/* ************************************************************************** Marlin 3D Printer Firmware Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] Copyright (c) 2016 Bob Cousins bobcousins42@googlemail.com This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . ****************************************************************************/ #ifdef TARGET_LPC1768 #include "../../inc/MarlinConfig.h" extern "C" { //#include //#include } HalSerial usb_serial; //u8glib required fucntions extern "C" void u8g_xMicroDelay(uint16_t val) { delayMicroseconds(val); } extern "C" void u8g_MicroDelay(void) { u8g_xMicroDelay(1); } extern "C" void u8g_10MicroDelay(void) { u8g_xMicroDelay(10); } extern "C" void u8g_Delay(uint16_t val) { delay(val); } //************************// // return free heap space int freeMemory() { char stack_end; void *heap_start = malloc(sizeof(uint32_t)); if (heap_start == 0) return 0; uint32_t result = (uint32_t)&stack_end - (uint32_t)heap_start; free(heap_start); return result; } // -------------------------------------------------------------------------- // ADC // -------------------------------------------------------------------------- #define ADC_DONE 0x80000000 #define ADC_OVERRUN 0x40000000 void HAL_adc_init(void) { LPC_SC->PCONP |= (1 << 12); // Enable CLOCK for internal ADC controller LPC_SC->PCLKSEL0 &= ~(0x3 << 24); LPC_SC->PCLKSEL0 |= (0x1 << 24); // 0: 25MHz, 1: 100MHz, 2: 50MHz, 3: 12.5MHZ to ADC clock divider LPC_ADC->ADCR = (0 << 0) // SEL: 0 = no channels selected | (0xFF << 8) // select slowest clock for A/D conversion 150 - 190 uS for a complete conversion | (0 << 16) // BURST: 0 = software control | (0 << 17) // CLKS: not applicable | (1 << 21) // PDN: 1 = operational | (0 << 24) // START: 0 = no start | (0 << 27); // EDGE: not applicable } // externals need to make the call to KILL compile #include "../../core/language.h" extern void kill(const char*); extern const char errormagic[]; void HAL_adc_enable_channel(int ch) { pin_t pin = analogInputToDigitalPin(ch); if (pin == -1) { MYSERIAL.printf("%sINVALID ANALOG PORT:%d\n", errormagic, ch); kill(MSG_KILLED); } int8_t pin_port = LPC1768_PIN_PORT(pin), pin_port_pin = LPC1768_PIN_PIN(pin), pinsel_start_bit = pin_port_pin > 15 ? 2 * (pin_port_pin - 16) : 2 * pin_port_pin; uint8_t pin_sel_register = (pin_port == 0 && pin_port_pin <= 15) ? 0 : pin_port == 0 ? 1 : pin_port == 1 ? 3 : 10; switch (pin_sel_register) { case 1 : LPC_PINCON->PINSEL1 &= ~(0x3 << pinsel_start_bit); LPC_PINCON->PINSEL1 |= (0x1 << pinsel_start_bit); break; case 3 : LPC_PINCON->PINSEL3 &= ~(0x3 << pinsel_start_bit); LPC_PINCON->PINSEL3 |= (0x3 << pinsel_start_bit); break; case 0 : LPC_PINCON->PINSEL0 &= ~(0x3 << pinsel_start_bit); LPC_PINCON->PINSEL0 |= (0x2 << pinsel_start_bit); break; }; } uint8_t active_adc = 0; void HAL_adc_start_conversion(const uint8_t ch) { if (analogInputToDigitalPin(ch) == -1) { MYSERIAL.printf("HAL: HAL_adc_start_conversion: invalid channel %d\n", ch); return; } LPC_ADC->ADCR &= ~0xFF; // Reset SBI(LPC_ADC->ADCR, ch); // Select Channel SBI(LPC_ADC->ADCR, 24); // Start conversion active_adc = ch; } bool HAL_adc_finished(void) { return LPC_ADC->ADGDR & ADC_DONE; } // possible config options if something similar is extended to more platforms. #define ADC_USE_MEDIAN_FILTER // filter out erroneous readings #define ADC_USE_LOWPASS_FILTER // filter out high frequency noise #define ADC_LOWPASS_K_VALUE 4 // how much to smooth out noise (1:8) struct MedianFilter { uint16_t values[3]; uint8_t next_val; MedianFilter() { next_val = 0; values[0] = values[1] = values[2] = 0; } uint16_t update(uint16_t value) { values[next_val++] = value; next_val = next_val % 3; return max(min(values[0], values[1]), min(max(values[0], values[1]), values[2])); //median } }; uint16_t lowpass_filter(uint16_t value) { const uint8_t k_data_shift = ADC_LOWPASS_K_VALUE; static uint32_t data_delay[NUM_ANALOG_INPUTS] = { 0 }; uint32_t &active_filter = data_delay[active_adc]; active_filter = active_filter - (active_filter >> k_data_shift) + value; return (uint16_t)(active_filter >> k_data_shift); } uint16_t HAL_adc_get_result(void) { uint32_t data = LPC_ADC->ADGDR; CBI(LPC_ADC->ADCR, 24); // Stop conversion if (data & ADC_OVERRUN) return 0; #ifdef ADC_USE_MEDIAN_FILTER static MedianFilter median_filter[NUM_ANALOG_INPUTS]; data = median_filter[active_adc].update((uint16_t)data); #endif #ifdef ADC_USE_LOWPASS_FILTER data = lowpass_filter((uint16_t)data); #endif return ((data >> 6) & 0x3ff); // 10bit } #define SBIT_CNTEN 0 #define SBIT_PWMEN 2 #define SBIT_PWMMR0R 1 #define PWM_1 0 //P2_0 (0-1 Bits of PINSEL4) #define PWM_2 2 //P2_1 (2-3 Bits of PINSEL4) #define PWM_3 4 //P2_2 (4-5 Bits of PINSEL4) #define PWM_4 6 //P2_3 (6-7 Bits of PINSEL4) #define PWM_5 8 //P2_4 (8-9 Bits of PINSEL4) #define PWM_6 10 //P2_5 (10-11 Bits of PINSEL4) void HAL_pwm_init(void) { LPC_PINCON->PINSEL4 = _BV(PWM_5) | _BV(PWM_6); LPC_PWM1->TCR = _BV(SBIT_CNTEN) | _BV(SBIT_PWMEN); LPC_PWM1->PR = 0x0; // No prescalar LPC_PWM1->MCR = _BV(SBIT_PWMMR0R); // Reset on PWMMR0, reset TC if it matches MR0 LPC_PWM1->MR0 = 255; /* set PWM cycle(Ton+Toff)=255) */ LPC_PWM1->MR5 = 0; /* Set 50% Duty Cycle for the channels */ LPC_PWM1->MR6 = 0; // Trigger the latch Enable Bits to load the new Match Values MR0, MR5, MR6 LPC_PWM1->LER = _BV(0) | _BV(5) | _BV(6); // Enable the PWM output pins for PWM_5-PWM_6(P2_4 - P2_5) LPC_PWM1->PCR = _BV(13) | _BV(14); } #endif // TARGET_LPC1768