/** * Marlin 3D Printer Firmware * Copyright (C) 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * The class Servo uses the PWM class to implement its functions * * All PWMs use the same repetition rate - 20mS because that's the normal servo rate */ /** * This is a hybrid system. * * The PWM1 module is used to directly control the Servo 0, 1 & 3 pins and D9 & D10 pins. This keeps * the pulse width jitter to under a microsecond. * * For all other pins the PWM1 module is used to generate interrupts. The ISR * routine does the actual setting/clearing of pins. The upside is that any pin can * have a PWM channel assigned to it. The downside is that there is more pulse width * jitter. The jitter depends on what else is happening in the system and what ISRs * pre-empt the PWM ISR. */ /** * The data structures are set up to minimize the computation done by the ISR which * minimizes ISR execution time. Execution times are 2-4µs except when updating to * a new value when they are 19µs. * * Two tables are used. One table contains the data used by the ISR to update/control * the PWM pins. The other is used as an aid when rebuilding the ISR table. * * The LPC1768_PWM_attach_pin routine disables the ISR and then adds the new info to * ISR table. It can update the table directly because none of its changes affect * what the ISR does. * * LPC1768_PWM_detach_pin routine disables the ISR, disables the pin immediately if * it's a directly controlled pin and updates the helper table. It then flags the * ISR that the ISR table needs to be rebuilt. * * LPC1768_PWM_write routine disables the ISR and updates the helper table. It then * flags the ISR that the ISR table needs to be rebuilt. * * The ISR's priority is set to less than the stepper ISR otherwise it could cause jitter * in the step pulses. * * See the end of this file for details on the hardware/firmware interaction */ #ifdef TARGET_LPC1768 #include "../../inc/MarlinConfig.h" // #include // #include // #include #include #include "LPC1768_PWM.h" #include "arduino.h" #define NUM_PWMS 6 typedef struct { // holds all data needed to control/init one of the PWM channels uint8_t sequence; // 0: available slot, 1 - 6: PWM channel assigned to that slot pin_t pin; uint16_t PWM_mask; // MASK TO CHECK/WRITE THE IR REGISTER volatile uint32_t* set_register; volatile uint32_t* clr_register; uint32_t write_mask; // USED BY SET/CLEAR COMMANDS uint32_t microseconds; // value written to MR register uint32_t min; // lower value limit checked by WRITE routine before writing to the MR register uint32_t max; // upper value limit checked by WRITE routine before writing to the MR register bool PWM_flag; // 0 - USED BY hardware PWM, 1 - USED BY ANALOGWRITE uint8_t servo_index; // 0 - MAX_SERVO -1 : servo index, 0xFF : PWM channel bool active_flag; // THIS TABLE ENTRY IS ACTIVELY TOGGLING A PIN uint32_t PCR_bit; // PCR register bit to enable PWM1 control of this pin volatile uint32_t* PINSEL_reg; // PINSEL register uint32_t PINSEL_bits; // PINSEL register bits to set pin mode to PWM1 control } PWM_map; #define MICRO_MAX 0xFFFFFFFF #define PWM_MAP_INIT_ROW { 0, 0x7FFF, 0, 0, 0, 0, MICRO_MAX, 0, 0, 0, 0, 0, 0, 0, 0 } #define PWM_MAP_INIT { PWM_MAP_INIT_ROW, PWM_MAP_INIT_ROW, PWM_MAP_INIT_ROW, \ PWM_MAP_INIT_ROW, PWM_MAP_INIT_ROW, PWM_MAP_INIT_ROW, \ }; PWM_map ISR_table[NUM_PWMS] = PWM_MAP_INIT; #define IR_BIT(p) ((p) >= 0 && (p) <= 3 ? (p) : p + 4 ) #define PIN_IS_INVERTED(p) 0 // placeholder in case inverting PWM output is offered #define P1_18_PWM_channel 1 // servo 3 #define P1_20_PWM_channel 2 // servo 0 #define P1_21_PWM_channel 3 // servo 1 #define P2_4_PWM_channel 5 // D9 #define P2_5_PWM_channel 6 // D10 // used to keep track of which Match Registers have been used and if they will be used by the // PWM1 module to directly control the pin or will be used to generate an interrupt typedef struct { // status of PWM1 channel uint8_t map_used; // 0 - this MR register not used/assigned uint8_t map_PWM_INT; // 0 - available for interrupts, 1 - in use by PWM pin_t map_PWM_PIN; // pin for this PwM1 controlled pin / port volatile uint32_t* MR_register; // address of the MR register for this PWM1 channel uint32_t PCR_bit; // PCR register bit to enable PWM1 control of this pin // 0 - don't switch to PWM1 direct control volatile uint32_t* PINSEL_reg; // PINSEL register uint32_t PINSEL_bits; // PINSEL register bits to set pin mode to PWM1 control } MR_map; MR_map map_MR[NUM_PWMS]; void LPC1768_PWM_update_map_MR(void) { map_MR[0] = { 0, (uint8_t) (LPC_PWM1->PCR & _BV(8 + P1_18_PWM_channel) ? 1 : 0), P1_18, &LPC_PWM1->MR1, 0, 0, 0 }; map_MR[1] = { 0, (uint8_t) (LPC_PWM1->PCR & _BV(8 + P1_20_PWM_channel) ? 1 : 0), P1_20, &LPC_PWM1->MR2, 0, 0, 0 }; map_MR[2] = { 0, (uint8_t) (LPC_PWM1->PCR & _BV(8 + P1_21_PWM_channel) ? 1 : 0), P1_21, &LPC_PWM1->MR3, 0, 0, 0 }; map_MR[3] = { 0, 0, P_NC, &LPC_PWM1->MR4, 0, 0, 0 }; map_MR[4] = { 0, (uint8_t) (LPC_PWM1->PCR & _BV(8 + P2_4_PWM_channel) ? 1 : 0), P2_4, &LPC_PWM1->MR5, 0, 0, 0 }; map_MR[5] = { 0, (uint8_t) (LPC_PWM1->PCR & _BV(8 + P2_5_PWM_channel) ? 1 : 0), P2_5, &LPC_PWM1->MR6, 0, 0, 0 }; } /** * Prescale register and MR0 register values * * 100MHz PCLK 50MHz PCLK 25MHz PCLK 12.5MHz PCLK * ----------------- ----------------- ----------------- ----------------- * desired prescale MR0 prescale MR0 prescale MR0 prescale MR0 resolution * prescale register register register register register register register register in degrees * freq value value value value value value value value * * 8 11.5 159,999 5.25 159,999 2.13 159,999 0.5625 159,999 0.023 * 4 24 79,999 11.5 79,999 5.25 79,999 2.125 79,999 0.045 * 2 49 39,999 24 39,999 11.5 39,999 5.25 39,999 0.090 * 1 99 19,999 49 19,999 24 19,999 11.5 19,999 0.180 * 0.5 199 9,999 99 9,999 49 9,999 24 9,999 0.360 * 0.25 399 4,999 199 4,999 99 4,999 49 4,999 0.720 * 0.125 799 2,499 399 2,499 199 2,499 99 2,499 1.440 * * The desired prescale frequency comes from an input in the range of 544 - 2400 microseconds and the * desire to just shift the input left or right as needed. * * A resolution of 0.2 degrees seems reasonable so a prescale frequency output of 1MHz is being used. * It also means we don't need to scale the input. * * The PCLK is set to 25MHz because that's the slowest one that gives whole numbers for prescale and * MR0 registers. * * Final settings: * PCLKSEL0: 0x0 * PWM1PR: 0x018 (24) * PWM1MR0: 0x04E1F (19,999) * */ bool ISR_table_update = false; // flag to tell the ISR that the tables need to be updated & swapped void LPC1768_PWM_init(void) { #define SBIT_CNTEN 0 // PWM1 counter & pre-scaler enable/disable #define SBIT_CNTRST 1 // reset counters to known state #define SBIT_PWMEN 3 // 1 - PWM, 0 - timer #define SBIT_PWMMR0R 1 #define PCPWM1 6 #define PCLK_PWM1 12 SBI(LPC_SC->PCONP, PCPWM1); // Enable PWM1 controller (enabled on power up) LPC_SC->PCLKSEL0 &= ~(0x3 << PCLK_PWM1); LPC_SC->PCLKSEL0 |= (LPC_PWM1_PCLKSEL0 << PCLK_PWM1); LPC_PWM1->MR0 = LPC_PWM1_MR0; // TC resets every 19,999 + 1 cycles - sets PWM cycle(Ton+Toff) to 20 mS // MR0 must be set before TCR enables the PWM LPC_PWM1->TCR = _BV(SBIT_CNTEN) | _BV(SBIT_CNTRST) | _BV(SBIT_PWMEN); // Enable counters, reset counters, set mode to PWM LPC_PWM1->TCR &= ~(_BV(SBIT_CNTRST)); // Take counters out of reset LPC_PWM1->PR = LPC_PWM1_PR; LPC_PWM1->MCR = _BV(SBIT_PWMMR0R) | _BV(0); // Reset TC if it matches MR0, disable all interrupts except for MR0 LPC_PWM1->CTCR = 0; // Disable counter mode (enable PWM mode) LPC_PWM1->LER = 0x07F; // Set the latch Enable Bits to load the new Match Values for MR0 - MR6 LPC_PWM1->PCR = 0; // Single edge mode for all channels, PWM1 control of outputs off NVIC_EnableIRQ(PWM1_IRQn); // Enable interrupt handler NVIC_SetPriority(PWM1_IRQn, NVIC_EncodePriority(0, 10, 0)); // Normal priority for PWM module //NVIC_SetPriority(PWM1_IRQn, NVIC_EncodePriority(0, 0, 0)); // Minimizes jitter due to higher priority ISRs } bool LPC1768_PWM_attach_pin(pin_t pin, uint32_t min /* = 1 */, uint32_t max /* = (LPC_PWM1_MR0 - MR0_MARGIN) */, uint8_t servo_index /* = 0xff */) { pin = GET_PIN_MAP_PIN(GET_PIN_MAP_INDEX(pin & 0xFF)); // Sometimes the upper byte is garbled NVIC_DisableIRQ(PWM1_IRQn); // make it safe to update the active table // OK to update the active table because the // ISR doesn't use any of the changed items uint8_t slot = 0; for (uint8_t i = 0; i < NUM_PWMS ; i++) // see if already in table if (ISR_table[i].pin == pin) { NVIC_EnableIRQ(PWM1_IRQn); // re-enable PWM interrupts return 1; } for (uint8_t i = 1; (i < NUM_PWMS + 1) && !slot; i++) // find empty slot if ( !(ISR_table[i - 1].set_register)) { slot = i; break; } // any item that can't be zero when active or just attached is OK if (!slot) return 0; slot--; // turn it into array index ISR_table[slot].pin = pin; // init slot ISR_table[slot].PWM_mask = 0; // real value set by PWM_write ISR_table[slot].set_register = PIN_IS_INVERTED(pin) ? &LPC_GPIO(LPC1768_PIN_PORT(pin))->FIOCLR : &LPC_GPIO(LPC1768_PIN_PORT(pin))->FIOSET; ISR_table[slot].clr_register = PIN_IS_INVERTED(pin) ? &LPC_GPIO(LPC1768_PIN_PORT(pin))->FIOSET : &LPC_GPIO(LPC1768_PIN_PORT(pin))->FIOCLR; ISR_table[slot].write_mask = LPC_PIN(LPC1768_PIN_PIN(pin)); ISR_table[slot].microseconds = MICRO_MAX; ISR_table[slot].min = min; ISR_table[slot].max = MIN(max, LPC_PWM1_MR0 - MR0_MARGIN); ISR_table[slot].servo_index = servo_index; ISR_table[slot].active_flag = false; NVIC_EnableIRQ(PWM1_IRQn); // re-enable PWM interrupts return 1; } bool LPC1768_PWM_detach_pin(pin_t pin) { pin = GET_PIN_MAP_PIN(GET_PIN_MAP_INDEX(pin & 0xFF)); NVIC_EnableIRQ(PWM1_IRQn); // ?? fixes compiler problem?? ISR won't start // unless put in an extra "enable" NVIC_DisableIRQ(PWM1_IRQn); uint8_t slot = 0xFF; for (uint8_t i = 0; i < NUM_PWMS; i++) // find slot if (ISR_table[i].pin == pin) { slot = i; break; } if (slot == 0xFF) return false; // return error if pin not found LPC1768_PWM_update_map_MR(); // OK to make these changes before the MR0 interrupt switch(pin) { case P1_20: // Servo 0, PWM1 channel 2 (Pin 11 P1.20 PWM1.2) LPC_PWM1->PCR &= ~(_BV(8 + P1_20_PWM_channel)); // disable PWM1 module control of this pin map_MR[P1_20_PWM_channel - 1].PCR_bit = 0; LPC_PINCON->PINSEL3 &= ~(0x3 << 8); // return pin to general purpose I/O map_MR[P1_20_PWM_channel - 1].PINSEL_bits = 0; map_MR[P1_20_PWM_channel - 1].map_PWM_INT = 0; // 0 - available for interrupts, 1 - in use by PWM break; case P1_21: // Servo 1, PWM1 channel 3 (Pin 6 P1.21 PWM1.3) LPC_PWM1->PCR &= ~(_BV(8 + P1_21_PWM_channel)); // disable PWM1 module control of this pin map_MR[P1_21_PWM_channel - 1].PCR_bit = 0; LPC_PINCON->PINSEL3 &= ~(0x3 << 10); // return pin to general purpose I/O map_MR[P1_21_PWM_channel - 1].PINSEL_bits = 0; map_MR[P1_21_PWM_channel - 1].map_PWM_INT = 0; // 0 - available for interrupts, 1 - in use by PWM break; case P1_18: // Servo 3, PWM1 channel 1 (Pin 4 P1.18 PWM1.1) LPC_PWM1->PCR &= ~(_BV(8 + P1_18_PWM_channel)); // disable PWM1 module control of this pin map_MR[P1_18_PWM_channel - 1].PCR_bit = 0; LPC_PINCON->PINSEL3 &= ~(0x3 << 4); // return pin to general purpose I/O map_MR[P1_18_PWM_channel - 1].PINSEL_bits = 0; map_MR[P1_18_PWM_channel - 1].map_PWM_INT = 0; // 0 - available for interrupts, 1 - in use by PWM break; case P2_4: // D9 FET, PWM1 channel 5 (Pin 9 P2_4 PWM1.5) LPC_PWM1->PCR &= ~(_BV(8 + P2_4_PWM_channel)); // disable PWM1 module control of this pin map_MR[P2_4_PWM_channel - 1].PCR_bit = 0; LPC_PINCON->PINSEL4 &= ~(0x3 << 10); // return pin to general purpose I/O map_MR[P2_4_PWM_channel - 1].PINSEL_bits = 0; map_MR[P2_4_PWM_channel - 1].map_PWM_INT = 0; // 0 - available for interrupts, 1 - in use by PWM break; case P2_5: // D10 FET, PWM1 channel 6 (Pin 10 P2_5 PWM1.6) LPC_PWM1->PCR &= ~(_BV(8 + P2_5_PWM_channel)); // disable PWM1 module control of this pin map_MR[P2_5_PWM_channel - 1].PCR_bit = 0; LPC_PINCON->PINSEL4 &= ~(0x3 << 4); // return pin to general purpose I/O map_MR[P2_5_PWM_channel - 1].PINSEL_bits = 0; map_MR[P2_5_PWM_channel - 1].map_PWM_INT = 0; // 0 - available for interrupts, 1 - in use by PWM break; default: break; } ISR_table[slot] = PWM_MAP_INIT_ROW; ISR_table_update = true; NVIC_EnableIRQ(PWM1_IRQn); // re-enable PWM interrupts return 1; } bool LPC1768_PWM_write(pin_t pin, uint32_t value) { pin = GET_PIN_MAP_PIN(GET_PIN_MAP_INDEX(pin & 0xFF)); NVIC_DisableIRQ(PWM1_IRQn); uint8_t slot = 0xFF; for (uint8_t i = 0; i < NUM_PWMS; i++) // find slot if (ISR_table[i].pin == pin) { slot = i; break; } if (slot == 0xFF) return false; // return error if pin not found LPC1768_PWM_update_map_MR(); switch(pin) { case P1_20: // Servo 0, PWM1 channel 2 (Pin 11 P1.20 PWM1.2) map_MR[P1_20_PWM_channel - 1].PCR_bit = _BV(8 + P1_20_PWM_channel); // enable PWM1 module control of this pin map_MR[P1_20_PWM_channel - 1].PINSEL_reg = &LPC_PINCON->PINSEL3; map_MR[P1_20_PWM_channel - 1].PINSEL_bits = 0x2 << 8; // ISR must do this AFTER setting PCR break; case P1_21: // Servo 1, PWM1 channel 3 (Pin 6 P1.21 PWM1.3) map_MR[P1_21_PWM_channel - 1].PCR_bit = _BV(8 + P1_21_PWM_channel); // enable PWM1 module control of this pin map_MR[P1_21_PWM_channel - 1].PINSEL_reg = &LPC_PINCON->PINSEL3; map_MR[P1_21_PWM_channel - 1].PINSEL_bits = 0x2 << 10; // ISR must do this AFTER setting PCR break; case P1_18: // Servo 3, PWM1 channel 1 (Pin 4 P1.18 PWM1.1) map_MR[P1_18_PWM_channel - 1].PCR_bit = _BV(8 + P1_18_PWM_channel); // enable PWM1 module control of this pin map_MR[P1_18_PWM_channel - 1].PINSEL_reg = &LPC_PINCON->PINSEL3; map_MR[P1_18_PWM_channel - 1].PINSEL_bits = 0x2 << 4; // ISR must do this AFTER setting PCR break; case P2_4: // D9 FET, PWM1 channel 5 (Pin 9 P2_4 PWM1.5) map_MR[P2_4_PWM_channel - 1].PCR_bit = _BV(8 + P2_4_PWM_channel); // enable PWM1 module control of this pin map_MR[P2_4_PWM_channel - 1].PINSEL_reg = &LPC_PINCON->PINSEL4; map_MR[P2_4_PWM_channel - 1].PINSEL_bits = 0x1 << 8; // ISR must do this AFTER setting PCR break; case P2_5: // D10 FET, PWM1 channel 6 (Pin 10 P2_5 PWM1.6) map_MR[P2_5_PWM_channel - 1].PCR_bit = _BV(8 + P2_5_PWM_channel); // enable PWM1 module control of this pin map_MR[P2_5_PWM_channel - 1].PINSEL_reg = &LPC_PINCON->PINSEL4; map_MR[P2_5_PWM_channel - 1].PINSEL_bits = 0x1 << 10; // ISR must do this AFTER setting PCR break; default: // ISR pins pinMode(pin, OUTPUT); // set pin to output break; } ISR_table[slot].microseconds = MAX(MIN(value, ISR_table[slot].max), ISR_table[slot].min); ISR_table[slot].active_flag = 1; ISR_table_update = true; NVIC_EnableIRQ(PWM1_IRQn); // re-enable PWM interrupts return 1; } uint32_t LPC1768_PWM_interrupt_mask = 1; void LPC1768_PWM_update(void) { // only called by the ISR LPC1768_PWM_interrupt_mask = 0; // set match registers to new values, build IRQ mask // first setup directly controlled PWM pin slots bool found; for (uint8_t i = 0; i < NUM_PWMS; i++) { ISR_table[i].PCR_bit = 0; // clear entries ISR_table[i].PINSEL_reg = 0; ISR_table[i].PINSEL_bits = 0; ISR_table[i].PWM_flag = 1; // mark slot as interrupt mode until find differently if (ISR_table[i].active_flag) { ISR_table[i].sequence = i + 1; // first see if there is a PWM1 controlled pin for this entry found = false; for (uint8_t j = 0; (j < NUM_PWMS) && !found; j++) { if ( (map_MR[j].map_PWM_PIN == ISR_table[i].pin)) { map_MR[j].map_PWM_INT = 1; // flag that it's already setup for direct control ISR_table[i].PWM_mask = 0; ISR_table[i].PCR_bit = map_MR[j].PCR_bit; // PCR register bit to enable PWM1 control of this pin ISR_table[i].PINSEL_reg = map_MR[j].PINSEL_reg; // PINSEL register address to set pin mode to PWM1 control} MR_map; ISR_table[i].PINSEL_bits = map_MR[j].PINSEL_bits; // PINSEL register bits to set pin mode to PWM1 control} MR_map; map_MR[j].map_used = 2; ISR_table[i].PWM_flag = 0; *map_MR[j].MR_register = ISR_table[i].microseconds; found = true; } } } else ISR_table[i].sequence = 0; } // next fill in interrupt slots for (uint8_t i = 0; i < NUM_PWMS; i++) { if (ISR_table[i].active_flag && ISR_table[i].PWM_flag) { // setup interrupt slot found = false; for (uint8_t k = 0; (k < NUM_PWMS) && !found; k++) { if ( !(map_MR[k].map_PWM_INT || map_MR[k].map_used)) { *map_MR[k].MR_register = ISR_table[i].microseconds; // found one for an interrupt pin map_MR[k].map_used = 1; LPC1768_PWM_interrupt_mask |= _BV(3 * (k + 1)); // set bit in the MCR to enable this MR to generate an interrupt ISR_table[i].set_register = PIN_IS_INVERTED(ISR_table[i].pin) ? &LPC_GPIO(LPC1768_PIN_PORT(ISR_table[i].pin))->FIOCLR : &LPC_GPIO(LPC1768_PIN_PORT(ISR_table[i].pin))->FIOSET; ISR_table[i].clr_register = PIN_IS_INVERTED(ISR_table[i].pin) ? &LPC_GPIO(LPC1768_PIN_PORT(ISR_table[i].pin))->FIOSET : &LPC_GPIO(LPC1768_PIN_PORT(ISR_table[i].pin))->FIOCLR; ISR_table[i].write_mask = LPC_PIN(LPC1768_PIN_PIN(ISR_table[i].pin)); ISR_table[i].PWM_mask = _BV(IR_BIT(k + 1)); // bit in the IR that will go active when this MR generates an interrupt ISR_table[i].PWM_flag = 1; found = true; } } } } LPC1768_PWM_interrupt_mask |= (uint32_t) _BV(0); // add in MR0 interrupt LPC_PWM1->LER = 0x07E; // Set the latch Enable Bits to load the new Match Values for MR1 - MR6 } bool useable_hardware_PWM(pin_t pin) { pin = GET_PIN_MAP_PIN(GET_PIN_MAP_INDEX(pin & 0xFF)); NVIC_DisableIRQ(PWM1_IRQn); bool return_flag = false; for (uint8_t i = 0; i < NUM_PWMS; i++) // see if it's already setup if (ISR_table[i].pin == pin && ISR_table[i].sequence) return_flag = true; for (uint8_t i = 0; i < NUM_PWMS; i++) // see if there is an empty slot if (!ISR_table[i].sequence) return_flag = true; NVIC_EnableIRQ(PWM1_IRQn); // re-enable PWM interrupts return return_flag; } //////////////////////////////////////////////////////////////////////////////// #define HAL_PWM_LPC1768_ISR extern "C" void PWM1_IRQHandler(void) // Both loops could be terminated when the last active channel is found but that would // result in variations ISR run time which results in variations in pulse width /** * Changes to PINSEL, PCR and MCR are only done during the MR0 interrupt otherwise * the wrong pin may be toggled or even have the system hang. */ HAL_PWM_LPC1768_ISR { if (LPC_PWM1->IR & 0x1) { // MR0 interrupt if (ISR_table_update) { // new values have been loaded so set everything LPC1768_PWM_update(); // update & swap table LPC_PWM1->MCR = LPC1768_PWM_interrupt_mask; // enable new PWM individual channel interrupts } for (uint8_t i = 0; i < NUM_PWMS; i++) { if (ISR_table[i].active_flag && !((ISR_table[i].pin == P1_20) || (ISR_table[i].pin == P1_21) || (ISR_table[i].pin == P1_18) || (ISR_table[i].pin == P2_4) || (ISR_table[i].pin == P2_5)) ) { *ISR_table[i].set_register = ISR_table[i].write_mask; // set pins for all enabled interrupt channels active } if (ISR_table_update && ISR_table[i].PCR_bit) { LPC_PWM1->PCR |= ISR_table[i].PCR_bit; // enable PWM1 module control of this pin *ISR_table[i].PINSEL_reg |= ISR_table[i].PINSEL_bits; // set pin mode to PWM1 control - must be done after PCR } } ISR_table_update = false; LPC_PWM1->IR = 0x01; // clear the MR0 interrupt flag bit } else { for (uint8_t i = 0; i < NUM_PWMS; i++) if (ISR_table[i].active_flag && (LPC_PWM1->IR & ISR_table[i].PWM_mask)) { LPC_PWM1->IR = ISR_table[i].PWM_mask; // clear the interrupt flag bits for expected interrupts *ISR_table[i].clr_register = ISR_table[i].write_mask; // set channel to inactive } } LPC_PWM1->IR = 0x70F; // guarantees all interrupt flags are cleared which, if there is an unexpected // PWM interrupt, will keep the ISR from hanging which will crash the controller } #endif ///////////////////////////////////////////////////////////////// ///////////////// HARDWARE FIRMWARE INTERACTION //////////////// ///////////////////////////////////////////////////////////////// /** * Almost all changes to the hardware registers must be coordinated with the Match Register 0 (MR0) * interrupt. The only exception is detaching pins. It doesn't matter when they go * tristate. * * The LPC1768_PWM_init routine kicks off the MR0 interrupt. This interrupt is never disabled. It * can be delayed by higher priority interrupts. Actions on directly controlled pins are not delayed * by other interrupts * * The ISR_table_update flag is set when the ISR table needs to be rebuilt. It is * cleared by the ISR during the MR0 interrupt after it rebuilds the ISR table. * * The sequence of events during a write to a PWM channel is: * 1) Attach routine puts the pin number in the ISR table but doesn't mark it active. * 2) Write routine marks the pin as active, updates the helper table and flags the ISR that the * ISR table needs to be rebuilt. * 3) On the MR0 interrupt the ISR: * a. Rebuilds the ISR table if needed. * MR1-MR6 are updated at this time. The updates aren't put into use until the first * MR0 after the LER register has been written. The LER register is written during the * table rebuild process. The result is new timing takes 20-40 mS to be implemented. * b. Sets the interrupt controlled pin(s) to their active state * c. Writes to the PCR register to enable the directly controlled pins * d. Sets the PINSEL register to the function/mode for the directly controlled pins * * 4) For each interrupt controlled pin there is another ISR call. During this call the pin is set * to its inactive state. The call is initiated when a MR1-MR6 reg times out. */