bed? if (degBed() < watch_bed.target) // Failed to increase enough? _temp_error(-1, PSTR(MSG_T_HEATING_FAILED), TEMP_ERR_PSTR(MSG_HEATING_FAILED_LCD, -1)); else // Start again if the target is still far off start_watching_bed(); } #endif // WATCH_BED #if DISABLED(PIDTEMPBED) if (PENDING(ms, next_bed_check_ms) #if BOTH(PROBING_HEATERS_OFF, BED_LIMIT_SWITCHING) && paused == last_pause_state #endif ) return; next_bed_check_ms = ms + BED_CHECK_INTERVAL; #if BOTH(PROBING_HEATERS_OFF, BED_LIMIT_SWITCHING) last_pause_state = paused; #endif #endif #if HEATER_IDLE_HANDLER bed_idle.update(ms); #endif #if HAS_THERMALLY_PROTECTED_BED thermal_runaway_protection(tr_state_machine_bed, temp_bed.current, temp_bed.target, -1, THERMAL_PROTECTION_BED_PERIOD, THERMAL_PROTECTION_BED_HYSTERESIS); #endif #if HEATER_IDLE_HANDLER if (bed_idle.timed_out) { temp_bed.soft_pwm_amount = 0; #if DISABLED(PIDTEMPBED) WRITE_HEATER_BED(LOW); #endif } else #endif { #if ENABLED(PIDTEMPBED) temp_bed.soft_pwm_amount = WITHIN(temp_bed.current, BED_MINTEMP, BED_MAXTEMP) ? (int)get_pid_output_bed() >> 1 : 0; #else // Check if temperature is within the correct band if (WITHIN(temp_bed.current, BED_MINTEMP, BED_MAXTEMP)) { #if ENABLED(BED_LIMIT_SWITCHING) if (temp_bed.current >= temp_bed.target + BED_HYSTERESIS) temp_bed.soft_pwm_amount = 0; else if (temp_bed.current <= temp_bed.target - (BED_HYSTERESIS)) temp_bed.soft_pwm_amount = MAX_BED_POWER >> 1; #else // !PIDTEMPBED && !BED_LIMIT_SWITCHING temp_bed.soft_pwm_amount = temp_bed.current < temp_bed.target ? MAX_BED_POWER >> 1 : 0; #endif } else { temp_bed.soft_pwm_amount = 0; WRITE_HEATER_BED(LOW); } #endif } #endif // HAS_HEATED_BED #if HAS_HEATED_CHAMBER #ifndef CHAMBER_CHECK_INTERVAL #define CHAMBER_CHECK_INTERVAL 1000UL #endif #if ENABLED(THERMAL_PROTECTION_CHAMBER) if (!grace_period && degChamber() > CHAMBER_MAXTEMP) _temp_error(-2, PSTR(MSG_T_THERMAL_RUNAWAY), TEMP_ERR_PSTR(MSG_THERMAL_RUNAWAY, -2)); #endif #if WATCH_CHAMBER // Make sure temperature is increasing if (watch_chamber.elapsed(ms)) { // Time to check the chamber? if (degChamber() < watch_chamber.target) // Failed to increase enough? _temp_error(-2, PSTR(MSG_T_HEATING_FAILED), TEMP_ERR_PSTR(MSG_HEATING_FAILED_LCD, -2)); else start_watching_chamber(); // Start again if the target is still far off } #endif // WATCH_CHAMBER if (PENDING(ms, next_chamber_check_ms)) return; next_chamber_check_ms = ms + CHAMBER_CHECK_INTERVAL; if (WITHIN(temp_chamber.current, CHAMBER_MINTEMP, CHAMBER_MAXTEMP)) { #if ENABLED(CHAMBER_LIMIT_SWITCHING) if (temp_chamber.current >= temp_chamber.target + TEMP_CHAMBER_HYSTERESIS) temp_chamber.soft_pwm_amount = 0; else if (temp_chamber.current <= temp_chamber.target - (TEMP_CHAMBER_HYSTERESIS)) temp_chamber.soft_pwm_amount = MAX_CHAMBER_POWER >> 1; #else temp_chamber.soft_pwm_amount = temp_chamber.current < temp_chamber.target ? MAX_CHAMBER_POWER >> 1 : 0; #endif } else { temp_chamber.soft_pwm_amount = 0; WRITE_HEATER_CHAMBER(LOW); } #if ENABLED(THERMAL_PROTECTION_CHAMBER) thermal_runaway_protection(tr_state_machine_chamber, temp_chamber.current, temp_chamber.target, -2, THERMAL_PROTECTION_CHAMBER_PERIOD, THERMAL_PROTECTION_CHAMBER_HYSTERESIS); #endif // TODO: Implement true PID pwm //temp_bed.soft_pwm_amount = WITHIN(temp_chamber.current, CHAMBER_MINTEMP, CHAMBER_MAXTEMP) ? (int)get_pid_output_chamber() >> 1 : 0; #endif // HAS_HEATED_CHAMBER } #define TEMP_AD595(RAW) ((RAW) * 5.0 * 100.0 / 1024.0 / (OVERSAMPLENR) * (TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET) #define TEMP_AD8495(RAW) ((RAW) * 6.6 * 100.0 / 1024.0 / (OVERSAMPLENR) * (TEMP_SENSOR_AD8495_GAIN) + TEMP_SENSOR_AD8495_OFFSET) /** * Bisect search for the range of the 'raw' value, then interpolate * proportionally between the under and over values. */ #define SCAN_THERMISTOR_TABLE(TBL,LEN) do{ \ uint8_t l = 0, r = LEN, m; \ for (;;) { \ m = (l + r) >> 1; \ if (m == l || m == r) return (short)pgm_read_word(&TBL[LEN-1][1]); \ short v00 = pgm_read_word(&TBL[m-1][0]), \ v10 = pgm_read_word(&TBL[m-0][0]); \ if (raw < v00) r = m; \ else if (raw > v10) l = m; \ else { \ const short v01 = (short)pgm_read_word(&TBL[m-1][1]), \ v11 = (short)pgm_read_word(&TBL[m-0][1]); \ return v01 + (raw - v00) * float(v11 - v01) / float(v10 - v00); \ } \ } \ }while(0) // Derived from RepRap FiveD extruder::getTemperature() // For hot end temperature measurement. float Temperature::analog_to_celsius_hotend(const int raw, const uint8_t e) { #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT) if (e > HOTENDS) #else if (e >= HOTENDS) #endif { SERIAL_ERROR_START(); SERIAL_ECHO((int)e); SERIAL_ECHOLNPGM(MSG_INVALID_EXTRUDER_NUM); kill(); return 0.0; } switch (e) { case 0: #if ENABLED(HEATER_0_USES_MAX6675) return raw * 0.25; #elif ENABLED(HEATER_0_USES_AD595) return TEMP_AD595(raw); #elif ENABLED(HEATER_0_USES_AD8495) return TEMP_AD8495(raw); #else break; #endif case 1: #if ENABLED(HEATER_1_USES_MAX6675) return raw * 0.25; #elif ENABLED(HEATER_1_USES_AD595) return TEMP_AD595(raw); #elif ENABLED(HEATER_1_USES_AD8495) return TEMP_AD8495(raw); #else break; #endif case 2: #if ENABLED(HEATER_2_USES_AD595) return TEMP_AD595(raw); #elif ENABLED(HEATER_2_USES_AD8495) return TEMP_AD8495(raw); #else break; #endif case 3: #if ENABLED(HEATER_3_USES_AD595) return TEMP_AD595(raw); #elif ENABLED(HEATER_3_USES_AD8495) return TEMP_AD8495(raw); #else break; #endif case 4: #if ENABLED(HEATER_4_USES_AD595) return TEMP_AD595(raw); #elif ENABLED(HEATER_4_USES_AD8495) return TEMP_AD8495(raw); #else break; #endif case 5: #if ENABLED(HEATER_5_USES_AD595) return TEMP_AD595(raw); #elif ENABLED(HEATER_5_USES_AD8495) return TEMP_AD8495(raw); #else break; #endif default: break; } #if HOTEND_USES_THERMISTOR // Thermistor with conversion table? const short(*tt)[][2] = (short(*)[][2])(heater_ttbl_map[e]); SCAN_THERMISTOR_TABLE((*tt), heater_ttbllen_map[e]); #endif return 0; } #if HAS_HEATED_BED // Derived from RepRap FiveD extruder::getTemperature() // For bed temperature measurement. float Temperature::analog_to_celsius_bed(const int raw) { #if ENABLED(HEATER_BED_USES_THERMISTOR) SCAN_THERMISTOR_TABLE(BEDTEMPTABLE, BEDTEMPTABLE_LEN); #elif ENABLED(HEATER_BED_USES_AD595) return TEMP_AD595(raw); #elif ENABLED(HEATER_BED_USES_AD8495) return TEMP_AD8495(raw); #else return 0; #endif } #endif // HAS_HEATED_BED #if HAS_TEMP_CHAMBER // Derived from RepRap FiveD extruder::getTemperature() // For chamber temperature measurement. float Temperature::analog_to_celsius_chamber(const int raw) { #if ENABLED(HEATER_CHAMBER_USES_THERMISTOR) SCAN_THERMISTOR_TABLE(CHAMBERTEMPTABLE, CHAMBERTEMPTABLE_LEN); #elif ENABLED(HEATER_CHAMBER_USES_AD595) return TEMP_AD595(raw); #elif ENABLED(HEATER_CHAMBER_USES_AD8495) return TEMP_AD8495(raw); #else return 0; #endif } #endif // HAS_TEMP_CHAMBER /** * Get the raw values into the actual temperatures. * The raw values are created in interrupt context, * and this function is called from normal context * as it would block the stepper routine. */ void Temperature::updateTemperaturesFromRawValues() { #if ENABLED(HEATER_0_USES_MAX6675) temp_hotend[0].raw = READ_MAX6675(0); #endif #if ENABLED(HEATER_1_USES_MAX6675) temp_hotend[1].raw = READ_MAX6675(1); #endif HOTEND_LOOP() temp_hotend[e].current = analog_to_celsius_hotend(temp_hotend[e].raw, e); #if HAS_HEATED_BED temp_bed.current = analog_to_celsius_bed(temp_bed.raw); #endif #if HAS_TEMP_CHAMBER temp_chamber.current = analog_to_celsius_chamber(temp_chamber.raw); #endif #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT) redundant_temperature = analog_to_celsius_hotend(redundant_temperature_raw, 1); #endif #if ENABLED(FILAMENT_WIDTH_SENSOR) filament_width_meas = analog_to_mm_fil_width(); #endif #if ENABLED(USE_WATCHDOG) // Reset the watchdog after we know we have a temperature measurement. watchdog_reset(); #endif temp_meas_ready = false; } #if ENABLED(FILAMENT_WIDTH_SENSOR) // Convert raw Filament Width to millimeters float Temperature::analog_to_mm_fil_width() { return current_raw_filwidth * 5.0f * (1.0f / 16383.0f); } /** * Convert Filament Width (mm) to a simple ratio * and reduce to an 8 bit value. * * A nominal width of 1.75 and measured width of 1.73 * gives (100 * 1.75 / 1.73) for a ratio of 101 and * a return value of 1. */ int8_t Temperature::widthFil_to_size_ratio() { if (ABS(filament_width_nominal - filament_width_meas) <= FILWIDTH_ERROR_MARGIN) return int(100.0f * filament_width_nominal / filament_width_meas) - 100; return 0; } #endif #if MAX6675_SEPARATE_SPI SPIclass max6675_spi; #endif // Init fans according to whether they're native PWM or Software PWM #define _INIT_SOFT_FAN(P) OUT_WRITE(P, FAN_INVERTING ? LOW : HIGH) #if ENABLED(FAN_SOFT_PWM) #define _INIT_FAN_PIN(P) _INIT_SOFT_FAN(P) #else #define _INIT_FAN_PIN(P) do{ if (PWM_PIN(P)) SET_PWM(P); else _INIT_SOFT_FAN(P); }while(0) #endif #if ENABLED(FAST_PWM_FAN) #define SET_FAST_PWM_FREQ(P) set_pwm_frequency(P, FAST_PWM_FAN_FREQUENCY) #else #define SET_FAST_PWM_FREQ(P) NOOP #endif #define INIT_FAN_PIN(P) do{ _INIT_FAN_PIN(P); SET_FAST_PWM_FREQ(P); }while(0) #if EXTRUDER_AUTO_FAN_SPEED != 255 #define INIT_E_AUTO_FAN_PIN(P) do{ if (P == FAN1_PIN || P == FAN2_PIN) { SET_PWM(P); SET_FAST_PWM_FREQ(FAST_PWM_FAN_FREQUENCY); } else SET_OUTPUT(P); }while(0) #else #define INIT_E_AUTO_FAN_PIN(P) SET_OUTPUT(P) #endif #if CHAMBER_AUTO_FAN_SPEED != 255 #define INIT_CHAMBER_AUTO_FAN_PIN(P) do{ if (P == FAN1_PIN || P == FAN2_PIN) { SET_PWM(P); SET_FAST_PWM_FREQ(FAST_PWM_FAN_FREQUENCY); } else SET_OUTPUT(P); }while(0) #else #define INIT_CHAMBER_AUTO_FAN_PIN(P) SET_OUTPUT(P) #endif /** * Initialize the temperature manager * The manager is implemented by periodic calls to manage_heater() */ void Temperature::init() { #if EARLY_WATCHDOG // Flag that the thermalManager should be running if (inited) return; inited = true; #endif #if MB(RUMBA) #define _AD(N) (ANY(HEATER_##N##_USES_AD595, HEATER_##N##_USES_AD8495)) #if _AD(0) || _AD(1) || _AD(2) || _AD(3) || _AD(4) || _AD(5) || _AD(BED) || _AD(CHAMBER) // Disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector MCUCR = _BV(JTD); MCUCR = _BV(JTD); #endif #endif #if BOTH(PIDTEMP, PID_EXTRUSION_SCALING) last_e_position = 0; #endif #if HAS_HEATER_0 OUT_WRITE(HEATER_0_PIN, HEATER_0_INVERTING); #endif #if HAS_HEATER_1 OUT_WRITE(HEATER_1_PIN, HEATER_1_INVERTING); #endif #if HAS_HEATER_2 OUT_WRITE(HEATER_2_PIN, HEATER_2_INVERTING); #endif #if HAS_HEATER_3 OUT_WRITE(HEATER_3_PIN, HEATER_3_INVERTING); #endif #if HAS_HEATER_4 OUT_WRITE(HEATER_4_PIN, HEATER_4_INVERTING); #endif #if HAS_HEATER_5 OUT_WRITE(HEATER_5_PIN, HEATER_5_INVERTING); #endif #if HAS_HEATED_BED OUT_WRITE(HEATER_BED_PIN, HEATER_BED_INVERTING); #endif #if HAS_HEATED_CHAMBER OUT_WRITE(HEATER_CHAMBER_PIN, HEATER_CHAMBER_INVERTING); #endif #if HAS_FAN0 INIT_FAN_PIN(FAN_PIN); #endif #if HAS_FAN1 INIT_FAN_PIN(FAN1_PIN); #endif #if HAS_FAN2 INIT_FAN_PIN(FAN2_PIN); #endif #if ENABLED(USE_CONTROLLER_FAN) INIT_FAN_PIN(CONTROLLER_FAN_PIN); #endif #if MAX6675_SEPARATE_SPI OUT_WRITE(SCK_PIN, LOW); OUT_WRITE(MOSI_PIN, HIGH); SET_INPUT_PULLUP(MISO_PIN); max6675_spi.init(); OUT_WRITE(SS_PIN, HIGH); OUT_WRITE(MAX6675_SS_PIN, HIGH); #endif #if ENABLED(HEATER_1_USES_MAX6675) OUT_WRITE(MAX6675_SS2_PIN, HIGH); #endif HAL_adc_init(); #if HAS_TEMP_ADC_0 HAL_ANALOG_SELECT(TEMP_0_PIN); #endif #if HAS_TEMP_ADC_1 HAL_ANALOG_SELECT(TEMP_1_PIN); #endif #if HAS_TEMP_ADC_2 HAL_ANALOG_SELECT(TEMP_2_PIN); #endif #if HAS_TEMP_ADC_3 HAL_ANALOG_SELECT(TEMP_3_PIN); #endif #if HAS_TEMP_ADC_4 HAL_ANALOG_SELECT(TEMP_4_PIN); #endif #if HAS_TEMP_ADC_5 HAL_ANALOG_SELECT(TEMP_5_PIN); #endif #if HAS_HEATED_BED HAL_ANALOG_SELECT(TEMP_BED_PIN); #endif #if HAS_TEMP_CHAMBER HAL_ANALOG_SELECT(TEMP_CHAMBER_PIN); #endif #if ENABLED(FILAMENT_WIDTH_SENSOR) HAL_ANALOG_SELECT(FILWIDTH_PIN); #endif HAL_timer_start(TEMP_TIMER_NUM, TEMP_TIMER_FREQUENCY); ENABLE_TEMPERATURE_INTERRUPT(); #if HAS_AUTO_FAN_0 INIT_E_AUTO_FAN_PIN(E0_AUTO_FAN_PIN); #endif #if HAS_AUTO_FAN_1 && !AUTO_1_IS_0 INIT_E_AUTO_FAN_PIN(E1_AUTO_FAN_PIN); #endif #if HAS_AUTO_FAN_2 && !(AUTO_2_IS_0 || AUTO_2_IS_1) INIT_E_AUTO_FAN_PIN(E2_AUTO_FAN_PIN); #endif #if HAS_AUTO_FAN_3 && !(AUTO_3_IS_0 || AUTO_3_IS_1 || AUTO_3_IS_2) INIT_E_AUTO_FAN_PIN(E3_AUTO_FAN_PIN); #endif #if HAS_AUTO_FAN_4 && !(AUTO_4_IS_0 || AUTO_4_IS_1 || AUTO_4_IS_2 || AUTO_4_IS_3) INIT_E_AUTO_FAN_PIN(E4_AUTO_FAN_PIN); #endif #if HAS_AUTO_FAN_5 && !(AUTO_5_IS_0 || AUTO_5_IS_1 || AUTO_5_IS_2 || AUTO_5_IS_3 || AUTO_5_IS_4) INIT_E_AUTO_FAN_PIN(E5_AUTO_FAN_PIN); #endif #if HAS_AUTO_CHAMBER_FAN && !AUTO_CHAMBER_IS_E INIT_CHAMBER_AUTO_FAN_PIN(CHAMBER_AUTO_FAN_PIN); #endif // Wait for temperature measurement to settle delay(250); #if HOTENDS #define _TEMP_MIN_E(NR) do{ \ temp_range[NR].mintemp = HEATER_ ##NR## _MINTEMP; \ while (analog_to_celsius_hotend(temp_range[NR].raw_min, NR) < HEATER_ ##NR## _MINTEMP) \ temp_range[NR].raw_min += TEMPDIR(NR) * (OVERSAMPLENR); \ }while(0) #define _TEMP_MAX_E(NR) do{ \ temp_range[NR].maxtemp = HEATER_ ##NR## _MAXTEMP; \ while (analog_to_celsius_hotend(temp_range[NR].raw_min, NR) > HEATER_ ##NR## _MAXTEMP) \ temp_range[NR].raw_max -= TEMPDIR(NR) * (OVERSAMPLENR); \ }while(0) #ifdef HEATER_0_MINTEMP _TEMP_MIN_E(0); #endif #ifdef HEATER_0_MAXTEMP _TEMP_MAX_E(0); #endif #if HOTENDS > 1 #ifdef HEATER_1_MINTEMP _TEMP_MIN_E(1); #endif #ifdef HEATER_1_MAXTEMP _TEMP_MAX_E(1); #endif #if HOTENDS > 2 #ifdef HEATER_2_MINTEMP _TEMP_MIN_E(2); #endif #ifdef HEATER_2_MAXTEMP _TEMP_MAX_E(2); #endif #if HOTENDS > 3 #ifdef HEATER_3_MINTEMP _TEMP_MIN_E(3); #endif #ifdef HEATER_3_MAXTEMP _TEMP_MAX_E(3); #endif #if HOTENDS > 4 #ifdef HEATER_4_MINTEMP _TEMP_MIN_E(4); #endif #ifdef HEATER_4_MAXTEMP _TEMP_MAX_E(4); #endif #if HOTENDS > 5 #ifdef HEATER_5_MINTEMP _TEMP_MIN_E(5); #endif #ifdef HEATER_5_MAXTEMP _TEMP_MAX_E(5); #endif #endif // HOTENDS > 5 #endif // HOTENDS > 4 #endif // HOTENDS > 3 #endif // HOTENDS > 2 #endif // HOTENDS > 1 #endif // HOTENDS > 1 #if HAS_HEATED_BED #ifdef BED_MINTEMP while (analog_to_celsius_bed(mintemp_raw_BED) < BED_MINTEMP) mintemp_raw_BED += TEMPDIR(BED) * (OVERSAMPLENR); #endif #ifdef BED_MAXTEMP while (analog_to_celsius_bed(maxtemp_raw_BED) > BED_MAXTEMP) mintemp_raw_BED -= TEMPDIR(BED) * (OVERSAMPLENR); #endif #endif // HAS_HEATED_BED #if HAS_HEATED_CHAMBER #ifdef CHAMBER_MINTEMP while (analog_to_celsius_chamber(mintemp_raw_CHAMBER) < CHAMBER_MINTEMP) mintemp_raw_CHAMBER += TEMPDIR(CHAMBER) * (OVERSAMPLENR); #endif #ifdef CHAMBER_MAXTEMP while (analog_to_celsius_chamber(maxtemp_raw_CHAMBER) > CHAMBER_MAXTEMP) mintemp_raw_CHAMBER -= TEMPDIR(CHAMBER) * (OVERSAMPLENR); #endif #endif #if ENABLED(PROBING_HEATERS_OFF) paused = false; #endif } #if WATCH_HOTENDS /** * Start Heating Sanity Check for hotends that are below * their target temperature by a configurable margin. * This is called when the temperature is set. (M104, M109) */ void Temperature::start_watching_heater(const uint8_t e) { E_UNUSED(); if (degTargetHotend(HOTEND_INDEX) && degHotend(HOTEND_INDEX) < degTargetHotend(HOTEND_INDEX) - (WATCH_TEMP_INCREASE + TEMP_HYSTERESIS + 1)) { watch_hotend[HOTEND_INDEX].target = degHotend(HOTEND_INDEX) + WATCH_TEMP_INCREASE; watch_hotend[HOTEND_INDEX].next_ms = millis() + (WATCH_TEMP_PERIOD) * 1000UL; } else watch_hotend[HOTEND_INDEX].next_ms = 0; } #endif #if WATCH_BED /** * Start Heating Sanity Check for hotends that are below * their target temperature by a configurable margin. * This is called when the temperature is set. (M140, M190) */ void Temperature::start_watching_bed() { if (degTargetBed() && degBed() < degTargetBed() - (WATCH_BED_TEMP_INCREASE + TEMP_BED_HYSTERESIS + 1)) { watch_bed.target = degBed() + WATCH_BED_TEMP_INCREASE; watch_bed.next_ms = millis() + (WATCH_BED_TEMP_PERIOD) * 1000UL; } else watch_bed.next_ms = 0; } #endif #if WATCH_CHAMBER /** * Start Heating Sanity Check for hotends that are below * their target temperature by a configurable margin. * This is called when the temperature is set. (M141, M191) */ void Temperature::start_watching_chamber() { if (degChamber() < degTargetChamber() - (WATCH_CHAMBER_TEMP_INCREASE + TEMP_CHAMBER_HYSTERESIS + 1)) { watch_chamber.target = degChamber() + WATCH_CHAMBER_TEMP_INCREASE; watch_chamber.next_ms = millis() + (WATCH_CHAMBER_TEMP_PERIOD) * 1000UL; } else watch_chamber.next_ms = 0; } #endif #if HAS_THERMAL_PROTECTION #if ENABLED(THERMAL_PROTECTION_HOTENDS) Temperature::tr_state_machine_t Temperature::tr_state_machine[HOTENDS]; // = { { TRInactive, 0 } }; #endif #if HAS_THERMALLY_PROTECTED_BED Temperature::tr_state_machine_t Temperature::tr_state_machine_bed; // = { TRInactive, 0 }; #endif #if ENABLED(THERMAL_PROTECTION_CHAMBER) Temperature::tr_state_machine_t Temperature::tr_state_machine_chamber; // = { TRInactive, 0 }; #endif void Temperature::thermal_runaway_protection(Temperature::tr_state_machine_t &sm, const float ¤t, const float &target, const int8_t heater_id, const uint16_t period_seconds, const uint16_t hysteresis_degc) { static float tr_target_temperature[HOTENDS + 1] = { 0.0 }; /** SERIAL_ECHO_START(); SERIAL_ECHOPGM("Thermal Thermal Runaway Running. Heater ID: "); if (heater_id == -2) SERIAL_ECHOPGM("chamber"); if (heater_id < 0) SERIAL_ECHOPGM("bed"); else SERIAL_ECHO(heater_id); SERIAL_ECHOPAIR(" ; State:", sm.state, " ; Timer:", sm.timer, " ; Temperature:", current, " ; Target Temp:", target); if (heater_id >= 0) SERIAL_ECHOPAIR(" ; Idle Timeout:", hotend_idle[heater_id].timed_out); else SERIAL_ECHOPAIR(" ; Idle Timeout:", bed_idle.timed_out); SERIAL_EOL(); //*/ const int heater_index = heater_id >= 0 ? heater_id : HOTENDS; #if HEATER_IDLE_HANDLER // If the heater idle timeout expires, restart if ((heater_id >= 0 && hotend_idle[heater_id].timed_out) #if HAS_HEATED_BED || (heater_id < 0 && bed_idle.timed_out) #endif ) { sm.state = TRInactive; tr_target_temperature[heater_index] = 0; } else #endif { // If the target temperature changes, restart if (tr_target_temperature[heater_index] != target) { tr_target_temperature[heater_index] = target; sm.state = target > 0 ? TRFirstHeating : TRInactive; } } switch (sm.state) { // Inactive state waits for a target temperature to be set case TRInactive: break; // When first heating, wait for the temperature to be reached then go to Stable state case TRFirstHeating: if (current < tr_target_temperature[heater_index]) break; sm.state = TRStable; // While the temperature is stable watch for a bad temperature case TRStable: #if ENABLED(ADAPTIVE_FAN_SLOWING) if (adaptive_fan_slowing && heater_id >= 0) { const int fan_index = MIN(heater_id, FAN_COUNT - 1); if (fan_speed[fan_index] == 0 || current >= tr_target_temperature[heater_id] - (hysteresis_degc * 0.25f)) fan_speed_scaler[fan_index] = 128; else if (current >= tr_target_temperature[heater_id] - (hysteresis_degc * 0.3335f)) fan_speed_scaler[fan_index] = 96; else if (current >= tr_target_temperature[heater_id] - (hysteresis_degc * 0.5f)) fan_speed_scaler[fan_index] = 64; else if (current >= tr_target_temperature[heater_id] - (hysteresis_degc * 0.8f)) fan_speed_scaler[fan_index] = 32; else fan_speed_scaler[fan_index] = 0; } #endif if (current >= tr_target_temperature[heater_index] - hysteresis_degc) { sm.timer = millis() + period_seconds * 1000UL; break; } else if (PENDING(millis(), sm.timer)) break; sm.state = TRRunaway; case TRRunaway: _temp_error(heater_id, PSTR(MSG_T_THERMAL_RUNAWAY), TEMP_ERR_PSTR(MSG_THERMAL_RUNAWAY, heater_id)); } } #endif // THERMAL_PROTECTION_HOTENDS || THERMAL_PROTECTION_BED || ENABLED(THERMAL_PROTECTION_CHAMBER) void Temperature::disable_all_heaters() { #if ENABLED(AUTOTEMP) planner.autotemp_enabled = false; #endif HOTEND_LOOP() setTargetHotend(0, e); #if HAS_HEATED_BED setTargetBed(0); #endif #if HAS_HEATED_CHAMBER setTargetChamber(0); #endif // Unpause and reset everything #if ENABLED(PROBING_HEATERS_OFF) pause(false); #endif #define DISABLE_HEATER(NR) { \ setTargetHotend(0, NR); \ temp_hotend[NR].soft_pwm_amount = 0; \ WRITE_HEATER_ ##NR (LOW); \ } #if HAS_TEMP_HOTEND DISABLE_HEATER(0); #if HOTENDS > 1 DISABLE_HEATER(1); #if HOTENDS > 2 DISABLE_HEATER(2); #if HOTENDS > 3 DISABLE_HEATER(3); #if HOTENDS > 4 DISABLE_HEATER(4); #if HOTENDS > 5 DISABLE_HEATER(5); #endif // HOTENDS > 5 #endif // HOTENDS > 4 #endif // HOTENDS > 3 #endif // HOTENDS > 2 #endif // HOTENDS > 1 #endif #if HAS_HEATED_BED temp_bed.target = 0; temp_bed.soft_pwm_amount = 0; #if HAS_HEATED_BED WRITE_HEATER_BED(LOW); #endif #endif #if HAS_HEATED_CHAMBER temp_chamber.target = 0; temp_chamber.soft_pwm_amount = 0; #if HAS_HEATED_CHAMBER WRITE_HEATER_CHAMBER(LOW); #endif #endif } #if ENABLED(PROBING_HEATERS_OFF) void Temperature::pause(const bool p) { if (p != paused) { paused = p; if (p) { HOTEND_LOOP() hotend_idle[e].expire(); // timeout immediately #if HAS_HEATED_BED bed_idle.expire(); // timeout immediately #endif } else { HOTEND_LOOP() reset_heater_idle_timer(e); #if HAS_HEATED_BED reset_bed_idle_timer(); #endif } } } #endif // PROBING_HEATERS_OFF #if HAS_MAX6675 int Temperature::read_max6675( #if COUNT_6675 > 1 const uint8_t hindex #endif ) { #if COUNT_6675 == 1 constexpr uint8_t hindex = 0; #else // Needed to return the correct temp when this is called too soon static uint16_t max6675_temp_previous[COUNT_6675] = { 0 }; #endif #define MAX6675_HEAT_INTERVAL 250UL #if ENABLED(MAX6675_IS_MAX31855) static uint32_t max6675_temp = 2000; #define MAX6675_ERROR_MASK 7 #define MAX6675_DISCARD_BITS 18 #define MAX6675_SPEED_BITS 3 // (_BV(SPR1)) // clock ÷ 64 #else static uint16_t max6675_temp = 2000; #define MAX6675_ERROR_MASK 4 #define MAX6675_DISCARD_BITS 3 #define MAX6675_SPEED_BITS 2 // (_BV(SPR0)) // clock ÷ 16 #endif // Return last-read value between readings static millis_t next_max6675_ms[COUNT_6675] = { 0 }; millis_t ms = millis(); if (PENDING(ms, next_max6675_ms[hindex])) return int( #if COUNT_6675 == 1 max6675_temp #else max6675_temp_previous[hindex] // Need to return the correct previous value #endif ); next_max6675_ms[hindex] = ms + MAX6675_HEAT_INTERVAL; // // TODO: spiBegin, spiRec and spiInit doesn't work when soft spi is used. // #if !MAX6675_SEPARATE_SPI spiBegin(); spiInit(MAX6675_SPEED_BITS); #endif #if COUNT_6675 > 1 #define WRITE_MAX6675(V) do{ switch (hindex) { case 1: WRITE(MAX6675_SS2_PIN, V); break; default: WRITE(MAX6675_SS_PIN, V); } }while(0) #define SET_OUTPUT_MAX6675() do{ switch (hindex) { case 1: SET_OUTPUT(MAX6675_SS2_PIN); break; default: SET_OUTPUT(MAX6675_SS_PIN); } }while(0) #elif ENABLED(HEATER_1_USES_MAX6675) #define WRITE_MAX6675(V) WRITE(MAX6675_SS2_PIN, V) #define SET_OUTPUT_MAX6675() SET_OUTPUT(MAX6675_SS2_PIN) #else #define WRITE_MAX6675(V) WRITE(MAX6675_SS_PIN, V) #define SET_OUTPUT_MAX6675() SET_OUTPUT(MAX6675_SS_PIN) #endif SET_OUTPUT_MAX6675(); WRITE_MAX6675(LOW); // enable TT_MAX6675 DELAY_NS(100); // Ensure 100ns delay // Read a big-endian temperature value max6675_temp = 0; for (uint8_t i = sizeof(max6675_temp); i--;) { max6675_temp |= ( #if MAX6675_SEPARATE_SPI max6675_spi.receive() #else spiRec() #endif ); if (i > 0) max6675_temp <<= 8; // shift left if not the last byte } WRITE_MAX6675(HIGH); // disable TT_MAX6675 if (max6675_temp & MAX6675_ERROR_MASK) { SERIAL_ERROR_START(); SERIAL_ECHOPGM("Temp measurement error! "); #if MAX6675_ERROR_MASK == 7 SERIAL_ECHOPGM("MAX31855 "); if (max6675_temp & 1) SERIAL_ECHOLNPGM("Open Circuit"); else if (max6675_temp & 2) SERIAL_ECHOLNPGM("Short to GND"); else if (max6675_temp & 4) SERIAL_ECHOLNPGM("Short to VCC"); #else SERIAL_ECHOLNPGM("MAX6675"); #endif // Thermocouple open max6675_temp = 4 * ( #if COUNT_6675 > 1 hindex ? HEATER_1_MAX6675_TMAX : HEATER_0_MAX6675_TMAX #elif ENABLED(HEATER_1_USES_MAX6675) HEATER_1_MAX6675_TMAX #else HEATER_0_MAX6675_TMAX #endif ); } else max6675_temp >>= MAX6675_DISCARD_BITS; #if ENABLED(MAX6675_IS_MAX31855) if (max6675_temp & 0x00002000) max6675_temp |= 0xFFFFC000; // Support negative temperature #endif #if COUNT_6675 > 1 max6675_temp_previous[hindex] = max6675_temp; #endif return int(max6675_temp); } #endif // HAS_MAX6675 /** * Get raw temperatures */ void Temperature::set_current_temp_raw() { #if HAS_TEMP_ADC_0 && DISABLED(HEATER_0_USES_MAX6675) temp_hotend[0].raw = temp_hotend[0].acc; #endif #if HAS_TEMP_ADC_1 #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT) redundant_temperature_raw = temp_hotend[1].acc; #elif DISABLED(HEATER_1_USES_MAX6675) temp_hotend[1].raw = temp_hotend[1].acc; #endif #if HAS_TEMP_ADC_2 temp_hotend[2].raw = temp_hotend[2].acc; #if HAS_TEMP_ADC_3 temp_hotend[3].raw = temp_hotend[3].acc; #if HAS_TEMP_ADC_4 temp_hotend[4].raw = temp_hotend[4].acc; #if HAS_TEMP_ADC_5 temp_hotend[5].raw = temp_hotend[5].acc; #endif // HAS_TEMP_ADC_5 #endif // HAS_TEMP_ADC_4 #endif // HAS_TEMP_ADC_3 #endif // HAS_TEMP_ADC_2 #endif // HAS_TEMP_ADC_1 #if HAS_HEATED_BED temp_bed.raw = temp_bed.acc; #endif #if HAS_TEMP_CHAMBER temp_chamber.raw = temp_chamber.acc; #endif temp_meas_ready = true; } #if ENABLED(FILAMENT_WIDTH_SENSOR) uint32_t raw_filwidth_value; // = 0 #endif void Temperature::readings_ready() { // Update the raw values if they've been read. Else we could be updating them during reading. if (!temp_meas_ready) set_current_temp_raw(); // Filament Sensor - can be read any time since IIR filtering is used #if ENABLED(FILAMENT_WIDTH_SENSOR) current_raw_filwidth = raw_filwidth_value >> 10; // Divide to get to 0-16384 range since we used 1/128 IIR filter approach #endif HOTEND_LOOP() temp_hotend[e].acc = 0; #if HAS_HEATED_BED temp_bed.acc = 0; #endif #if HAS_TEMP_CHAMBER temp_chamber.acc = 0; #endif int constexpr temp_dir[] = { #if ENABLED(HEATER_0_USES_MAX6675) 0 #else TEMPDIR(0) #endif #if HOTENDS > 1 , TEMPDIR(1) #if HOTENDS > 2 , TEMPDIR(2) #if HOTENDS > 3 , TEMPDIR(3) #if HOTENDS > 4 , TEMPDIR(4) #if HOTENDS > 5 , TEMPDIR(5) #endif // HOTENDS > 5 #endif // HOTENDS > 4 #endif // HOTENDS > 3 #endif // HOTENDS > 2 #endif // HOTENDS > 1 }; for (uint8_t e = 0; e < COUNT(temp_dir); e++) { const int16_t tdir = temp_dir[e], rawtemp = temp_hotend[e].raw * tdir; const bool heater_on = (temp_hotend[e].target > 0) #if ENABLED(PIDTEMP) || (temp_hotend[e].soft_pwm_amount > 0) #endif ; if (rawtemp > temp_range[e].raw_max * tdir) max_temp_error(e); if (heater_on && rawtemp < temp_range[e].raw_min * tdir && !is_preheating(e)) { #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED if (++consecutive_low_temperature_error[e] >= MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED) #endif min_temp_error(e); } #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED else consecutive_low_temperature_error[e] = 0; #endif } #if HAS_HEATED_BED #if TEMPDIR(BED) < 0 #define BEDCMP(A,B) ((A)<=(B)) #else #define BEDCMP(A,B) ((A)>=(B)) #endif const bool bed_on = (temp_bed.target > 0) #if ENABLED(PIDTEMPBED) || (temp_bed.soft_pwm_amount > 0) #endif ; if (BEDCMP(temp_bed.raw, maxtemp_raw_BED)) max_temp_error(-1); if (bed_on && BEDCMP(mintemp_raw_BED, temp_bed.raw)) min_temp_error(-1); #endif #if HAS_HEATED_CHAMBER #if TEMPDIR(CHAMBER) < 0 #define CHAMBERCMP(A,B) ((A)<=(B)) #else #define CHAMBERCMP(A,B) ((A)>=(B)) #endif const bool chamber_on = (temp_chamber.target > 0); if (CHAMBERCMP(temp_chamber.raw, maxtemp_raw_CHAMBER)) max_temp_error(-2); if (chamber_on && CHAMBERCMP(mintemp_raw_CHAMBER, temp_chamber.raw)) min_temp_error(-2); #endif } /** * Timer 0 is shared with millies so don't change the prescaler. * * On AVR this ISR uses the compare method so it runs at the base * frequency (16 MHz / 64 / 256 = 976.5625 Hz), but at the TCNT0 set * in OCR0B above (128 or halfway between OVFs). * * - Manage PWM to all the heaters and fan * - Prepare or Measure one of the raw ADC sensor values * - Check new temperature values for MIN/MAX errors (kill on error) * - Step the babysteps value for each axis towards 0 * - For PINS_DEBUGGING, monitor and report endstop pins * - For ENDSTOP_INTERRUPTS_FEATURE check endstops if flagged * - Call planner.tick to count down its "ignore" time */ HAL_TEMP_TIMER_ISR() { HAL_timer_isr_prologue(TEMP_TIMER_NUM); Temperature::isr(); HAL_timer_isr_epilogue(TEMP_TIMER_NUM); } #if ENABLED(SLOW_PWM_HEATERS) && !defined(MIN_STATE_TIME) #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds #endif class SoftPWM { public: uint8_t count; inline bool add(const uint8_t mask, const uint8_t amount) { count = (count & mask) + amount; return (count > mask); } #if ENABLED(SLOW_PWM_HEATERS) bool state_heater; uint8_t state_timer_heater; inline void dec() { if (state_timer_heater > 0) state_timer_heater--; } inline bool ready(const bool v) { const bool rdy = !state_timer_heater; if (rdy && state_heater != v) { state_heater = v; state_timer_heater = MIN_STATE_TIME; } return rdy; } #endif }; void Temperature::isr() { static int8_t temp_count = -1; static ADCSensorState adc_sensor_state = StartupDelay; static uint8_t pwm_count = _BV(SOFT_PWM_SCALE); // avoid multiple loads of pwm_count uint8_t pwm_count_tmp = pwm_count; #if HAS_ADC_BUTTONS static unsigned int raw_ADCKey_value = 0; #endif #if ENABLED(SLOW_PWM_HEATERS) static uint8_t slow_pwm_count = 0; #endif static SoftPWM soft_pwm_hotend[HOTENDS]; #if HAS_HEATED_BED static SoftPWM soft_pwm_bed; #endif #if HAS_HEATED_CHAMBER static SoftPWM soft_pwm_chamber; #endif #if DISABLED(SLOW_PWM_HEATERS) constexpr uint8_t pwm_mask = #if ENABLED(SOFT_PWM_DITHER) _BV(SOFT_PWM_SCALE) - 1 #else 0 #endif ; /** * Standard heater PWM modulation */ if (pwm_count_tmp >= 127) { pwm_count_tmp -= 127; #define _PWM_MOD(N,S,T) do{ \ const bool on = S.add(pwm_mask, T.soft_pwm_amount); \ WRITE_HEATER_##N(on); \ }while(0) #define _PWM_MOD_E(N) _PWM_MOD(N,soft_pwm_hotend[N],temp_hotend[N]) _PWM_MOD_E(0); #if HOTENDS > 1 _PWM_MOD_E(1); #if HOTENDS > 2 _PWM_MOD_E(2); #if HOTENDS > 3 _PWM_MOD_E(3); #if HOTENDS > 4 _PWM_MOD_E(4); #if HOTENDS > 5 _PWM_MOD_E(5); #endif // HOTENDS > 5 #endif // HOTENDS > 4 #endif // HOTENDS > 3 #endif // HOTENDS > 2 #endif // HOTENDS > 1 #if HAS_HEATED_BED _PWM_MOD(BED,soft_pwm_bed,temp_bed); #endif #if HAS_HEATED_CHAMBER _PWM_MOD(CHAMBER,soft_pwm_chamber,temp_chamber); #endif #if ENABLED(FAN_SOFT_PWM) #define _FAN_PWM(N) do{ \ soft_pwm_count_fan[N] = (soft_pwm_count_fan[N] & pwm_mask) + (soft_pwm_amount_fan[N] >> 1); \ WRITE_FAN_N(N, soft_pwm_count_fan[N] > pwm_mask ? HIGH : LOW); \ }while(0) #if HAS_FAN0 _FAN_PWM(0); #endif #if HAS_FAN1 _FAN_PWM(1); #endif #if HAS_FAN2 _FAN_PWM(2); #endif #endif } else { #define _PWM_LOW(N,S) do{ if (S.count <= pwm_count_tmp) WRITE_HEATER_##N(LOW); }while(0) #if HOTENDS #define _PWM_LOW_E(N) _PWM_LOW(N, soft_pwm_hotend[N]) _PWM_LOW_E(0); #if HOTENDS > 1 _PWM_LOW_E(1); #if HOTENDS > 2 _PWM_LOW_E(2); #if HOTENDS > 3 _PWM_LOW_E(3); #if HOTENDS > 4 _PWM_LOW_E(4); #if HOTENDS > 5 _PWM_LOW_E(5); #endif // HOTENDS > 5 #endif // HOTENDS > 4 #endif // HOTENDS > 3 #endif // HOTENDS > 2 #endif // HOTENDS > 1 #endif // HOTENDS #if HAS_HEATED_BED _PWM_LOW(BED, soft_pwm_bed); #endif #if HAS_HEATED_CHAMBER _PWM_LOW(CHAMBER, soft_pwm_chamber); #endif #if ENABLED(FAN_SOFT_PWM) #if HAS_FAN0 if (soft_pwm_count_fan[0] <= pwm_count_tmp) WRITE_FAN(LOW); #endif #if HAS_FAN1 if (soft_pwm_count_fan[1] <= pwm_count_tmp) WRITE_FAN1(LOW); #endif #if HAS_FAN2 if (soft_pwm_count_fan[2] <= pwm_count_tmp) WRITE_FAN2(LOW); #endif #endif } // SOFT_PWM_SCALE to frequency: // // 0: 16000000/64/256/128 = 7.6294 Hz // 1: / 64 = 15.2588 Hz // 2: / 32 = 30.5176 Hz // 3: / 16 = 61.0352 Hz // 4: / 8 = 122.0703 Hz // 5: / 4 = 244.1406 Hz pwm_count = pwm_count_tmp + _BV(SOFT_PWM_SCALE); #else // SLOW_PWM_HEATERS /** * SLOW PWM HEATERS * * For relay-driven heaters */ #define _SLOW_SET(NR,PWM,V) do{ if (PWM.ready(V)) WRITE_HEATER_##NR(V); }while(0) #define _SLOW_PWM(NR,PWM,SRC) do{ PWM.count = SRC.soft_pwm_amount; _SLOW_SET(NR,PWM,(PWM.count > 0)); }while(0) #define _PWM_OFF(NR,PWM) do{ if (PWM.count < slow_pwm_count) _SLOW_SET(NR,PWM,0); }while(0) if (slow_pwm_count == 0) { #if HOTENDS #define _SLOW_PWM_E(N) _SLOW_PWM(N, soft_pwm_hotend[N], temp_hotend[N]) _SLOW_PWM_E(0); #if HOTENDS > 1 _SLOW_PWM_E(1); #if HOTENDS > 2 _SLOW_PWM_E(2); #if HOTENDS > 3 _SLOW_PWM_E(3); #if HOTENDS > 4 _SLOW_PWM_E(4); #if HOTENDS > 5 _SLOW_PWM_E(5); #endif // HOTENDS > 5 #endif // HOTENDS > 4 #endif // HOTENDS > 3 #endif // HOTENDS > 2 #endif // HOTENDS > 1 #endif // HOTENDS #if HAS_HEATED_BED _SLOW_PWM(BED, soft_pwm_bed, temp_bed); #endif } // slow_pwm_count == 0 #if HOTENDS #define _PWM_OFF_E(N) _PWM_OFF(N, soft_pwm_hotend[N]); _PWM_OFF_E(0); #if HOTENDS > 1 _PWM_OFF_E(1); #if HOTENDS > 2 _PWM_OFF_E(2); #if HOTENDS > 3 _PWM_OFF_E(3); #if HOTENDS > 4 _PWM_OFF_E(4); #if HOTENDS > 5 _PWM_OFF_E(5); #endif // HOTENDS > 5 #endif // HOTENDS > 4 #endif // HOTENDS > 3 #endif // HOTENDS > 2 #endif // HOTENDS > 1 #endif // HOTENDS #if HAS_HEATED_BED _PWM_OFF(BED, soft_pwm_bed); #endif #if ENABLED(FAN_SOFT_PWM) if (pwm_count_tmp >= 127) { pwm_count_tmp = 0; #define _PWM_FAN(N,I) do{ \ soft_pwm_count_fan[I] = soft_pwm_amount_fan[I] >> 1; \ WRITE_FAN##N(soft_pwm_count_fan[I] > 0 ? HIGH : LOW); \ }while(0) #if HAS_FAN0 _PWM_FAN(,0); #endif #if HAS_FAN1 _PWM_FAN(1,1); #endif #if HAS_FAN2 _PWM_FAN(2,2); #endif } #if HAS_FAN0 if (soft_pwm_count_fan[0] <= pwm_count_tmp) WRITE_FAN(LOW); #endif #if HAS_FAN1 if (soft_pwm_count_fan[1] <= pwm_count_tmp) WRITE_FAN1(LOW); #endif #if HAS_FAN2 if (soft_pwm_count_fan[2] <= pwm_count_tmp) WRITE_FAN2(LOW); #endif #endif // FAN_SOFT_PWM // SOFT_PWM_SCALE to frequency: // // 0: 16000000/64/256/128 = 7.6294 Hz // 1: / 64 = 15.2588 Hz // 2: / 32 = 30.5176 Hz // 3: / 16 = 61.0352 Hz // 4: / 8 = 122.0703 Hz // 5: / 4 = 244.1406 Hz pwm_count = pwm_count_tmp + _BV(SOFT_PWM_SCALE); // increment slow_pwm_count only every 64th pwm_count, // i.e. yielding a PWM frequency of 16/128 Hz (8s). if (((pwm_count >> SOFT_PWM_SCALE) & 0x3F) == 0) { slow_pwm_count++; slow_pwm_count &= 0x7F; soft_pwm_hotend[0].dec(); #if HOTENDS > 1 soft_pwm_hotend[1].dec(); #if HOTENDS > 2 soft_pwm_hotend[2].dec(); #if HOTENDS > 3 soft_pwm_hotend[3].dec(); #if HOTENDS > 4 soft_pwm_hotend[4].dec(); #if HOTENDS > 5 soft_pwm_hotend[5].dec(); #endif // HOTENDS > 5 #endif // HOTENDS > 4 #endif // HOTENDS > 3 #endif // HOTENDS > 2 #endif // HOTENDS > 1 #if HAS_HEATED_BED soft_pwm_bed.dec(); #endif } // ((pwm_count >> SOFT_PWM_SCALE) & 0x3F) == 0 #endif // SLOW_PWM_HEATERS // // Update lcd buttons 488 times per second // static bool do_buttons; if ((do_buttons ^= true)) ui.update_buttons(); /** * One sensor is sampled on every other call of the ISR. * Each sensor is read 16 (OVERSAMPLENR) times, taking the average. * * On each Prepare pass, ADC is started for a sensor pin. * On the next pass, the ADC value is read and accumulated. * * This gives each ADC 0.9765ms to charge up. */ #define ACCUMULATE_ADC(obj) do{ \ if (!HAL_ADC_READY()) next_sensor_state = adc_sensor_state; \ else obj.acc += HAL_READ_ADC(); \ }while(0) ADCSensorState next_sensor_state = adc_sensor_state < SensorsReady ? (ADCSensorState)(int(adc_sensor_state) + 1) : StartSampling; switch (adc_sensor_state) { case SensorsReady: { // All sensors have been read. Stay in this state for a few // ISRs to save on calls to temp update/checking code below. constexpr int8_t extra_loops = MIN_ADC_ISR_LOOPS - (int8_t)SensorsReady; static uint8_t delay_count = 0; if (extra_loops > 0) { if (delay_count == 0) delay_count = extra_loops; // Init this delay if (--delay_count) // While delaying... next_sensor_state = SensorsReady; // retain this state (else, next state will be 0) break; } else { adc_sensor_state = StartSampling; // Fall-through to start sampling next_sensor_state = (ADCSensorState)(int(StartSampling) + 1); } } case StartSampling: // Start of sampling loops. Do updates/checks. if (++temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms. temp_count = 0; readings_ready(); } break; #if HAS_TEMP_ADC_0 case PrepareTemp_0: HAL_START_ADC(TEMP_0_PIN); break; case MeasureTemp_0: ACCUMULATE_ADC(temp_hotend[0]); break; #endif #if HAS_HEATED_BED case PrepareTemp_BED: HAL_START_ADC(TEMP_BED_PIN); break; case MeasureTemp_BED: ACCUMULATE_ADC(temp_bed); break; #endif #if HAS_TEMP_CHAMBER case PrepareTemp_CHAMBER: HAL_START_ADC(TEMP_CHAMBER_PIN); break; case MeasureTemp_CHAMBER: ACCUMULATE_ADC(temp_chamber); break; #endif #if HAS_TEMP_ADC_1 case PrepareTemp_1: HAL_START_ADC(TEMP_1_PIN); break; case MeasureTemp_1: ACCUMULATE_ADC(temp_hotend[1]); break; #endif #if HAS_TEMP_ADC_2 case PrepareTemp_2: HAL_START_ADC(TEMP_2_PIN); break; case MeasureTemp_2: ACCUMULATE_ADC(temp_hotend[2]); break; #endif #if HAS_TEMP_ADC_3 case PrepareTemp_3: HAL_START_ADC(TEMP_3_PIN); break; case MeasureTemp_3: ACCUMULATE_ADC(temp_hotend[3]); break; #endif #if HAS_TEMP_ADC_4 case PrepareTemp_4: HAL_START_ADC(TEMP_4_PIN); break; case MeasureTemp_4: ACCUMULATE_ADC(temp_hotend[4]); break; #endif #if HAS_TEMP_ADC_5 case PrepareTemp_5: HAL_START_ADC(TEMP_5_PIN); break; case MeasureTemp_5: ACCUMULATE_ADC(temp_hotend[5]); break; #endif #if ENABLED(FILAMENT_WIDTH_SENSOR) case Prepare_FILWIDTH: HAL_START_ADC(FILWIDTH_PIN); break; case Measure_FILWIDTH: if (!HAL_ADC_READY()) next_sensor_state = adc_sensor_state; // redo this state else if (HAL_READ_ADC() > 102) { // Make sure ADC is reading > 0.5 volts, otherwise don't read. raw_filwidth_value -= raw_filwidth_value >> 7; // Subtract 1/128th of the raw_filwidth_value raw_filwidth_value += uint32_t(HAL_READ_ADC()) << 7; // Add new ADC reading, scaled by 128 } break; #endif #if HAS_ADC_BUTTONS case Prepare_ADC_KEY: HAL_START_ADC(ADC_KEYPAD_PIN); break; case Measure_ADC_KEY: if (!HAL_ADC_READY()) next_sensor_state = adc_sensor_state; // redo this state else if (ADCKey_count < 16) { raw_ADCKey_value = HAL_READ_ADC(); if (raw_ADCKey_value > 900) { //ADC Key release ADCKey_count = 0; current_ADCKey_raw = 0; } else { current_ADCKey_raw += raw_ADCKey_value; ADCKey_count++; } } break; #endif // ADC_KEYPAD case StartupDelay: break; } // switch(adc_sensor_state) // Go to the next state adc_sensor_state = next_sensor_state; // // Additional ~1KHz Tasks // #if ENABLED(BABYSTEPPING) babystep.task(); #endif // Poll endstops state, if required endstops.poll(); // Periodically call the planner timer planner.tick(); } #if HAS_TEMP_SENSOR #include "../gcode/gcode.h" static void print_heater_state(const float &c, const float &t #if ENABLED(SHOW_TEMP_ADC_VALUES) , const float r #endif , const int8_t e=-3 ) { #if !(HAS_HEATED_BED && HAS_TEMP_HOTEND && HAS_TEMP_CHAMBER) && HOTENDS <= 1 UNUSED(e); #endif SERIAL_CHAR(' '); SERIAL_CHAR( #if HAS_TEMP_CHAMBER && HAS_HEATED_BED && HAS_TEMP_HOTEND e == -2 ? 'C' : e == -1 ? 'B' : 'T' #elif HAS_HEATED_BED && HAS_TEMP_HOTEND e == -1 ? 'B' : 'T' #elif HAS_TEMP_HOTEND 'T' #else 'B' #endif ); #if HOTENDS > 1 if (e >= 0) SERIAL_CHAR('0' + e); #endif SERIAL_CHAR(':'); SERIAL_ECHO(c); SERIAL_ECHOPAIR(" /" , t); #if ENABLED(SHOW_TEMP_ADC_VALUES) SERIAL_ECHOPAIR(" (", r / OVERSAMPLENR); SERIAL_CHAR(')'); #endif delay(2); } void Temperature::print_heater_states(const uint8_t target_extruder) { #if HAS_TEMP_HOTEND print_heater_state(degHotend(target_extruder), degTargetHotend(target_extruder) #if ENABLED(SHOW_TEMP_ADC_VALUES) , rawHotendTemp(target_extruder) #endif ); #endif #if HAS_HEATED_BED print_heater_state(degBed(), degTargetBed() #if ENABLED(SHOW_TEMP_ADC_VALUES) , rawBedTemp() #endif , -1 // BED ); #endif #if HAS_TEMP_CHAMBER print_heater_state(degChamber() #if HAS_HEATED_CHAMBER , degTargetChamber() #else , 0 #endif #if ENABLED(SHOW_TEMP_ADC_VALUES) , rawChamberTemp() #endif , -2 // CHAMBER ); #endif // HAS_TEMP_CHAMBER #if HOTENDS > 1 HOTEND_LOOP() print_heater_state(degHotend(e), degTargetHotend(e) #if ENABLED(SHOW_TEMP_ADC_VALUES) , rawHotendTemp(e) #endif , e ); #endif SERIAL_ECHOPAIR(" @:", getHeaterPower(target_extruder)); #if HAS_HEATED_BED SERIAL_ECHOPAIR(" B@:", getHeaterPower(-1)); #endif #if HAS_HEATED_CHAMBER SERIAL_ECHOPAIR(" C@:", getHeaterPower(-2)); #endif #if HOTENDS > 1 HOTEND_LOOP() { SERIAL_ECHOPAIR(" @", e); SERIAL_CHAR(':'); SERIAL_ECHO(getHeaterPower(e)); } #endif } #if ENABLED(AUTO_REPORT_TEMPERATURES) uint8_t Temperature::auto_report_temp_interval; millis_t Temperature::next_temp_report_ms; void Temperature::auto_report_temperatures() { if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) { next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval; PORT_REDIRECT(SERIAL_BOTH); print_heater_states(active_extruder); SERIAL_EOL(); } } #endif // AUTO_REPORT_TEMPERATURES #if EITHER(ULTRA_LCD, EXTENSIBLE_UI) void Temperature::set_heating_message(const uint8_t e) { const bool heating = isHeatingHotend(e); #if HOTENDS > 1 ui.status_printf_P(0, heating ? PSTR("E%c " MSG_HEATING) : PSTR("E%c " MSG_COOLING), '1' + e); #else ui.set_status_P(heating ? PSTR("E " MSG_HEATING) : PSTR("E " MSG_COOLING)); #endif } #endif #if HAS_TEMP_HOTEND #ifndef MIN_COOLING_SLOPE_DEG #define MIN_COOLING_SLOPE_DEG 1.50 #endif #ifndef MIN_COOLING_SLOPE_TIME #define MIN_COOLING_SLOPE_TIME 60 #endif bool Temperature::wait_for_hotend(const uint8_t target_extruder, const bool no_wait_for_cooling/*=true*/ #if G26_CLICK_CAN_CANCEL , const bool click_to_cancel/*=false*/ #endif ) { #if TEMP_RESIDENCY_TIME > 0 millis_t residency_start_ms = 0; // Loop until the temperature has stabilized #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL)) #else // Loop until the temperature is very close target #define TEMP_CONDITIONS (wants_to_cool ? isCoolingHotend(target_extruder) : isHeatingHotend(target_extruder)) #endif #if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE) const GcodeSuite::MarlinBusyState old_busy_state = gcode.busy_state; KEEPALIVE_STATE(NOT_BUSY); #endif #if ENABLED(PRINTER_EVENT_LEDS) const float start_temp = degHotend(target_extruder); printerEventLEDs.onHotendHeatingStart(); #endif float target_temp = -1.0, old_temp = 9999.0; bool wants_to_cool = false, first_loop = true; wait_for_heatup = true; millis_t now, next_temp_ms = 0, next_cool_check_ms = 0; do { // Target temperature might be changed during the loop if (target_temp != degTargetHotend(target_extruder)) { wants_to_cool = isCoolingHotend(target_extruder); target_temp = degTargetHotend(target_extruder); // Exit if S, continue if S, R, or R if (no_wait_for_cooling && wants_to_cool) break; } now = millis(); if (ELAPSED(now, next_temp_ms)) { // Print temp & remaining time every 1s while waiting next_temp_ms = now + 1000UL; print_heater_states(target_extruder); #if TEMP_RESIDENCY_TIME > 0 SERIAL_ECHOPGM(" W:"); if (residency_start_ms) SERIAL_ECHO(long((((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL)); else SERIAL_CHAR('?'); #endif SERIAL_EOL(); } idle(); gcode.reset_stepper_timeout(); // Keep steppers powered const float temp = degHotend(target_extruder); #if ENABLED(PRINTER_EVENT_LEDS) // Gradually change LED strip from violet to red as nozzle heats up if (!wants_to_cool) printerEventLEDs.onHotendHeating(start_temp, temp, target_temp); #endif #if TEMP_RESIDENCY_TIME > 0 const float temp_diff = ABS(target_temp - temp); if (!residency_start_ms) { // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time. if (temp_diff < TEMP_WINDOW) { residency_start_ms = now; if (first_loop) residency_start_ms += (TEMP_RESIDENCY_TIME) * 1000UL; } } else if (temp_diff > TEMP_HYSTERESIS) { // Restart the timer whenever the temperature falls outside the hysteresis. residency_start_ms = now; } #endif // Prevent a wait-forever situation if R is misused i.e. M109 R0 if (wants_to_cool) { // break after MIN_COOLING_SLOPE_TIME seconds // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) { if (old_temp - temp < float(MIN_COOLING_SLOPE_DEG)) break; next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME; old_temp = temp; } } #if G26_CLICK_CAN_CANCEL if (click_to_cancel && ui.use_click()) { wait_for_heatup = false; ui.quick_feedback(); } #endif first_loop = false; } while (wait_for_heatup && TEMP_CONDITIONS); if (wait_for_heatup) { ui.reset_status(); #if ENABLED(PRINTER_EVENT_LEDS) printerEventLEDs.onHeatingDone(); #endif } #if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE) gcode.busy_state = old_busy_state; #endif return wait_for_heatup; } #endif // HAS_TEMP_HOTEND #if HAS_HEATED_BED #ifndef MIN_COOLING_SLOPE_DEG_BED #define MIN_COOLING_SLOPE_DEG_BED 1.50 #endif #ifndef MIN_COOLING_SLOPE_TIME_BED #define MIN_COOLING_SLOPE_TIME_BED 60 #endif bool Temperature::wait_for_bed(const bool no_wait_for_cooling/*=true*/ #if G26_CLICK_CAN_CANCEL , const bool click_to_cancel/*=false*/ #endif ) { #if TEMP_BED_RESIDENCY_TIME > 0 millis_t residency_start_ms = 0; bool first_loop = true; // Loop until the temperature has stabilized #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL)) #else // Loop until the temperature is very close target #define TEMP_BED_CONDITIONS (wants_to_cool ? isCoolingBed() : isHeatingBed()) #endif float target_temp = -1, old_temp = 9999; bool wants_to_cool = false; wait_for_heatup = true; millis_t now, next_temp_ms = 0, next_cool_check_ms = 0; #if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE) const GcodeSuite::MarlinBusyState old_busy_state = gcode.busy_state; KEEPALIVE_STATE(NOT_BUSY); #endif #if ENABLED(PRINTER_EVENT_LEDS) const float start_temp = degBed(); printerEventLEDs.onBedHeatingStart(); #endif do { // Target temperature might be changed during the loop if (target_temp != degTargetBed()) { wants_to_cool = isCoolingBed(); target_temp = degTargetBed(); // Exit if S, continue if S, R, or R if (no_wait_for_cooling && wants_to_cool) break; } now = millis(); if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up. next_temp_ms = now + 1000UL; print_heater_states(active_extruder); #if TEMP_BED_RESIDENCY_TIME > 0 SERIAL_ECHOPGM(" W:"); if (residency_start_ms) SERIAL_ECHO(long((((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL)); else SERIAL_CHAR('?'); #endif SERIAL_EOL(); } idle(); gcode.reset_stepper_timeout(); // Keep steppers powered const float temp = degBed(); #if ENABLED(PRINTER_EVENT_LEDS) // Gradually change LED strip from blue to violet as bed heats up if (!wants_to_cool) printerEventLEDs.onBedHeating(start_temp, temp, target_temp); #endif #if TEMP_BED_RESIDENCY_TIME > 0 const float temp_diff = ABS(target_temp - temp); if (!residency_start_ms) { // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time. if (temp_diff < TEMP_BED_WINDOW) { residency_start_ms = now; if (first_loop) residency_start_ms += (TEMP_BED_RESIDENCY_TIME) * 1000UL; } } else if (temp_diff > TEMP_BED_HYSTERESIS) { // Restart the timer whenever the temperature falls outside the hysteresis. residency_start_ms = now; } #endif // TEMP_BED_RESIDENCY_TIME > 0 // Prevent a wait-forever situation if R is misused i.e. M190 R0 if (wants_to_cool) { // Break after MIN_COOLING_SLOPE_TIME_BED seconds // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) { if (old_temp - temp < float(MIN_COOLING_SLOPE_DEG_BED)) break; next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED; old_temp = temp; } } #if G26_CLICK_CAN_CANCEL if (click_to_cancel && ui.use_click()) { wait_for_heatup = false; ui.quick_feedback(); } #endif #if TEMP_BED_RESIDENCY_TIME > 0 first_loop = false; #endif } while (wait_for_heatup && TEMP_BED_CONDITIONS); if (wait_for_heatup) ui.reset_status(); #if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE) gcode.busy_state = old_busy_state; #endif return wait_for_heatup; } #endif // HAS_HEATED_BED #if 0 && HAS_HEATED_CHAMBER #ifndef MIN_COOLING_SLOPE_DEG_CHAMBER #define MIN_COOLING_SLOPE_DEG_CHAMBER 1.50 #endif #ifndef MIN_COOLING_SLOPE_TIME_CHAMBER #define MIN_COOLING_SLOPE_TIME_CHAMBER 60 #endif bool Temperature::wait_for_chamber(const bool no_wait_for_cooling/*=true*/) { #if TEMP_CHAMBER_RESIDENCY_TIME > 0 millis_t residency_start_ms = 0; // Loop until the temperature has stabilized #define TEMP_CHAMBER_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_CHAMBER_RESIDENCY_TIME) * 1000UL)) #else // Loop until the temperature is very close target #define TEMP_CHAMBER_CONDITIONS (wants_to_cool ? isCoolingChamber() : isHeatingChamber()) #endif float target_temp = -1, old_temp = 9999; bool wants_to_cool = false, first_loop = true; wait_for_heatup = true; millis_t now, next_temp_ms = 0, next_cool_check_ms = 0; #if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE) const GcodeSuite::MarlinBusyState old_busy_state = gcode.busy_state; KEEPALIVE_STATE(NOT_BUSY); #endif do { // Target temperature might be changed during the loop if (target_temp != degTargetChamber()) { wants_to_cool = isCoolingChamber(); target_temp = degTargetChamber(); // Exit if S, continue if S, R, or R if (no_wait_for_cooling && wants_to_cool) break; } now = millis(); if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up. next_temp_ms = now + 1000UL; print_heater_states(active_extruder); #if TEMP_CHAMBER_RESIDENCY_TIME > 0 SERIAL_ECHOPGM(" W:"); if (residency_start_ms) SERIAL_ECHO(long((((TEMP_CHAMBER_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL)); else SERIAL_CHAR('?'); #endif SERIAL_EOL(); } idle(); gcode.reset_stepper_timeout(); // Keep steppers powered const float temp = degChamber(); #if TEMP_CHAMBER_RESIDENCY_TIME > 0 const float temp_diff = ABS(target_temp - temp); if (!residency_start_ms) { // Start the TEMP_CHAMBER_RESIDENCY_TIME timer when we reach target temp for the first time. if (temp_diff < TEMP_CHAMBER_WINDOW) { residency_start_ms = now; if (first_loop) residency_start_ms += (TEMP_CHAMBER_RESIDENCY_TIME) * 1000UL; } } else if (temp_diff > TEMP_CHAMBER_HYSTERESIS) { // Restart the timer whenever the temperature falls outside the hysteresis. residency_start_ms = now; } #endif // TEMP_CHAMBER_RESIDENCY_TIME > 0 // Prevent a wait-forever situation if R is misused i.e. M191 R0 if (wants_to_cool) { // Break after MIN_COOLING_SLOPE_TIME_CHAMBER seconds // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_CHAMBER if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) { if (old_temp - temp < float(MIN_COOLING_SLOPE_DEG_CHAMBER)) break; next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_CHAMBER; old_temp = temp; } } first_loop = false; } while (wait_for_heatup && TEMP_CHAMBER_CONDITIONS); if (wait_for_heatup) ui.reset_status(); #if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE) gcode.busy_state = old_busy_state; #endif return wait_for_heatup; } #endif // HAS_HEATED_CHAMBER #endif // HAS_TEMP_SENSOR