/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * configuration_store.cpp * * Settings and EEPROM storage * * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM * in the functions below, also increment the version number. This makes sure that * the default values are used whenever there is a change to the data, to prevent * wrong data being written to the variables. * * ALSO: Variables in the Store and Retrieve sections must be in the same order. * If a feature is disabled, some data must still be written that, when read, * either sets a Sane Default, or results in No Change to the existing value. * */ // Change EEPROM version if the structure changes #define EEPROM_VERSION "V61" #define EEPROM_OFFSET 100 // Check the integrity of data offsets. // Can be disabled for production build. //#define DEBUG_EEPROM_READWRITE #include "configuration_store.h" #if ADD_PORT_ARG #define PORTARG_SOLO const int8_t port #define PORTARG_AFTER ,const int8_t port #define PORTVAR_SOLO port #else #define PORTARG_SOLO #define PORTARG_AFTER #define PORTVAR_SOLO #endif #include "endstops.h" #include "planner.h" #include "stepper.h" #include "temperature.h" #include "../lcd/ultralcd.h" #include "../core/language.h" #include "../libs/vector_3.h" #include "../gcode/gcode.h" #include "../Marlin.h" #if HAS_LEVELING #include "../feature/bedlevel/bedlevel.h" #endif #if HAS_SERVOS #include "servo.h" #else #undef NUM_SERVOS #define NUM_SERVOS NUM_SERVO_PLUGS #endif #if HAS_BED_PROBE #include "../module/probe.h" #endif #if HAS_TRINAMIC #include "stepper_indirection.h" #include "../feature/tmc_util.h" #define TMC_GET_PWMTHRS(A,Q) _tmc_thrs(stepper##Q.microsteps(), stepper##Q.TPWMTHRS(), planner.axis_steps_per_mm[_AXIS(A)]) #endif typedef struct { uint16_t X, Y, Z, X2, Y2, Z2, Z3, E0, E1, E2, E3, E4, E5; } tmc_stepper_current_t; typedef struct { uint32_t X, Y, Z, X2, Y2, Z2, Z3, E0, E1, E2, E3, E4, E5; } tmc_hybrid_threshold_t; typedef struct { int16_t X, Y, Z; } tmc_sgt_t; #if ENABLED(FWRETRACT) #include "../feature/fwretract.h" #endif #if ENABLED(ADVANCED_PAUSE_FEATURE) #include "../feature/pause.h" #endif #if ENABLED(SINGLENOZZLE) #include "tool_change.h" void M217_report(const bool eeprom); #endif #if ENABLED(PID_EXTRUSION_SCALING) #define LPQ_LEN thermalManager.lpq_len #endif #pragma pack(push, 1) // No padding between variables typedef struct PID { float Kp, Ki, Kd; } PID; typedef struct PIDC { float Kp, Ki, Kd, Kc; } PIDC; /** * Current EEPROM Layout * * Keep this data structure up to date so * EEPROM size is known at compile time! */ typedef struct SettingsDataStruct { char version[4]; // Vnn\0 uint16_t crc; // Data Checksum // // DISTINCT_E_FACTORS // uint8_t esteppers; // XYZE_N - XYZ uint32_t planner_max_acceleration_mm_per_s2[XYZE_N], // M201 XYZE planner.max_acceleration_mm_per_s2[XYZE_N] planner_min_segment_time_us; // M205 B planner.min_segment_time_us float planner_axis_steps_per_mm[XYZE_N], // M92 XYZE planner.axis_steps_per_mm[XYZE_N] planner_max_feedrate_mm_s[XYZE_N], // M203 XYZE planner.max_feedrate_mm_s[XYZE_N] planner_acceleration, // M204 P planner.acceleration planner_retract_acceleration, // M204 R planner.retract_acceleration planner_travel_acceleration, // M204 T planner.travel_acceleration planner_min_feedrate_mm_s, // M205 S planner.min_feedrate_mm_s planner_min_travel_feedrate_mm_s, // M205 T planner.min_travel_feedrate_mm_s planner_max_jerk[XYZE], // M205 XYZE planner.max_jerk[XYZE] planner_junction_deviation_mm; // M205 J planner.junction_deviation_mm float home_offset[XYZ]; // M206 XYZ #if HAS_HOTEND_OFFSET float hotend_offset[XYZ][HOTENDS - 1]; // M218 XYZ #endif // // ENABLE_LEVELING_FADE_HEIGHT // float planner_z_fade_height; // M420 Zn planner.z_fade_height // // MESH_BED_LEVELING // float mbl_z_offset; // mbl.z_offset uint8_t mesh_num_x, mesh_num_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y #if ENABLED(MESH_BED_LEVELING) float mbl_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; // mbl.z_values #else float mbl_z_values[3][3]; #endif // // HAS_BED_PROBE // float zprobe_zoffset; // // ABL_PLANAR // matrix_3x3 planner_bed_level_matrix; // planner.bed_level_matrix // // AUTO_BED_LEVELING_BILINEAR // uint8_t grid_max_x, grid_max_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y int bilinear_grid_spacing[2], bilinear_start[2]; // G29 L F #if ENABLED(AUTO_BED_LEVELING_BILINEAR) float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; // G29 #else float z_values[3][3]; #endif // // AUTO_BED_LEVELING_UBL // bool planner_leveling_active; // M420 S planner.leveling_active int8_t ubl_storage_slot; // ubl.storage_slot // // SERVO_ANGLES // uint16_t servo_angles[NUM_SERVOS][2]; // M281 P L U // // DELTA / [XYZ]_DUAL_ENDSTOPS // #if ENABLED(DELTA) float delta_height, // M666 H delta_endstop_adj[ABC], // M666 XYZ delta_radius, // M665 R delta_diagonal_rod, // M665 L delta_segments_per_second, // M665 S delta_calibration_radius, // M665 B delta_tower_angle_trim[ABC]; // M665 XYZ #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS float x2_endstop_adj, // M666 X y2_endstop_adj, // M666 Y z2_endstop_adj; // M666 Z #if ENABLED(Z_TRIPLE_ENDSTOPS) float z3_endstop_adj; // M666 Z #endif #endif // // ULTIPANEL // int16_t lcd_preheat_hotend_temp[2], // M145 S0 H lcd_preheat_bed_temp[2]; // M145 S0 B uint8_t lcd_preheat_fan_speed[2]; // M145 S0 F // // PIDTEMP // PIDC hotendPID[HOTENDS]; // M301 En PIDC / M303 En U int16_t lpq_len; // M301 L // // PIDTEMPBED // PID bedPID; // M304 PID / M303 E-1 U // // HAS_LCD_CONTRAST // int16_t lcd_contrast; // M250 C // // FWRETRACT // bool autoretract_enabled; // M209 S float retract_length, // M207 S retract_feedrate_mm_s, // M207 F retract_zlift, // M207 Z retract_recover_length, // M208 S retract_recover_feedrate_mm_s, // M208 F swap_retract_length, // M207 W swap_retract_recover_length, // M208 W swap_retract_recover_feedrate_mm_s; // M208 R // // !NO_VOLUMETRIC // bool parser_volumetric_enabled; // M200 D parser.volumetric_enabled float planner_filament_size[EXTRUDERS]; // M200 T D planner.filament_size[] // // HAS_TRINAMIC // #define TMC_AXES (MAX_EXTRUDERS + 7) tmc_stepper_current_t tmc_stepper_current; // M906 X Y Z X2 Y2 Z2 Z3 E0 E1 E2 E3 E4 E5 tmc_hybrid_threshold_t tmc_hybrid_threshold; // M913 X Y Z X2 Y2 Z2 Z3 E0 E1 E2 E3 E4 E5 tmc_sgt_t tmc_sgt; // M914 X Y Z // // LIN_ADVANCE // float planner_extruder_advance_K[EXTRUDERS]; // M900 K planner.extruder_advance_K // // HAS_MOTOR_CURRENT_PWM // uint32_t motor_current_setting[XYZ]; // M907 X Z E // // CNC_COORDINATE_SYSTEMS // float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ]; // G54-G59.3 // // SKEW_CORRECTION // float planner_xy_skew_factor, // M852 I planner.xy_skew_factor planner_xz_skew_factor, // M852 J planner.xz_skew_factor planner_yz_skew_factor; // M852 K planner.yz_skew_factor // // ADVANCED_PAUSE_FEATURE // float filament_change_unload_length[EXTRUDERS], // M603 T U filament_change_load_length[EXTRUDERS]; // M603 T L // // SINGLENOZZLE toolchange values // #if ENABLED(SINGLENOZZLE) float singlenozzle_swap_length; // M217 S int16_t singlenozzle_prime_speed, // M217 P singlenozzle_retract_speed; // M217 R #endif } SettingsData; #pragma pack(pop) MarlinSettings settings; uint16_t MarlinSettings::datasize() { return sizeof(SettingsData); } /** * Post-process after Retrieve or Reset */ #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) float new_z_fade_height; #endif void MarlinSettings::postprocess() { const float oldpos[XYZE] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS] }; // steps per s2 needs to be updated to agree with units per s2 planner.reset_acceleration_rates(); // Make sure delta kinematics are updated before refreshing the // planner position so the stepper counts will be set correctly. #if ENABLED(DELTA) recalc_delta_settings(); #endif #if ENABLED(PIDTEMP) thermalManager.updatePID(); #endif #if DISABLED(NO_VOLUMETRICS) planner.calculate_volumetric_multipliers(); #else for (uint8_t i = COUNT(planner.e_factor); i--;) planner.refresh_e_factor(i); #endif #if HAS_HOME_OFFSET || ENABLED(DUAL_X_CARRIAGE) // Software endstops depend on home_offset LOOP_XYZ(i) update_software_endstops((AxisEnum)i); #endif #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) set_z_fade_height(new_z_fade_height, false); // false = no report #endif #if ENABLED(AUTO_BED_LEVELING_BILINEAR) refresh_bed_level(); #endif #if HAS_MOTOR_CURRENT_PWM stepper.refresh_motor_power(); #endif #if ENABLED(FWRETRACT) fwretract.refresh_autoretract(); #endif #if ENABLED(JUNCTION_DEVIATION) && ENABLED(LIN_ADVANCE) planner.recalculate_max_e_jerk(); #endif // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm // and init stepper.count[], planner.position[] with current_position planner.refresh_positioning(); // Various factors can change the current position if (memcmp(oldpos, current_position, sizeof(oldpos))) report_current_position(); } #if ENABLED(SD_FIRMWARE_UPDATE) #if ENABLED(EEPROM_SETTINGS) static_assert( !WITHIN(SD_FIRMWARE_UPDATE_EEPROM_ADDR, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)), "SD_FIRMWARE_UPDATE_EEPROM_ADDR collides with EEPROM settings storage." ); #endif bool MarlinSettings::sd_update_status() { uint8_t val; persistentStore.read_data(SD_FIRMWARE_UPDATE_EEPROM_ADDR, &val); return (val == SD_FIRMWARE_UPDATE_ACTIVE_VALUE); } bool MarlinSettings::set_sd_update_status(const bool enable) { if (enable != sd_update_status()) persistentStore.write_data( SD_FIRMWARE_UPDATE_EEPROM_ADDR, enable ? SD_FIRMWARE_UPDATE_ACTIVE_VALUE : SD_FIRMWARE_UPDATE_INACTIVE_VALUE ); return true; } #endif // SD_FIRMWARE_UPDATE #if ENABLED(EEPROM_SETTINGS) #include "../HAL/shared/persistent_store_api.h" #define DUMMY_PID_VALUE 3000.0f #define EEPROM_START() int eeprom_index = EEPROM_OFFSET; persistentStore.access_start() #define EEPROM_FINISH() persistentStore.access_finish() #define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR) #define EEPROM_WRITE(VAR) persistentStore.write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc) #define EEPROM_READ(VAR) persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc, !validating) #define EEPROM_READ_ALWAYS(VAR) persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc) #define EEPROM_ASSERT(TST,ERR) if (!(TST)) do{ SERIAL_ERROR_START_P(port); SERIAL_ERRORLNPGM_P(port, ERR); eeprom_error = true; }while(0) #if ENABLED(DEBUG_EEPROM_READWRITE) #define _FIELD_TEST(FIELD) \ EEPROM_ASSERT( \ eeprom_error || eeprom_index == offsetof(SettingsData, FIELD) + EEPROM_OFFSET, \ "Field " STRINGIFY(FIELD) " mismatch." \ ) #else #define _FIELD_TEST(FIELD) NOOP #endif const char version[4] = EEPROM_VERSION; bool MarlinSettings::eeprom_error, MarlinSettings::validating; bool MarlinSettings::size_error(const uint16_t size PORTARG_AFTER) { if (size != datasize()) { #if ENABLED(EEPROM_CHITCHAT) SERIAL_ERROR_START_P(port); SERIAL_ERRORLNPGM_P(port, "EEPROM datasize error."); #endif return true; } return false; } /** * M500 - Store Configuration */ bool MarlinSettings::save(PORTARG_SOLO) { float dummy = 0; char ver[4] = "ERR"; uint16_t working_crc = 0; EEPROM_START(); eeprom_error = false; #if ENABLED(FLASH_EEPROM_EMULATION) EEPROM_SKIP(ver); // Flash doesn't allow rewriting without erase #else EEPROM_WRITE(ver); // invalidate data first #endif EEPROM_SKIP(working_crc); // Skip the checksum slot working_crc = 0; // clear before first "real data" _FIELD_TEST(esteppers); const uint8_t esteppers = COUNT(planner.axis_steps_per_mm) - XYZ; EEPROM_WRITE(esteppers); EEPROM_WRITE(planner.max_acceleration_mm_per_s2); EEPROM_WRITE(planner.min_segment_time_us); EEPROM_WRITE(planner.axis_steps_per_mm); EEPROM_WRITE(planner.max_feedrate_mm_s); EEPROM_WRITE(planner.acceleration); EEPROM_WRITE(planner.retract_acceleration); EEPROM_WRITE(planner.travel_acceleration); EEPROM_WRITE(planner.min_feedrate_mm_s); EEPROM_WRITE(planner.min_travel_feedrate_mm_s); #if HAS_CLASSIC_JERK EEPROM_WRITE(planner.max_jerk); #if ENABLED(JUNCTION_DEVIATION) && ENABLED(LIN_ADVANCE) dummy = float(DEFAULT_EJERK); EEPROM_WRITE(dummy); #endif #else const float planner_max_jerk[XYZE] = { float(DEFAULT_XJERK), float(DEFAULT_YJERK), float(DEFAULT_ZJERK), float(DEFAULT_EJERK) }; EEPROM_WRITE(planner_max_jerk); #endif #if ENABLED(JUNCTION_DEVIATION) EEPROM_WRITE(planner.junction_deviation_mm); #else dummy = 0.02f; EEPROM_WRITE(dummy); #endif _FIELD_TEST(home_offset); #if !HAS_HOME_OFFSET const float home_offset[XYZ] = { 0 }; #endif EEPROM_WRITE(home_offset); #if HAS_HOTEND_OFFSET // Skip hotend 0 which must be 0 for (uint8_t e = 1; e < HOTENDS; e++) LOOP_XYZ(i) EEPROM_WRITE(hotend_offset[i][e]); #endif // // Global Leveling // const float zfh = ( #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) planner.z_fade_height #else 10.0 #endif ); EEPROM_WRITE(zfh); // // Mesh Bed Leveling // #if ENABLED(MESH_BED_LEVELING) // Compile time test that sizeof(mbl.z_values) is as expected static_assert( sizeof(mbl.z_values) == (GRID_MAX_POINTS) * sizeof(mbl.z_values[0][0]), "MBL Z array is the wrong size." ); const uint8_t mesh_num_x = GRID_MAX_POINTS_X, mesh_num_y = GRID_MAX_POINTS_Y; EEPROM_WRITE(mbl.z_offset); EEPROM_WRITE(mesh_num_x); EEPROM_WRITE(mesh_num_y); EEPROM_WRITE(mbl.z_values); #else // For disabled MBL write a default mesh dummy = 0; const uint8_t mesh_num_x = 3, mesh_num_y = 3; EEPROM_WRITE(dummy); // z_offset EEPROM_WRITE(mesh_num_x); EEPROM_WRITE(mesh_num_y); for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummy); #endif // MESH_BED_LEVELING _FIELD_TEST(zprobe_zoffset); #if !HAS_BED_PROBE const float zprobe_zoffset = 0; #endif EEPROM_WRITE(zprobe_zoffset); // // Planar Bed Leveling matrix // #if ABL_PLANAR EEPROM_WRITE(planner.bed_level_matrix); #else dummy = 0; for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy); #endif // // Bilinear Auto Bed Leveling // #if ENABLED(AUTO_BED_LEVELING_BILINEAR) // Compile time test that sizeof(z_values) is as expected static_assert( sizeof(z_values) == (GRID_MAX_POINTS) * sizeof(z_values[0][0]), "Bilinear Z array is the wrong size." ); const uint8_t grid_max_x = GRID_MAX_POINTS_X, grid_max_y = GRID_MAX_POINTS_Y; EEPROM_WRITE(grid_max_x); // 1 byte EEPROM_WRITE(grid_max_y); // 1 byte EEPROM_WRITE(bilinear_grid_spacing); // 2 ints EEPROM_WRITE(bilinear_start); // 2 ints EEPROM_WRITE(z_values); // 9-256 floats #else // For disabled Bilinear Grid write an empty 3x3 grid const uint8_t grid_max_x = 3, grid_max_y = 3; const int bilinear_start[2] = { 0 }, bilinear_grid_spacing[2] = { 0 }; dummy = 0; EEPROM_WRITE(grid_max_x); EEPROM_WRITE(grid_max_y); EEPROM_WRITE(bilinear_grid_spacing); EEPROM_WRITE(bilinear_start); for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummy); #endif // AUTO_BED_LEVELING_BILINEAR _FIELD_TEST(planner_leveling_active); #if ENABLED(AUTO_BED_LEVELING_UBL) EEPROM_WRITE(planner.leveling_active); EEPROM_WRITE(ubl.storage_slot); #else const bool ubl_active = false; const int8_t storage_slot = -1; EEPROM_WRITE(ubl_active); EEPROM_WRITE(storage_slot); #endif // AUTO_BED_LEVELING_UBL #if !HAS_SERVOS || DISABLED(EDITABLE_SERVO_ANGLES) #if ENABLED(SWITCHING_EXTRUDER) constexpr uint16_t sesa[][2] = SWITCHING_EXTRUDER_SERVO_ANGLES; #endif constexpr uint16_t servo_angles[NUM_SERVOS][2] = { #if ENABLED(SWITCHING_EXTRUDER) [SWITCHING_EXTRUDER_SERVO_NR] = { sesa[0][0], sesa[0][1] } #if EXTRUDERS > 3 , [SWITCHING_EXTRUDER_E23_SERVO_NR] = { sesa[1][0], sesa[1][1] } #endif #elif ENABLED(SWITCHING_NOZZLE) [SWITCHING_NOZZLE_SERVO_NR] = SWITCHING_NOZZLE_SERVO_ANGLES #elif defined(Z_SERVO_ANGLES) && defined(Z_PROBE_SERVO_NR) [Z_PROBE_SERVO_NR] = Z_SERVO_ANGLES #endif }; #endif EEPROM_WRITE(servo_angles); // 11 floats for DELTA / [XYZ]_DUAL_ENDSTOPS #if ENABLED(DELTA) _FIELD_TEST(delta_height); EEPROM_WRITE(delta_height); // 1 float EEPROM_WRITE(delta_endstop_adj); // 3 floats EEPROM_WRITE(delta_radius); // 1 float EEPROM_WRITE(delta_diagonal_rod); // 1 float EEPROM_WRITE(delta_segments_per_second); // 1 float EEPROM_WRITE(delta_calibration_radius); // 1 float EEPROM_WRITE(delta_tower_angle_trim); // 3 floats #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS _FIELD_TEST(x2_endstop_adj); // Write dual endstops in X, Y, Z order. Unused = 0.0 dummy = 0; #if ENABLED(X_DUAL_ENDSTOPS) EEPROM_WRITE(endstops.x2_endstop_adj); // 1 float #else EEPROM_WRITE(dummy); #endif #if ENABLED(Y_DUAL_ENDSTOPS) EEPROM_WRITE(endstops.y2_endstop_adj); // 1 float #else EEPROM_WRITE(dummy); #endif #if Z_MULTI_ENDSTOPS EEPROM_WRITE(endstops.z2_endstop_adj); // 1 float #else EEPROM_WRITE(dummy); #endif #if ENABLED(Z_TRIPLE_ENDSTOPS) EEPROM_WRITE(endstops.z3_endstop_adj); // 1 float #else EEPROM_WRITE(dummy); #endif #endif _FIELD_TEST(lcd_preheat_hotend_temp); #if DISABLED(ULTIPANEL) constexpr int16_t lcd_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND }, lcd_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED }; constexpr uint8_t lcd_preheat_fan_speed[2] = { PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED }; #endif EEPROM_WRITE(lcd_preheat_hotend_temp); EEPROM_WRITE(lcd_preheat_bed_temp); EEPROM_WRITE(lcd_preheat_fan_speed); for (uint8_t e = 0; e < HOTENDS; e++) { #if ENABLED(PIDTEMP) EEPROM_WRITE(PID_PARAM(Kp, e)); EEPROM_WRITE(PID_PARAM(Ki, e)); EEPROM_WRITE(PID_PARAM(Kd, e)); #if ENABLED(PID_EXTRUSION_SCALING) EEPROM_WRITE(PID_PARAM(Kc, e)); #else dummy = 1.0f; // 1.0 = default kc EEPROM_WRITE(dummy); #endif #else dummy = DUMMY_PID_VALUE; // When read, will not change the existing value EEPROM_WRITE(dummy); // Kp dummy = 0; for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); // Ki, Kd, Kc #endif } // Hotends Loop _FIELD_TEST(lpq_len); #if DISABLED(PID_EXTRUSION_SCALING) const int16_t LPQ_LEN = 20; #endif EEPROM_WRITE(LPQ_LEN); #if DISABLED(PIDTEMPBED) dummy = DUMMY_PID_VALUE; for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); #else EEPROM_WRITE(thermalManager.bedKp); EEPROM_WRITE(thermalManager.bedKi); EEPROM_WRITE(thermalManager.bedKd); #endif _FIELD_TEST(lcd_contrast); #if !HAS_LCD_CONTRAST const int16_t lcd_contrast = 32; #endif EEPROM_WRITE(lcd_contrast); const bool autoretract_enabled = #if DISABLED(FWRETRACT_AUTORETRACT) false #else fwretract.autoretract_enabled #endif ; EEPROM_WRITE(autoretract_enabled); #if DISABLED(FWRETRACT) const float autoretract_defaults[] = { 3, 45, 0, 0, 0, 13, 0, 8 }; EEPROM_WRITE(autoretract_defaults); #else EEPROM_WRITE(fwretract.retract_length); EEPROM_WRITE(fwretract.retract_feedrate_mm_s); EEPROM_WRITE(fwretract.retract_zlift); EEPROM_WRITE(fwretract.retract_recover_length); EEPROM_WRITE(fwretract.retract_recover_feedrate_mm_s); EEPROM_WRITE(fwretract.swap_retract_length); EEPROM_WRITE(fwretract.swap_retract_recover_length); EEPROM_WRITE(fwretract.swap_retract_recover_feedrate_mm_s); #endif // // Volumetric & Filament Size // _FIELD_TEST(parser_volumetric_enabled); #if DISABLED(NO_VOLUMETRICS) EEPROM_WRITE(parser.volumetric_enabled); // Save filament sizes for (uint8_t q = 0; q < COUNT(planner.filament_size); q++) EEPROM_WRITE(planner.filament_size[q]); #else const bool volumetric_enabled = false; dummy = DEFAULT_NOMINAL_FILAMENT_DIA; EEPROM_WRITE(volumetric_enabled); for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummy); #endif // // Save TMC Configuration, and placeholder values // _FIELD_TEST(tmc_stepper_current); tmc_stepper_current_t tmc_stepper_current = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; #if HAS_TRINAMIC #if AXIS_IS_TMC(X) tmc_stepper_current.X = stepperX.getMilliamps(); #endif #if AXIS_IS_TMC(Y) tmc_stepper_current.Y = stepperY.getMilliamps(); #endif #if AXIS_IS_TMC(Z) tmc_stepper_current.Z = stepperZ.getMilliamps(); #endif #if AXIS_IS_TMC(X2) tmc_stepper_current.X2 = stepperX2.getMilliamps(); #endif #if AXIS_IS_TMC(Y2) tmc_stepper_current.Y2 = stepperY2.getMilliamps(); #endif #if AXIS_IS_TMC(Z2) tmc_stepper_current.Z2 = stepperZ2.getMilliamps(); #endif #if AXIS_IS_TMC(Z3) tmc_stepper_current.Z3 = stepperZ3.getMilliamps(); #endif #if MAX_EXTRUDERS #if AXIS_IS_TMC(E0) tmc_stepper_current.E0 = stepperE0.getMilliamps(); #endif #if MAX_EXTRUDERS > 1 #if AXIS_IS_TMC(E1) tmc_stepper_current.E1 = stepperE1.getMilliamps(); #endif #if MAX_EXTRUDERS > 2 #if AXIS_IS_TMC(E2) tmc_stepper_current.E2 = stepperE2.getMilliamps(); #endif #if MAX_EXTRUDERS > 3 #if AXIS_IS_TMC(E3) tmc_stepper_current.E3 = stepperE3.getMilliamps(); #endif #if MAX_EXTRUDERS > 4 #if AXIS_IS_TMC(E4) tmc_stepper_current.E4 = stepperE4.getMilliamps(); #endif #if MAX_EXTRUDERS > 5 #if AXIS_IS_TMC(E5) tmc_stepper_current.E5 = stepperE5.getMilliamps(); #endif #endif // MAX_EXTRUDERS > 5 #endif // MAX_EXTRUDERS > 4 #endif // MAX_EXTRUDERS > 3 #endif // MAX_EXTRUDERS > 2 #endif // MAX_EXTRUDERS > 1 #endif // MAX_EXTRUDERS #endif EEPROM_WRITE(tmc_stepper_current); // // Save TMC Hybrid Threshold, and placeholder values // _FIELD_TEST(tmc_hybrid_threshold); #if ENABLED(HYBRID_THRESHOLD) tmc_hybrid_threshold_t tmc_hybrid_threshold = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; #if AXIS_HAS_STEALTHCHOP(X) tmc_hybrid_threshold.X = TMC_GET_PWMTHRS(X, X); #endif #if AXIS_HAS_STEALTHCHOP(Y) tmc_hybrid_threshold.Y = TMC_GET_PWMTHRS(Y, Y); #endif #if AXIS_HAS_STEALTHCHOP(Z) tmc_hybrid_threshold.Z = TMC_GET_PWMTHRS(Z, Z); #endif #if AXIS_HAS_STEALTHCHOP(X2) tmc_hybrid_threshold.X2 = TMC_GET_PWMTHRS(X, X2); #endif #if AXIS_HAS_STEALTHCHOP(Y2) tmc_hybrid_threshold.Y2 = TMC_GET_PWMTHRS(Y, Y2); #endif #if AXIS_HAS_STEALTHCHOP(Z2) tmc_hybrid_threshold.Z2 = TMC_GET_PWMTHRS(Z, Z2); #endif #if AXIS_HAS_STEALTHCHOP(Z3) tmc_hybrid_threshold.Z3 = TMC_GET_PWMTHRS(Z, Z3); #endif #if MAX_EXTRUDERS #if AXIS_HAS_STEALTHCHOP(E0) tmc_hybrid_threshold.E0 = TMC_GET_PWMTHRS(E, E0); #endif #if MAX_EXTRUDERS > 1 #if AXIS_HAS_STEALTHCHOP(E1) tmc_hybrid_threshold.E1 = TMC_GET_PWMTHRS(E, E1); #endif #if MAX_EXTRUDERS > 2 #if AXIS_HAS_STEALTHCHOP(E2) tmc_hybrid_threshold.E2 = TMC_GET_PWMTHRS(E, E2); #endif #if MAX_EXTRUDERS > 3 #if AXIS_HAS_STEALTHCHOP(E3) tmc_hybrid_threshold.E3 = TMC_GET_PWMTHRS(E, E3); #endif #if MAX_EXTRUDERS > 4 #if AXIS_HAS_STEALTHCHOP(E4) tmc_hybrid_threshold.E4 = TMC_GET_PWMTHRS(E, E4); #endif #if MAX_EXTRUDERS > 5 #if AXIS_HAS_STEALTHCHOP(E5) tmc_hybrid_threshold.E5 = TMC_GET_PWMTHRS(E, E5); #endif #endif // MAX_EXTRUDERS > 5 #endif // MAX_EXTRUDERS > 4 #endif // MAX_EXTRUDERS > 3 #endif // MAX_EXTRUDERS > 2 #endif // MAX_EXTRUDERS > 1 #endif // MAX_EXTRUDERS #else const tmc_hybrid_threshold_t tmc_hybrid_threshold = { .X = 100, .Y = 100, .Z = 3, .X2 = 100, .Y2 = 100, .Z2 = 3, .Z3 = 3, .E0 = 30, .E1 = 30, .E2 = 30, .E3 = 30, .E4 = 30, .E5 = 30 }; #endif EEPROM_WRITE(tmc_hybrid_threshold); // // TMC StallGuard threshold // tmc_sgt_t tmc_sgt = { 0, 0, 0 }; #if USE_SENSORLESS #if X_SENSORLESS tmc_sgt.X = stepperX.sgt(); #endif #if Y_SENSORLESS tmc_sgt.Y = stepperY.sgt(); #endif #if Z_SENSORLESS tmc_sgt.Z = stepperZ.sgt(); #endif #endif EEPROM_WRITE(tmc_sgt); // // Linear Advance // _FIELD_TEST(planner_extruder_advance_K); #if ENABLED(LIN_ADVANCE) LOOP_L_N(i, EXTRUDERS) EEPROM_WRITE(planner.extruder_advance_K[i]); #else dummy = 0; LOOP_L_N(i, EXTRUDERS) EEPROM_WRITE(dummy); #endif _FIELD_TEST(motor_current_setting); // // Motor Current PWM // #if HAS_MOTOR_CURRENT_PWM for (uint8_t q = XYZ; q--;) EEPROM_WRITE(stepper.motor_current_setting[q]); #else const uint32_t dummyui32[XYZ] = { 0 }; EEPROM_WRITE(dummyui32); #endif // // CNC Coordinate Systems // _FIELD_TEST(coordinate_system); #if ENABLED(CNC_COORDINATE_SYSTEMS) EEPROM_WRITE(gcode.coordinate_system); // 27 floats #else dummy = 0; for (uint8_t q = MAX_COORDINATE_SYSTEMS * XYZ; q--;) EEPROM_WRITE(dummy); #endif // // Skew correction factors // _FIELD_TEST(planner_xy_skew_factor); #if ENABLED(SKEW_CORRECTION) EEPROM_WRITE(planner.xy_skew_factor); EEPROM_WRITE(planner.xz_skew_factor); EEPROM_WRITE(planner.yz_skew_factor); #else dummy = 0; for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); #endif // // Advanced Pause filament load & unload lengths // _FIELD_TEST(filament_change_unload_length); #if ENABLED(ADVANCED_PAUSE_FEATURE) for (uint8_t q = 0; q < COUNT(filament_change_unload_length); q++) { EEPROM_WRITE(filament_change_unload_length[q]); EEPROM_WRITE(filament_change_load_length[q]); } #else dummy = 0; for (uint8_t q = EXTRUDERS * 2; q--;) EEPROM_WRITE(dummy); #endif // // SINGLENOZZLE // #if ENABLED(SINGLENOZZLE) _FIELD_TEST(singlenozzle_swap_length); EEPROM_WRITE(singlenozzle_swap_length); EEPROM_WRITE(singlenozzle_prime_speed); EEPROM_WRITE(singlenozzle_retract_speed); #endif // // Validate CRC and Data Size // if (!eeprom_error) { const uint16_t eeprom_size = eeprom_index - (EEPROM_OFFSET), final_crc = working_crc; // Write the EEPROM header eeprom_index = EEPROM_OFFSET; EEPROM_WRITE(version); EEPROM_WRITE(final_crc); // Report storage size #if ENABLED(EEPROM_CHITCHAT) SERIAL_ECHO_START_P(port); SERIAL_ECHOPAIR_P(port, "Settings Stored (", eeprom_size); SERIAL_ECHOPAIR_P(port, " bytes; crc ", (uint32_t)final_crc); SERIAL_ECHOLNPGM_P(port, ")"); #endif eeprom_error |= size_error(eeprom_size); } EEPROM_FINISH(); // // UBL Mesh // #if ENABLED(UBL_SAVE_ACTIVE_ON_M500) if (ubl.storage_slot >= 0) store_mesh(ubl.storage_slot); #endif return !eeprom_error; } /** * M501 - Retrieve Configuration */ bool MarlinSettings::_load(PORTARG_SOLO) { uint16_t working_crc = 0; EEPROM_START(); char stored_ver[4]; EEPROM_READ_ALWAYS(stored_ver); uint16_t stored_crc; EEPROM_READ_ALWAYS(stored_crc); // Version has to match or defaults are used if (strncmp(version, stored_ver, 3) != 0) { if (stored_ver[3] != '\0') { stored_ver[0] = '?'; stored_ver[1] = '\0'; } #if ENABLED(EEPROM_CHITCHAT) SERIAL_ECHO_START_P(port); SERIAL_ECHOPGM_P(port, "EEPROM version mismatch "); SERIAL_ECHOPAIR_P(port, "(EEPROM=", stored_ver); SERIAL_ECHOLNPGM_P(port, " Marlin=" EEPROM_VERSION ")"); #endif eeprom_error = true; } else { float dummy = 0; #if DISABLED(AUTO_BED_LEVELING_UBL) || DISABLED(FWRETRACT) || DISABLED(FWRETRACT_AUTORETRACT) || ENABLED(NO_VOLUMETRICS) bool dummyb; #endif working_crc = 0; // Init to 0. Accumulated by EEPROM_READ _FIELD_TEST(esteppers); // Number of esteppers may change uint8_t esteppers; EEPROM_READ_ALWAYS(esteppers); // // Planner Motion // // Get only the number of E stepper parameters previously stored // Any steppers added later are set to their defaults const uint32_t def1[] = DEFAULT_MAX_ACCELERATION; const float def2[] = DEFAULT_AXIS_STEPS_PER_UNIT, def3[] = DEFAULT_MAX_FEEDRATE; uint32_t tmp1[XYZ + esteppers]; EEPROM_READ(tmp1); // max_acceleration_mm_per_s2 EEPROM_READ(planner.min_segment_time_us); float tmp2[XYZ + esteppers], tmp3[XYZ + esteppers]; EEPROM_READ(tmp2); // axis_steps_per_mm EEPROM_READ(tmp3); // max_feedrate_mm_s if (!validating) LOOP_XYZE_N(i) { planner.max_acceleration_mm_per_s2[i] = i < XYZ + esteppers ? tmp1[i] : def1[i < COUNT(def1) ? i : COUNT(def1) - 1]; planner.axis_steps_per_mm[i] = i < XYZ + esteppers ? tmp2[i] : def2[i < COUNT(def2) ? i : COUNT(def2) - 1]; planner.max_feedrate_mm_s[i] = i < XYZ + esteppers ? tmp3[i] : def3[i < COUNT(def3) ? i : COUNT(def3) - 1]; } EEPROM_READ(planner.acceleration); EEPROM_READ(planner.retract_acceleration); EEPROM_READ(planner.travel_acceleration); EEPROM_READ(planner.min_feedrate_mm_s); EEPROM_READ(planner.min_travel_feedrate_mm_s); #if HAS_CLASSIC_JERK EEPROM_READ(planner.max_jerk); #if ENABLED(JUNCTION_DEVIATION) && ENABLED(LIN_ADVANCE) EEPROM_READ(dummy); #endif #else for (uint8_t q = 4; q--;) EEPROM_READ(dummy); #endif #if ENABLED(JUNCTION_DEVIATION) EEPROM_READ(planner.junction_deviation_mm); #else EEPROM_READ(dummy); #endif // // Home Offset (M206) // _FIELD_TEST(home_offset); #if !HAS_HOME_OFFSET float home_offset[XYZ]; #endif EEPROM_READ(home_offset); // // Hotend Offsets, if any // #if HAS_HOTEND_OFFSET // Skip hotend 0 which must be 0 for (uint8_t e = 1; e < HOTENDS; e++) LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]); #endif // // Global Leveling // #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) EEPROM_READ(new_z_fade_height); #else EEPROM_READ(dummy); #endif // // Mesh (Manual) Bed Leveling // uint8_t mesh_num_x, mesh_num_y; EEPROM_READ(dummy); EEPROM_READ_ALWAYS(mesh_num_x); EEPROM_READ_ALWAYS(mesh_num_y); #if ENABLED(MESH_BED_LEVELING) if (!validating) mbl.z_offset = dummy; if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) { // EEPROM data fits the current mesh EEPROM_READ(mbl.z_values); } else { // EEPROM data is stale if (!validating) mbl.reset(); for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy); } #else // MBL is disabled - skip the stored data for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy); #endif // MESH_BED_LEVELING _FIELD_TEST(zprobe_zoffset); #if !HAS_BED_PROBE float zprobe_zoffset; #endif EEPROM_READ(zprobe_zoffset); // // Planar Bed Leveling matrix // #if ABL_PLANAR EEPROM_READ(planner.bed_level_matrix); #else for (uint8_t q = 9; q--;) EEPROM_READ(dummy); #endif // // Bilinear Auto Bed Leveling // uint8_t grid_max_x, grid_max_y; EEPROM_READ_ALWAYS(grid_max_x); // 1 byte EEPROM_READ_ALWAYS(grid_max_y); // 1 byte #if ENABLED(AUTO_BED_LEVELING_BILINEAR) if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) { if (!validating) set_bed_leveling_enabled(false); EEPROM_READ(bilinear_grid_spacing); // 2 ints EEPROM_READ(bilinear_start); // 2 ints EEPROM_READ(z_values); // 9 to 256 floats } else // EEPROM data is stale #endif // AUTO_BED_LEVELING_BILINEAR { // Skip past disabled (or stale) Bilinear Grid data int bgs[2], bs[2]; EEPROM_READ(bgs); EEPROM_READ(bs); for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummy); } // // Unified Bed Leveling active state // _FIELD_TEST(planner_leveling_active); #if ENABLED(AUTO_BED_LEVELING_UBL) EEPROM_READ(planner.leveling_active); EEPROM_READ(ubl.storage_slot); #else uint8_t dummyui8; EEPROM_READ(dummyb); EEPROM_READ(dummyui8); #endif // AUTO_BED_LEVELING_UBL // // SERVO_ANGLES // #if !HAS_SERVOS || DISABLED(EDITABLE_SERVO_ANGLES) uint16_t servo_angles[NUM_SERVOS][2]; #endif EEPROM_READ(servo_angles); // // DELTA Geometry or Dual Endstops offsets // #if ENABLED(DELTA) _FIELD_TEST(delta_height); EEPROM_READ(delta_height); // 1 float EEPROM_READ(delta_endstop_adj); // 3 floats EEPROM_READ(delta_radius); // 1 float EEPROM_READ(delta_diagonal_rod); // 1 float EEPROM_READ(delta_segments_per_second); // 1 float EEPROM_READ(delta_calibration_radius); // 1 float EEPROM_READ(delta_tower_angle_trim); // 3 floats #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS _FIELD_TEST(x2_endstop_adj); #if ENABLED(X_DUAL_ENDSTOPS) EEPROM_READ(endstops.x2_endstop_adj); // 1 float #else EEPROM_READ(dummy); #endif #if ENABLED(Y_DUAL_ENDSTOPS) EEPROM_READ(endstops.y2_endstop_adj); // 1 float #else EEPROM_READ(dummy); #endif #if Z_MULTI_ENDSTOPS EEPROM_READ(endstops.z2_endstop_adj); // 1 float #else EEPROM_READ(dummy); #endif #if ENABLED(Z_TRIPLE_ENDSTOPS) EEPROM_READ(endstops.z3_endstop_adj); // 1 float #else EEPROM_READ(dummy); #endif #endif // // LCD Preheat settings // _FIELD_TEST(lcd_preheat_hotend_temp); #if DISABLED(ULTIPANEL) int16_t lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2]; uint8_t lcd_preheat_fan_speed[2]; #endif EEPROM_READ(lcd_preheat_hotend_temp); // 2 floats EEPROM_READ(lcd_preheat_bed_temp); // 2 floats EEPROM_READ(lcd_preheat_fan_speed); // 2 floats // // Hotend PID // #if ENABLED(PIDTEMP) for (uint8_t e = 0; e < HOTENDS; e++) { EEPROM_READ(dummy); // Kp if (dummy != DUMMY_PID_VALUE) { // do not need to scale PID values as the values in EEPROM are already scaled if (!validating) PID_PARAM(Kp, e) = dummy; EEPROM_READ(PID_PARAM(Ki, e)); EEPROM_READ(PID_PARAM(Kd, e)); #if ENABLED(PID_EXTRUSION_SCALING) EEPROM_READ(PID_PARAM(Kc, e)); #else EEPROM_READ(dummy); #endif } else for (uint8_t q=3; q--;) EEPROM_READ(dummy); // Ki, Kd, Kc } #else // !PIDTEMP // 4 x 4 = 16 slots for PID parameters for (uint8_t q = HOTENDS * 4; q--;) EEPROM_READ(dummy); // Kp, Ki, Kd, Kc #endif // !PIDTEMP // // PID Extrusion Scaling // _FIELD_TEST(lpq_len); #if DISABLED(PID_EXTRUSION_SCALING) int16_t LPQ_LEN; #endif EEPROM_READ(LPQ_LEN); // // Heated Bed PID // #if ENABLED(PIDTEMPBED) EEPROM_READ(dummy); // bedKp if (dummy != DUMMY_PID_VALUE) { if (!validating) thermalManager.bedKp = dummy; EEPROM_READ(thermalManager.bedKi); EEPROM_READ(thermalManager.bedKd); } #else for (uint8_t q=3; q--;) EEPROM_READ(dummy); // bedKp, bedKi, bedKd #endif // // LCD Contrast // _FIELD_TEST(lcd_contrast); #if !HAS_LCD_CONTRAST int16_t lcd_contrast; #endif EEPROM_READ(lcd_contrast); // // Firmware Retraction // #if ENABLED(FWRETRACT) #if DISABLED(FWRETRACT_AUTORETRACT) EEPROM_READ(dummyb); #else EEPROM_READ(fwretract.autoretract_enabled); #endif EEPROM_READ(fwretract.retract_length); EEPROM_READ(fwretract.retract_feedrate_mm_s); EEPROM_READ(fwretract.retract_zlift); EEPROM_READ(fwretract.retract_recover_length); EEPROM_READ(fwretract.retract_recover_feedrate_mm_s); EEPROM_READ(fwretract.swap_retract_length); EEPROM_READ(fwretract.swap_retract_recover_length); EEPROM_READ(fwretract.swap_retract_recover_feedrate_mm_s); #else EEPROM_READ(dummyb); for (uint8_t q=8; q--;) EEPROM_READ(dummy); #endif // // Volumetric & Filament Size // _FIELD_TEST(parser_volumetric_enabled); #if DISABLED(NO_VOLUMETRICS) EEPROM_READ(parser.volumetric_enabled); for (uint8_t q = 0; q < COUNT(planner.filament_size); q++) { EEPROM_READ(dummy); if (!validating) planner.filament_size[q] = dummy; } #else EEPROM_READ(dummyb); for (uint8_t q=EXTRUDERS; q--;) EEPROM_READ(dummy); #endif if (!validating) reset_stepper_drivers(); // // TMC Stepper Settings // _FIELD_TEST(tmc_stepper_current); #if HAS_TRINAMIC #define SET_CURR(Q) stepper##Q.rms_current(currents.Q ? currents.Q : Q##_CURRENT) tmc_stepper_current_t currents; EEPROM_READ(currents); if (!validating) { #if AXIS_IS_TMC(X) SET_CURR(X); #endif #if AXIS_IS_TMC(Y) SET_CURR(Y); #endif #if AXIS_IS_TMC(Z) SET_CURR(Z); #endif #if AXIS_IS_TMC(X2) SET_CURR(X2); #endif #if AXIS_IS_TMC(Y2) SET_CURR(Y2); #endif #if AXIS_IS_TMC(Z2) SET_CURR(Z2); #endif #if AXIS_IS_TMC(Z3) SET_CURR(Z3); #endif #if AXIS_IS_TMC(E0) SET_CURR(E0); #endif #if AXIS_IS_TMC(E1) SET_CURR(E1); #endif #if AXIS_IS_TMC(E2) SET_CURR(E2); #endif #if AXIS_IS_TMC(E3) SET_CURR(E3); #endif #if AXIS_IS_TMC(E4) SET_CURR(E4); #endif #if AXIS_IS_TMC(E5) SET_CURR(E5); #endif } #else uint16_t val; for (uint8_t q=TMC_AXES; q--;) EEPROM_READ(val); #endif _FIELD_TEST(tmc_hybrid_threshold); #if ENABLED(HYBRID_THRESHOLD) #define TMC_SET_PWMTHRS(A,Q) tmc_set_pwmthrs(stepper##Q, tmc_hybrid_threshold.Q, planner.axis_steps_per_mm[_AXIS(A)]) tmc_hybrid_threshold_t tmc_hybrid_threshold; EEPROM_READ(tmc_hybrid_threshold); if (!validating) { #if AXIS_HAS_STEALTHCHOP(X) TMC_SET_PWMTHRS(X, X); #endif #if AXIS_HAS_STEALTHCHOP(Y) TMC_SET_PWMTHRS(Y, Y); #endif #if AXIS_HAS_STEALTHCHOP(Z) TMC_SET_PWMTHRS(Z, Z); #endif #if AXIS_HAS_STEALTHCHOP(X2) TMC_SET_PWMTHRS(X, X2); #endif #if AXIS_HAS_STEALTHCHOP(Y2) TMC_SET_PWMTHRS(Y, Y2); #endif #if AXIS_HAS_STEALTHCHOP(Z2) TMC_SET_PWMTHRS(Z, Z2); #endif #if AXIS_HAS_STEALTHCHOP(Z3) TMC_SET_PWMTHRS(Z, Z3); #endif #if AXIS_HAS_STEALTHCHOP(E0) TMC_SET_PWMTHRS(E, E0); #endif #if AXIS_HAS_STEALTHCHOP(E1) TMC_SET_PWMTHRS(E, E1); #endif #if AXIS_HAS_STEALTHCHOP(E2) TMC_SET_PWMTHRS(E, E2); #endif #if AXIS_HAS_STEALTHCHOP(E3) TMC_SET_PWMTHRS(E, E3); #endif #if AXIS_HAS_STEALTHCHOP(E4) TMC_SET_PWMTHRS(E, E4); #endif #if AXIS_HAS_STEALTHCHOP(E5) TMC_SET_PWMTHRS(E, E5); #endif } #else uint32_t thrs_val; for (uint8_t q=TMC_AXES; q--;) EEPROM_READ(thrs_val); #endif /** * TMC StallGuard threshold. * X and X2 use the same value * Y and Y2 use the same value * Z, Z2 and Z3 use the same value */ _FIELD_TEST(tmc_sgt); tmc_sgt_t tmc_sgt; EEPROM_READ(tmc_sgt); #if USE_SENSORLESS if (!validating) { #ifdef X_STALL_SENSITIVITY #if AXIS_HAS_STALLGUARD(X) stepperX.sgt(tmc_sgt.X); #endif #if AXIS_HAS_STALLGUARD(X2) stepperX2.sgt(tmc_sgt.X); #endif #endif #ifdef Y_STALL_SENSITIVITY #if AXIS_HAS_STALLGUARD(Y) stepperY.sgt(tmc_sgt.Y); #endif #if AXIS_HAS_STALLGUARD(Y2) stepperY2.sgt(tmc_sgt.Y); #endif #endif #ifdef Z_STALL_SENSITIVITY #if AXIS_HAS_STALLGUARD(Z) stepperZ.sgt(tmc_sgt.Z); #endif #if AXIS_HAS_STALLGUARD(Z2) stepperZ2.sgt(tmc_sgt.Z); #endif #if AXIS_HAS_STALLGUARD(Z3) stepperZ3.sgt(tmc_sgt.Z); #endif #endif } #endif // // Linear Advance // _FIELD_TEST(planner_extruder_advance_K); LOOP_L_N(i, EXTRUDERS) { #if ENABLED(LIN_ADVANCE) EEPROM_READ(planner.extruder_advance_K[i]); #else EEPROM_READ(dummy); #endif } // // Motor Current PWM // _FIELD_TEST(motor_current_setting); #if HAS_MOTOR_CURRENT_PWM for (uint8_t q = XYZ; q--;) EEPROM_READ(stepper.motor_current_setting[q]); #else uint32_t dummyui32[XYZ]; EEPROM_READ(dummyui32); #endif // // CNC Coordinate System // _FIELD_TEST(coordinate_system); #if ENABLED(CNC_COORDINATE_SYSTEMS) if (!validating) (void)gcode.select_coordinate_system(-1); // Go back to machine space EEPROM_READ(gcode.coordinate_system); // 27 floats #else for (uint8_t q = MAX_COORDINATE_SYSTEMS * XYZ; q--;) EEPROM_READ(dummy); #endif // // Skew correction factors // _FIELD_TEST(planner_xy_skew_factor); #if ENABLED(SKEW_CORRECTION_GCODE) EEPROM_READ(planner.xy_skew_factor); #if ENABLED(SKEW_CORRECTION_FOR_Z) EEPROM_READ(planner.xz_skew_factor); EEPROM_READ(planner.yz_skew_factor); #else EEPROM_READ(dummy); EEPROM_READ(dummy); #endif #else for (uint8_t q = 3; q--;) EEPROM_READ(dummy); #endif // // Advanced Pause filament load & unload lengths // _FIELD_TEST(filament_change_unload_length); #if ENABLED(ADVANCED_PAUSE_FEATURE) for (uint8_t q = 0; q < COUNT(filament_change_unload_length); q++) { EEPROM_READ(dummy); if (!validating && q < COUNT(filament_change_unload_length)) filament_change_unload_length[q] = dummy; EEPROM_READ(dummy); if (!validating && q < COUNT(filament_change_load_length)) filament_change_load_length[q] = dummy; } #else for (uint8_t q = EXTRUDERS * 2; q--;) EEPROM_READ(dummy); #endif // // SINGLENOZZLE toolchange values // #if ENABLED(SINGLENOZZLE) _FIELD_TEST(singlenozzle_swap_length); EEPROM_READ(singlenozzle_swap_length); EEPROM_READ(singlenozzle_prime_speed); EEPROM_READ(singlenozzle_retract_speed); #endif eeprom_error = size_error(eeprom_index - (EEPROM_OFFSET)); if (eeprom_error) { #if ENABLED(EEPROM_CHITCHAT) SERIAL_ECHO_START_P(port); SERIAL_ECHOPAIR_P(port, "Index: ", int(eeprom_index - (EEPROM_OFFSET))); SERIAL_ECHOLNPAIR_P(port, " Size: ", datasize()); #endif } else if (working_crc != stored_crc) { eeprom_error = true; #if ENABLED(EEPROM_CHITCHAT) SERIAL_ERROR_START_P(port); SERIAL_ERRORPGM_P(port, "EEPROM CRC mismatch - (stored) "); SERIAL_ERROR_P(port, stored_crc); SERIAL_ERRORPGM_P(port, " != "); SERIAL_ERROR_P(port, working_crc); SERIAL_ERRORLNPGM_P(port, " (calculated)!"); #endif } else if (!validating) { #if ENABLED(EEPROM_CHITCHAT) SERIAL_ECHO_START_P(port); SERIAL_ECHO_P(port, version); SERIAL_ECHOPAIR_P(port, " stored settings retrieved (", eeprom_index - (EEPROM_OFFSET)); SERIAL_ECHOPAIR_P(port, " bytes; crc ", (uint32_t)working_crc); SERIAL_ECHOLNPGM_P(port, ")"); #endif } if (!validating && !eeprom_error) postprocess(); #if ENABLED(AUTO_BED_LEVELING_UBL) if (!validating) { ubl.report_state(); if (!ubl.sanity_check()) { SERIAL_EOL_P(port); #if ENABLED(EEPROM_CHITCHAT) ubl.echo_name(); SERIAL_ECHOLNPGM_P(port, " initialized.\n"); #endif } else { eeprom_error = true; #if ENABLED(EEPROM_CHITCHAT) SERIAL_PROTOCOLPGM_P(port, "?Can't enable "); ubl.echo_name(); SERIAL_PROTOCOLLNPGM_P(port, "."); #endif ubl.reset(); } if (ubl.storage_slot >= 0) { load_mesh(ubl.storage_slot); #if ENABLED(EEPROM_CHITCHAT) SERIAL_ECHOPAIR_P(port, "Mesh ", ubl.storage_slot); SERIAL_ECHOLNPGM_P(port, " loaded from storage."); #endif } else { ubl.reset(); #if ENABLED(EEPROM_CHITCHAT) SERIAL_ECHOLNPGM_P(port, "UBL System reset()"); #endif } } #endif } #if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503) if (!validating) report(PORTVAR_SOLO); #endif EEPROM_FINISH(); return !eeprom_error; } bool MarlinSettings::validate(PORTARG_SOLO) { validating = true; const bool success = _load(PORTVAR_SOLO); validating = false; return success; } bool MarlinSettings::load(PORTARG_SOLO) { if (validate(PORTVAR_SOLO)) return _load(PORTVAR_SOLO); reset(); return true; } #if ENABLED(AUTO_BED_LEVELING_UBL) #if ENABLED(EEPROM_CHITCHAT) void ubl_invalid_slot(const int s) { SERIAL_PROTOCOLLNPGM("?Invalid slot."); SERIAL_PROTOCOL(s); SERIAL_PROTOCOLLNPGM(" mesh slots available."); } #endif const uint16_t MarlinSettings::meshes_end = persistentStore.capacity() - 129; // 128 (+1 because of the change to capacity rather than last valid address) // is a placeholder for the size of the MAT; the MAT will always // live at the very end of the eeprom uint16_t MarlinSettings::meshes_start_index() { return (datasize() + EEPROM_OFFSET + 32) & 0xFFF8; // Pad the end of configuration data so it can float up // or down a little bit without disrupting the mesh data } uint16_t MarlinSettings::calc_num_meshes() { return (meshes_end - meshes_start_index()) / sizeof(ubl.z_values); } int MarlinSettings::mesh_slot_offset(const int8_t slot) { return meshes_end - (slot + 1) * sizeof(ubl.z_values); } void MarlinSettings::store_mesh(const int8_t slot) { #if ENABLED(AUTO_BED_LEVELING_UBL) const int16_t a = calc_num_meshes(); if (!WITHIN(slot, 0, a - 1)) { #if ENABLED(EEPROM_CHITCHAT) ubl_invalid_slot(a); SERIAL_PROTOCOLPAIR("E2END=", persistentStore.capacity() - 1); SERIAL_PROTOCOLPAIR(" meshes_end=", meshes_end); SERIAL_PROTOCOLLNPAIR(" slot=", slot); SERIAL_EOL(); #endif return; } int pos = mesh_slot_offset(slot); uint16_t crc = 0; persistentStore.access_start(); const bool status = persistentStore.write_data(pos, (uint8_t *)&ubl.z_values, sizeof(ubl.z_values), &crc); persistentStore.access_finish(); if (status) SERIAL_PROTOCOLPGM("?Unable to save mesh data.\n"); // Write crc to MAT along with other data, or just tack on to the beginning or end #if ENABLED(EEPROM_CHITCHAT) if (!status) SERIAL_PROTOCOLLNPAIR("Mesh saved in slot ", slot); #endif #else // Other mesh types #endif } void MarlinSettings::load_mesh(const int8_t slot, void * const into/*=NULL*/) { #if ENABLED(AUTO_BED_LEVELING_UBL) const int16_t a = settings.calc_num_meshes(); if (!WITHIN(slot, 0, a - 1)) { #if ENABLED(EEPROM_CHITCHAT) ubl_invalid_slot(a); #endif return; } int pos = mesh_slot_offset(slot); uint16_t crc = 0; uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values; persistentStore.access_start(); const uint16_t status = persistentStore.read_data(pos, dest, sizeof(ubl.z_values), &crc); persistentStore.access_finish(); if (status) SERIAL_PROTOCOLPGM("?Unable to load mesh data.\n"); #if ENABLED(EEPROM_CHITCHAT) else SERIAL_PROTOCOLLNPAIR("Mesh loaded from slot ", slot); #endif EEPROM_FINISH(); #else // Other mesh types #endif } //void MarlinSettings::delete_mesh() { return; } //void MarlinSettings::defrag_meshes() { return; } #endif // AUTO_BED_LEVELING_UBL #else // !EEPROM_SETTINGS bool MarlinSettings::save(PORTARG_SOLO) { #if ENABLED(EEPROM_CHITCHAT) SERIAL_ERROR_START_P(port); SERIAL_ERRORLNPGM_P(port, "EEPROM disabled"); #endif return false; } #endif // !EEPROM_SETTINGS /** * M502 - Reset Configuration */ void MarlinSettings::reset(PORTARG_SOLO) { static const float tmp1[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT, tmp2[] PROGMEM = DEFAULT_MAX_FEEDRATE; static const uint32_t tmp3[] PROGMEM = DEFAULT_MAX_ACCELERATION; LOOP_XYZE_N(i) { planner.axis_steps_per_mm[i] = pgm_read_float(&tmp1[i < COUNT(tmp1) ? i : COUNT(tmp1) - 1]); planner.max_feedrate_mm_s[i] = pgm_read_float(&tmp2[i < COUNT(tmp2) ? i : COUNT(tmp2) - 1]); planner.max_acceleration_mm_per_s2[i] = pgm_read_dword_near(&tmp3[i < COUNT(tmp3) ? i : COUNT(tmp3) - 1]); } planner.min_segment_time_us = DEFAULT_MINSEGMENTTIME; planner.acceleration = DEFAULT_ACCELERATION; planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION; planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION; planner.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE; planner.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE; #if ENABLED(JUNCTION_DEVIATION) planner.junction_deviation_mm = float(JUNCTION_DEVIATION_MM); #endif #if HAS_CLASSIC_JERK planner.max_jerk[X_AXIS] = DEFAULT_XJERK; planner.max_jerk[Y_AXIS] = DEFAULT_YJERK; planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK; #if DISABLED(JUNCTION_DEVIATION) || DISABLED(LIN_ADVANCE) planner.max_jerk[E_AXIS] = DEFAULT_EJERK; #endif #endif #if HAS_HOME_OFFSET ZERO(home_offset); #endif #if HAS_HOTEND_OFFSET constexpr float tmp4[XYZ][HOTENDS] = { HOTEND_OFFSET_X, HOTEND_OFFSET_Y, HOTEND_OFFSET_Z }; static_assert( tmp4[X_AXIS][0] == 0 && tmp4[Y_AXIS][0] == 0 && tmp4[Z_AXIS][0] == 0, "Offsets for the first hotend must be 0.0." ); LOOP_XYZ(i) HOTEND_LOOP() hotend_offset[i][e] = tmp4[i][e]; #if ENABLED(DUAL_X_CARRIAGE) hotend_offset[X_AXIS][1] = MAX(X2_HOME_POS, X2_MAX_POS); #endif #endif #if ENABLED(SINGLENOZZLE) singlenozzle_swap_length = SINGLENOZZLE_SWAP_LENGTH; singlenozzle_prime_speed = SINGLENOZZLE_SWAP_PRIME_SPEED; singlenozzle_retract_speed = SINGLENOZZLE_SWAP_RETRACT_SPEED; #endif // // Global Leveling // #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) new_z_fade_height = 0.0; #endif #if HAS_LEVELING reset_bed_level(); #endif #if HAS_BED_PROBE zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER; #endif // // Servo Angles // #if HAS_SERVOS && ENABLED(EDITABLE_SERVO_ANGLES) #if ENABLED(SWITCHING_EXTRUDER) #if EXTRUDERS > 3 #define REQ_ANGLES 4 #else #define REQ_ANGLES 2 #endif constexpr uint16_t extruder_angles[] = SWITCHING_EXTRUDER_SERVO_ANGLES; static_assert(COUNT(extruder_angles) == REQ_ANGLES, "SWITCHING_EXTRUDER_SERVO_ANGLES needs " STRINGIFY(REQ_ANGLES) " angles."); servo_angles[SWITCHING_EXTRUDER_SERVO_NR][0] = extruder_angles[0]; servo_angles[SWITCHING_EXTRUDER_SERVO_NR][1] = extruder_angles[1]; #if EXTRUDERS > 3 servo_angles[SWITCHING_EXTRUDER_E23_SERVO_NR][0] = extruder_angles[2]; servo_angles[SWITCHING_EXTRUDER_E23_SERVO_NR][1] = extruder_angles[3]; #endif #elif ENABLED(SWITCHING_NOZZLE) constexpr uint16_t nozzle_angles[2] = SWITCHING_NOZZLE_SERVO_ANGLES; servo_angles[SWITCHING_NOZZLE_SERVO_NR][0] = nozzle_angles[0]; servo_angles[SWITCHING_NOZZLE_SERVO_NR][1] = nozzle_angles[1]; #elif defined(Z_SERVO_ANGLES) && defined(Z_PROBE_SERVO_NR) constexpr uint16_t z_probe_angles[2] = Z_SERVO_ANGLES; servo_angles[Z_PROBE_SERVO_NR][0] = z_probe_angles[0]; servo_angles[Z_PROBE_SERVO_NR][1] = z_probe_angles[1]; #endif #endif // HAS_SERVOS && EDITABLE_SERVO_ANGLES #if ENABLED(DELTA) const float adj[ABC] = DELTA_ENDSTOP_ADJ, dta[ABC] = DELTA_TOWER_ANGLE_TRIM; delta_height = DELTA_HEIGHT; COPY(delta_endstop_adj, adj); delta_radius = DELTA_RADIUS; delta_diagonal_rod = DELTA_DIAGONAL_ROD; delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND; delta_calibration_radius = DELTA_CALIBRATION_RADIUS; COPY(delta_tower_angle_trim, dta); #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS #if ENABLED(X_DUAL_ENDSTOPS) endstops.x2_endstop_adj = ( #ifdef X_DUAL_ENDSTOPS_ADJUSTMENT X_DUAL_ENDSTOPS_ADJUSTMENT #else 0 #endif ); #endif #if ENABLED(Y_DUAL_ENDSTOPS) endstops.y2_endstop_adj = ( #ifdef Y_DUAL_ENDSTOPS_ADJUSTMENT Y_DUAL_ENDSTOPS_ADJUSTMENT #else 0 #endif ); #endif #if ENABLED(Z_DUAL_ENDSTOPS) endstops.z2_endstop_adj = ( #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT Z_DUAL_ENDSTOPS_ADJUSTMENT #else 0 #endif ); #elif ENABLED(Z_TRIPLE_ENDSTOPS) endstops.z2_endstop_adj = ( #ifdef Z_TRIPLE_ENDSTOPS_ADJUSTMENT2 Z_TRIPLE_ENDSTOPS_ADJUSTMENT2 #else 0 #endif ); endstops.z3_endstop_adj = ( #ifdef Z_TRIPLE_ENDSTOPS_ADJUSTMENT3 Z_TRIPLE_ENDSTOPS_ADJUSTMENT3 #else 0 #endif ); #endif #endif #if ENABLED(ULTIPANEL) lcd_preheat_hotend_temp[0] = PREHEAT_1_TEMP_HOTEND; lcd_preheat_hotend_temp[1] = PREHEAT_2_TEMP_HOTEND; lcd_preheat_bed_temp[0] = PREHEAT_1_TEMP_BED; lcd_preheat_bed_temp[1] = PREHEAT_2_TEMP_BED; lcd_preheat_fan_speed[0] = PREHEAT_1_FAN_SPEED; lcd_preheat_fan_speed[1] = PREHEAT_2_FAN_SPEED; #endif #if ENABLED(PIDTEMP) #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1 HOTEND_LOOP() #endif { PID_PARAM(Kp, e) = float(DEFAULT_Kp); PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki); PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd); #if ENABLED(PID_EXTRUSION_SCALING) PID_PARAM(Kc, e) = DEFAULT_Kc; #endif } #if ENABLED(PID_EXTRUSION_SCALING) thermalManager.lpq_len = 20; // default last-position-queue size #endif #endif // PIDTEMP #if ENABLED(PIDTEMPBED) thermalManager.bedKp = DEFAULT_bedKp; thermalManager.bedKi = scalePID_i(DEFAULT_bedKi); thermalManager.bedKd = scalePID_d(DEFAULT_bedKd); #endif #if HAS_LCD_CONTRAST lcd_contrast = DEFAULT_LCD_CONTRAST; #endif #if ENABLED(FWRETRACT) fwretract.reset(); #endif #if DISABLED(NO_VOLUMETRICS) parser.volumetric_enabled = #if ENABLED(VOLUMETRIC_DEFAULT_ON) true #else false #endif ; for (uint8_t q = 0; q < COUNT(planner.filament_size); q++) planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA; #endif endstops.enable_globally( #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT) true #else false #endif ); reset_stepper_drivers(); #if ENABLED(LIN_ADVANCE) LOOP_L_N(i, EXTRUDERS) planner.extruder_advance_K[i] = LIN_ADVANCE_K; #endif #if HAS_MOTOR_CURRENT_PWM uint32_t tmp_motor_current_setting[XYZ] = PWM_MOTOR_CURRENT; for (uint8_t q = XYZ; q--;) stepper.digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q])); #endif #if ENABLED(SKEW_CORRECTION_GCODE) planner.xy_skew_factor = XY_SKEW_FACTOR; #if ENABLED(SKEW_CORRECTION_FOR_Z) planner.xz_skew_factor = XZ_SKEW_FACTOR; planner.yz_skew_factor = YZ_SKEW_FACTOR; #endif #endif #if ENABLED(ADVANCED_PAUSE_FEATURE) for (uint8_t e = 0; e < EXTRUDERS; e++) { filament_change_unload_length[e] = FILAMENT_CHANGE_UNLOAD_LENGTH; filament_change_load_length[e] = FILAMENT_CHANGE_FAST_LOAD_LENGTH; } #endif postprocess(); #if ENABLED(EEPROM_CHITCHAT) SERIAL_ECHO_START_P(port); SERIAL_ECHOLNPGM_P(port, "Hardcoded Default Settings Loaded"); #endif } #if DISABLED(DISABLE_M503) #define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START_P(port); }while(0) #if HAS_TRINAMIC void say_M906(PORTARG_SOLO) { SERIAL_ECHOPGM_P(port, " M906"); } #if ENABLED(HYBRID_THRESHOLD) void say_M913(PORTARG_SOLO) { SERIAL_ECHOPGM_P(port, " M913"); } #endif #if USE_SENSORLESS void say_M914(PORTARG_SOLO) { SERIAL_ECHOPGM_P(port, " M914"); } #endif #endif #if ENABLED(ADVANCED_PAUSE_FEATURE) void say_M603(PORTARG_SOLO) { SERIAL_ECHOPGM_P(port, " M603 "); } #endif inline void say_units( #if NUM_SERIAL > 1 const int8_t port, #endif const bool colon ) { serialprintPGM_P(port, #if ENABLED(INCH_MODE_SUPPORT) parser.linear_unit_factor != 1.0 ? PSTR(" (in)") : #endif PSTR(" (mm)") ); if (colon) SERIAL_ECHOLNPGM_P(port, ":"); } #if NUM_SERIAL > 1 #define SAY_UNITS_P(PORT, COLON) say_units(PORT, COLON) #else #define SAY_UNITS_P(PORT, COLON) say_units(COLON) #endif /** * M503 - Report current settings in RAM * * Unless specifically disabled, M503 is available even without EEPROM */ void MarlinSettings::report(const bool forReplay #if NUM_SERIAL > 1 , const int8_t port/*=-1*/ #endif ) { /** * Announce current units, in case inches are being displayed */ CONFIG_ECHO_START; #if ENABLED(INCH_MODE_SUPPORT) #define LINEAR_UNIT(N) (float(N) / parser.linear_unit_factor) #define VOLUMETRIC_UNIT(N) (float(N) / (parser.volumetric_enabled ? parser.volumetric_unit_factor : parser.linear_unit_factor)) SERIAL_ECHOPGM_P(port, " G2"); SERIAL_CHAR_P(port, parser.linear_unit_factor == 1.0 ? '1' : '0'); SERIAL_ECHOPGM_P(port, " ;"); SAY_UNITS_P(port, false); #else #define LINEAR_UNIT(N) (N) #define VOLUMETRIC_UNIT(N) (N) SERIAL_ECHOPGM_P(port, " G21 ; Units in mm"); SAY_UNITS_P(port, false); #endif SERIAL_EOL_P(port); #if ENABLED(ULTIPANEL) // Temperature units - for Ultipanel temperature options CONFIG_ECHO_START; #if ENABLED(TEMPERATURE_UNITS_SUPPORT) #define TEMP_UNIT(N) parser.to_temp_units(N) SERIAL_ECHOPGM_P(port, " M149 "); SERIAL_CHAR_P(port, parser.temp_units_code()); SERIAL_ECHOPGM_P(port, " ; Units in "); serialprintPGM_P(port, parser.temp_units_name()); #else #define TEMP_UNIT(N) (N) SERIAL_ECHOLNPGM_P(port, " M149 C ; Units in Celsius"); #endif #endif SERIAL_EOL_P(port); #if DISABLED(NO_VOLUMETRICS) /** * Volumetric extrusion M200 */ if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOPGM_P(port, "Filament settings:"); if (parser.volumetric_enabled) SERIAL_EOL_P(port); else SERIAL_ECHOLNPGM_P(port, " Disabled"); } CONFIG_ECHO_START; SERIAL_ECHOPAIR_P(port, " M200 D", LINEAR_UNIT(planner.filament_size[0])); SERIAL_EOL_P(port); #if EXTRUDERS > 1 CONFIG_ECHO_START; SERIAL_ECHOPAIR_P(port, " M200 T1 D", LINEAR_UNIT(planner.filament_size[1])); SERIAL_EOL_P(port); #if EXTRUDERS > 2 CONFIG_ECHO_START; SERIAL_ECHOPAIR_P(port, " M200 T2 D", LINEAR_UNIT(planner.filament_size[2])); SERIAL_EOL_P(port); #if EXTRUDERS > 3 CONFIG_ECHO_START; SERIAL_ECHOPAIR_P(port, " M200 T3 D", LINEAR_UNIT(planner.filament_size[3])); SERIAL_EOL_P(port); #if EXTRUDERS > 4 CONFIG_ECHO_START; SERIAL_ECHOPAIR_P(port, " M200 T4 D", LINEAR_UNIT(planner.filament_size[4])); SERIAL_EOL_P(port); #if EXTRUDERS > 5 CONFIG_ECHO_START; SERIAL_ECHOPAIR_P(port, " M200 T5 D", LINEAR_UNIT(planner.filament_size[5])); SERIAL_EOL_P(port); #endif // EXTRUDERS > 5 #endif // EXTRUDERS > 4 #endif // EXTRUDERS > 3 #endif // EXTRUDERS > 2 #endif // EXTRUDERS > 1 if (!parser.volumetric_enabled) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM_P(port, " M200 D0"); } #endif // !NO_VOLUMETRICS if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM_P(port, "Steps per unit:"); } CONFIG_ECHO_START; SERIAL_ECHOPAIR_P(port, " M92 X", LINEAR_UNIT(planner.axis_steps_per_mm[X_AXIS])); SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(planner.axis_steps_per_mm[Y_AXIS])); SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.axis_steps_per_mm[Z_AXIS])); #if DISABLED(DISTINCT_E_FACTORS) SERIAL_ECHOPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.axis_steps_per_mm[E_AXIS])); #endif SERIAL_EOL_P(port); #if ENABLED(DISTINCT_E_FACTORS) CONFIG_ECHO_START; for (uint8_t i = 0; i < E_STEPPERS; i++) { SERIAL_ECHOPAIR_P(port, " M92 T", (int)i); SERIAL_ECHOLNPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.axis_steps_per_mm[E_AXIS + i])); } #endif if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM_P(port, "Maximum feedrates (units/s):"); } CONFIG_ECHO_START; SERIAL_ECHOPAIR_P(port, " M203 X", LINEAR_UNIT(planner.max_feedrate_mm_s[X_AXIS])); SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(planner.max_feedrate_mm_s[Y_AXIS])); SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.max_feedrate_mm_s[Z_AXIS])); #if DISABLED(DISTINCT_E_FACTORS) SERIAL_ECHOPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.max_feedrate_mm_s[E_AXIS])); #endif SERIAL_EOL_P(port); #if ENABLED(DISTINCT_E_FACTORS) CONFIG_ECHO_START; for (uint8_t i = 0; i < E_STEPPERS; i++) { SERIAL_ECHOPAIR_P(port, " M203 T", (int)i); SERIAL_ECHOLNPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.max_feedrate_mm_s[E_AXIS + i])); } #endif if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM_P(port, "Maximum Acceleration (units/s2):"); } CONFIG_ECHO_START; SERIAL_ECHOPAIR_P(port, " M201 X", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[X_AXIS])); SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[Y_AXIS])); SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[Z_AXIS])); #if DISABLED(DISTINCT_E_FACTORS) SERIAL_ECHOPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.max_acceleration_mm_per_s2[E_AXIS])); #endif SERIAL_EOL_P(port); #if ENABLED(DISTINCT_E_FACTORS) CONFIG_ECHO_START; for (uint8_t i = 0; i < E_STEPPERS; i++) { SERIAL_ECHOPAIR_P(port, " M201 T", (int)i); SERIAL_ECHOLNPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.max_acceleration_mm_per_s2[E_AXIS + i])); } #endif if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM_P(port, "Acceleration (units/s2): P R T"); } CONFIG_ECHO_START; SERIAL_ECHOPAIR_P(port, " M204 P", LINEAR_UNIT(planner.acceleration)); SERIAL_ECHOPAIR_P(port, " R", LINEAR_UNIT(planner.retract_acceleration)); SERIAL_ECHOLNPAIR_P(port, " T", LINEAR_UNIT(planner.travel_acceleration)); if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOPGM_P(port, "Advanced: B S T"); #if ENABLED(JUNCTION_DEVIATION) SERIAL_ECHOPGM_P(port, " J"); #endif #if HAS_CLASSIC_JERK SERIAL_ECHOPGM_P(port, " X Y Z"); #if DISABLED(JUNCTION_DEVIATION) || DISABLED(LIN_ADVANCE) SERIAL_ECHOPGM_P(port, " E"); #endif #endif SERIAL_EOL_P(port); } CONFIG_ECHO_START; SERIAL_ECHOPAIR_P(port, " M205 B", LINEAR_UNIT(planner.min_segment_time_us)); SERIAL_ECHOPAIR_P(port, " S", LINEAR_UNIT(planner.min_feedrate_mm_s)); SERIAL_ECHOPAIR_P(port, " T", LINEAR_UNIT(planner.min_travel_feedrate_mm_s)); #if ENABLED(JUNCTION_DEVIATION) SERIAL_ECHOPAIR_P(port, " J", LINEAR_UNIT(planner.junction_deviation_mm)); #endif #if HAS_CLASSIC_JERK SERIAL_ECHOPAIR_P(port, " X", LINEAR_UNIT(planner.max_jerk[X_AXIS])); SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(planner.max_jerk[Y_AXIS])); SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.max_jerk[Z_AXIS])); #if DISABLED(JUNCTION_DEVIATION) || DISABLED(LIN_ADVANCE) SERIAL_ECHOPAIR_P(port, " E", LINEAR_UNIT(planner.max_jerk[E_AXIS])); #endif #endif SERIAL_EOL_P(port); #if HAS_M206_COMMAND if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM_P(port, "Home offset:"); } CONFIG_ECHO_START; SERIAL_ECHOPAIR_P(port, " M206 X", LINEAR_UNIT(home_offset[X_AXIS])); SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(home_offset[Y_AXIS])); SERIAL_ECHOLNPAIR_P(port, " Z", LINEAR_UNIT(home_offset[Z_AXIS])); #endif #if HAS_HOTEND_OFFSET if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM_P(port, "Hotend offsets:"); } CONFIG_ECHO_START; for (uint8_t e = 1; e < HOTENDS; e++) { SERIAL_ECHOPAIR_P(port, " M218 T", (int)e); SERIAL_ECHOPAIR_P(port, " X", LINEAR_UNIT(hotend_offset[X_AXIS][e])); SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(hotend_offset[Y_AXIS][e])); SERIAL_ECHO_P(port, " Z"); SERIAL_ECHO_F_P(port, LINEAR_UNIT(hotend_offset[Z_AXIS][e]), 3); SERIAL_EOL_P(port); } #endif /** * Bed Leveling */ #if HAS_LEVELING #if ENABLED(MESH_BED_LEVELING) if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM_P(port, "Mesh Bed Leveling:"); } #elif ENABLED(AUTO_BED_LEVELING_UBL) if (!forReplay) { CONFIG_ECHO_START; ubl.echo_name(); SERIAL_ECHOLNPGM_P(port, ":"); } #elif HAS_ABL if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM_P(port, "Auto Bed Leveling:"); } #endif CONFIG_ECHO_START; SERIAL_ECHOPAIR_P(port, " M420 S", planner.leveling_active ? 1 : 0); #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.z_fade_height)); #endif SERIAL_EOL_P(port); #if ENABLED(MESH_BED_LEVELING) if (leveling_is_valid()) { for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) { for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) { CONFIG_ECHO_START; SERIAL_ECHOPAIR_P(port, " G29 S3 X", (int)px + 1); SERIAL_ECHOPAIR_P(port, " Y", (int)py + 1); SERIAL_ECHOPGM_P(port, " Z"); SERIAL_ECHO_F_P(port, LINEAR_UNIT(mbl.z_values[px][py]), 5); SERIAL_EOL_P(port); } } } #elif ENABLED(AUTO_BED_LEVELING_UBL) if (!forReplay) { SERIAL_EOL_P(port); ubl.report_state(); SERIAL_ECHOLNPAIR_P(port, "\nActive Mesh Slot: ", ubl.storage_slot); SERIAL_ECHOPAIR_P(port, "EEPROM can hold ", calc_num_meshes()); SERIAL_ECHOLNPGM_P(port, " meshes.\n"); } // ubl.report_current_mesh(PORTVAR_SOLO); // This is too verbose for large mesh's. A better (more terse) // solution needs to be found. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) if (leveling_is_valid()) { for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) { for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) { CONFIG_ECHO_START; SERIAL_ECHOPAIR_P(port, " G29 W I", (int)px); SERIAL_ECHOPAIR_P(port, " J", (int)py); SERIAL_ECHOPGM_P(port, " Z"); SERIAL_ECHO_F_P(port, LINEAR_UNIT(z_values[px][py]), 5); SERIAL_EOL_P(port); } } } #endif #endif // HAS_LEVELING #if HAS_SERVOS && ENABLED(EDITABLE_SERVO_ANGLES) if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM_P(port, "Servo Angles:"); } for (uint8_t i = 0; i < NUM_SERVOS; i++) { switch (i) { #if ENABLED(SWITCHING_EXTRUDER) case SWITCHING_EXTRUDER_SERVO_NR: #if EXTRUDERS > 3 case SWITCHING_EXTRUDER_E23_SERVO_NR: #endif #elif ENABLED(SWITCHING_NOZZLE) case SWITCHING_NOZZLE_SERVO_NR: #elif defined(Z_SERVO_ANGLES) && defined(Z_PROBE_SERVO_NR) case Z_PROBE_SERVO_NR: #endif CONFIG_ECHO_START; SERIAL_ECHOPAIR_P(port, " M281 P", int(i)); SERIAL_ECHOPAIR_P(port, " L", servo_angles[i][0]); SERIAL_ECHOPAIR_P(port, " U", servo_angles[i][1]); SERIAL_EOL_P(port); default: break; } } #endif // HAS_SERVOS && EDITABLE_SERVO_ANGLES #if ENABLED(DELTA) if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM_P(port, "Endstop adjustment:"); } CONFIG_ECHO_START; SERIAL_ECHOPAIR_P(port, " M666 X", LINEAR_UNIT(delta_endstop_adj[X_AXIS])); SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(delta_endstop_adj[Y_AXIS])); SERIAL_ECHOLNPAIR_P(port, " Z", LINEAR_UNIT(delta_endstop_adj[Z_AXIS])); if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM_P(port, "Delta settings: L R H S B XYZ"); } CONFIG_ECHO_START; SERIAL_ECHOPAIR_P(port, " M665 L", LINEAR_UNIT(delta_diagonal_rod)); SERIAL_ECHOPAIR_P(port, " R", LINEAR_UNIT(delta_radius)); SERIAL_ECHOPAIR_P(port, " H", LINEAR_UNIT(delta_height)); SERIAL_ECHOPAIR_P(port, " S", delta_segments_per_second); SERIAL_ECHOPAIR_P(port, " B", LINEAR_UNIT(delta_calibration_radius)); SERIAL_ECHOPAIR_P(port, " X", LINEAR_UNIT(delta_tower_angle_trim[A_AXIS])); SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(delta_tower_angle_trim[B_AXIS])); SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(delta_tower_angle_trim[C_AXIS])); SERIAL_EOL_P(port); #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS) if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM_P(port, "Endstop adjustment:"); } CONFIG_ECHO_START; SERIAL_ECHOPGM_P(port, " M666"); #if ENABLED(X_DUAL_ENDSTOPS) SERIAL_ECHOPAIR_P(port, " X", LINEAR_UNIT(endstops.x2_endstop_adj)); #endif #if ENABLED(Y_DUAL_ENDSTOPS) SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(endstops.y2_endstop_adj)); #endif #if ENABLED(Z_TRIPLE_ENDSTOPS) SERIAL_ECHOLNPAIR_P(port, "S1 Z", LINEAR_UNIT(endstops.z2_endstop_adj)); CONFIG_ECHO_START; SERIAL_ECHOPAIR_P(port, " M666 S2 Z", LINEAR_UNIT(endstops.z3_endstop_adj)); #elif ENABLED(Z_DUAL_ENDSTOPS) SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(endstops.z2_endstop_adj)); #endif SERIAL_EOL_P(port); #endif // [XYZ]_DUAL_ENDSTOPS #if ENABLED(ULTIPANEL) if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM_P(port, "Material heatup parameters:"); } for (uint8_t i = 0; i < COUNT(lcd_preheat_hotend_temp); i++) { CONFIG_ECHO_START; SERIAL_ECHOPAIR_P(port, " M145 S", (int)i); SERIAL_ECHOPAIR_P(port, " H", TEMP_UNIT(lcd_preheat_hotend_temp[i])); SERIAL_ECHOPAIR_P(port, " B", TEMP_UNIT(lcd_preheat_bed_temp[i])); SERIAL_ECHOLNPAIR_P(port, " F", int(lcd_preheat_fan_speed[i])); } #endif // ULTIPANEL #if HAS_PID_HEATING if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM_P(port, "PID settings:"); } #if ENABLED(PIDTEMP) #if HOTENDS > 1 if (forReplay) { HOTEND_LOOP() { CONFIG_ECHO_START; SERIAL_ECHOPAIR_P(port, " M301 E", e); SERIAL_ECHOPAIR_P(port, " P", PID_PARAM(Kp, e)); SERIAL_ECHOPAIR_P(port, " I", unscalePID_i(PID_PARAM(Ki, e))); SERIAL_ECHOPAIR_P(port, " D", unscalePID_d(PID_PARAM(Kd, e))); #if ENABLED(PID_EXTRUSION_SCALING) SERIAL_ECHOPAIR_P(port, " C", PID_PARAM(Kc, e)); if (e == 0) SERIAL_ECHOPAIR_P(port, " L", thermalManager.lpq_len); #endif SERIAL_EOL_P(port); } } else #endif // HOTENDS > 1 // !forReplay || HOTENDS == 1 { CONFIG_ECHO_START; SERIAL_ECHOPAIR_P(port, " M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0 SERIAL_ECHOPAIR_P(port, " I", unscalePID_i(PID_PARAM(Ki, 0))); SERIAL_ECHOPAIR_P(port, " D", unscalePID_d(PID_PARAM(Kd, 0))); #if ENABLED(PID_EXTRUSION_SCALING) SERIAL_ECHOPAIR_P(port, " C", PID_PARAM(Kc, 0)); SERIAL_ECHOPAIR_P(port, " L", thermalManager.lpq_len); #endif SERIAL_EOL_P(port); } #endif // PIDTEMP #if ENABLED(PIDTEMPBED) CONFIG_ECHO_START; SERIAL_ECHOPAIR_P(port, " M304 P", thermalManager.bedKp); SERIAL_ECHOPAIR_P(port, " I", unscalePID_i(thermalManager.bedKi)); SERIAL_ECHOPAIR_P(port, " D", unscalePID_d(thermalManager.bedKd)); SERIAL_EOL_P(port); #endif #endif // PIDTEMP || PIDTEMPBED #if HAS_LCD_CONTRAST if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM_P(port, "LCD Contrast:"); } CONFIG_ECHO_START; SERIAL_ECHOLNPAIR_P(port, " M250 C", lcd_contrast); #endif #if ENABLED(FWRETRACT) if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM_P(port, "Retract: S F Z"); } CONFIG_ECHO_START; SERIAL_ECHOPAIR_P(port, " M207 S", LINEAR_UNIT(fwretract.retract_length)); SERIAL_ECHOPAIR_P(port, " W", LINEAR_UNIT(fwretract.swap_retract_length)); SERIAL_ECHOPAIR_P(port, " F", MMS_TO_MMM(LINEAR_UNIT(fwretract.retract_feedrate_mm_s))); SERIAL_ECHOLNPAIR_P(port, " Z", LINEAR_UNIT(fwretract.retract_zlift)); if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM_P(port, "Recover: S F"); } CONFIG_ECHO_START; SERIAL_ECHOPAIR_P(port, " M208 S", LINEAR_UNIT(fwretract.retract_recover_length)); SERIAL_ECHOPAIR_P(port, " W", LINEAR_UNIT(fwretract.swap_retract_recover_length)); SERIAL_ECHOLNPAIR_P(port, " F", MMS_TO_MMM(LINEAR_UNIT(fwretract.retract_recover_feedrate_mm_s))); #if ENABLED(FWRETRACT_AUTORETRACT) if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM_P(port, "Auto-Retract: S=0 to disable, 1 to interpret E-only moves as retract/recover"); } CONFIG_ECHO_START; SERIAL_ECHOLNPAIR_P(port, " M209 S", fwretract.autoretract_enabled ? 1 : 0); #endif // FWRETRACT_AUTORETRACT #endif // FWRETRACT /** * Probe Offset */ #if HAS_BED_PROBE if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOPGM_P(port, "Z-Probe Offset (mm):"); SAY_UNITS_P(port, true); } CONFIG_ECHO_START; SERIAL_ECHOLNPAIR_P(port, " M851 Z", LINEAR_UNIT(zprobe_zoffset)); #endif /** * Bed Skew Correction */ #if ENABLED(SKEW_CORRECTION_GCODE) if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM_P(port, "Skew Factor: "); } CONFIG_ECHO_START; #if ENABLED(SKEW_CORRECTION_FOR_Z) SERIAL_ECHOPGM_P(port, " M852 I"); SERIAL_ECHO_F_P(port, LINEAR_UNIT(planner.xy_skew_factor), 6); SERIAL_ECHOPGM_P(port, " J"); SERIAL_ECHO_F_P(port, LINEAR_UNIT(planner.xz_skew_factor), 6); SERIAL_ECHOPGM_P(port, " K"); SERIAL_ECHO_F_P(port, LINEAR_UNIT(planner.yz_skew_factor), 6); SERIAL_EOL_P(port); #else SERIAL_ECHOPGM_P(port, " M852 S"); SERIAL_ECHO_F_P(port, LINEAR_UNIT(planner.xy_skew_factor), 6); SERIAL_EOL_P(port); #endif #endif #if HAS_TRINAMIC /** * TMC stepper driver current */ if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM_P(port, "Stepper driver current:"); } CONFIG_ECHO_START; #if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z) say_M906(PORTVAR_SOLO); #endif #if AXIS_IS_TMC(X) SERIAL_ECHOPAIR_P(port, " X", stepperX.getMilliamps()); #endif #if AXIS_IS_TMC(Y) SERIAL_ECHOPAIR_P(port, " Y", stepperY.getMilliamps()); #endif #if AXIS_IS_TMC(Z) SERIAL_ECHOPAIR_P(port, " Z", stepperZ.getMilliamps()); #endif #if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z) SERIAL_EOL_P(port); #endif #if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2) say_M906(PORTVAR_SOLO); SERIAL_ECHOPGM_P(port, " I1"); #endif #if AXIS_IS_TMC(X2) SERIAL_ECHOPAIR_P(port, " X", stepperX2.getMilliamps()); #endif #if AXIS_IS_TMC(Y2) SERIAL_ECHOPAIR_P(port, " Y", stepperY2.getMilliamps()); #endif #if AXIS_IS_TMC(Z2) SERIAL_ECHOPAIR_P(port, " Z", stepperZ2.getMilliamps()); #endif #if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2) SERIAL_EOL_P(port); #endif #if AXIS_IS_TMC(Z3) say_M906(PORTVAR_SOLO); SERIAL_ECHOLNPAIR_P(port, " I2 Z", stepperZ3.getMilliamps()); #endif #if AXIS_IS_TMC(E0) say_M906(PORTVAR_SOLO); SERIAL_ECHOLNPAIR_P(port, " T0 E", stepperE0.getMilliamps()); #endif #if AXIS_IS_TMC(E1) say_M906(PORTVAR_SOLO); SERIAL_ECHOLNPAIR_P(port, " T1 E", stepperE1.getMilliamps()); #endif #if AXIS_IS_TMC(E2) say_M906(PORTVAR_SOLO); SERIAL_ECHOLNPAIR_P(port, " T2 E", stepperE2.getMilliamps()); #endif #if AXIS_IS_TMC(E3) say_M906(PORTVAR_SOLO); SERIAL_ECHOLNPAIR_P(port, " T3 E", stepperE3.getMilliamps()); #endif #if AXIS_IS_TMC(E4) say_M906(PORTVAR_SOLO); SERIAL_ECHOLNPAIR_P(port, " T4 E", stepperE4.getMilliamps()); #endif #if AXIS_IS_TMC(E5) say_M906(PORTVAR_SOLO); SERIAL_ECHOLNPAIR_P(port, " T5 E", stepperE5.getMilliamps()); #endif SERIAL_EOL_P(port); /** * TMC Hybrid Threshold */ #if ENABLED(HYBRID_THRESHOLD) if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM_P(port, "Hybrid Threshold:"); } CONFIG_ECHO_START; #if AXIS_HAS_STEALTHCHOP(X) || AXIS_HAS_STEALTHCHOP(Y) || AXIS_HAS_STEALTHCHOP(Z) say_M913(PORTVAR_SOLO); #endif #if AXIS_HAS_STEALTHCHOP(X) SERIAL_ECHOPAIR_P(port, " X", TMC_GET_PWMTHRS(X, X)); #endif #if AXIS_HAS_STEALTHCHOP(Y) SERIAL_ECHOPAIR_P(port, " Y", TMC_GET_PWMTHRS(Y, Y)); #endif #if AXIS_HAS_STEALTHCHOP(Z) SERIAL_ECHOPAIR_P(port, " Z", TMC_GET_PWMTHRS(Z, Z)); #endif #if AXIS_HAS_STEALTHCHOP(X) || AXIS_HAS_STEALTHCHOP(Y) || AXIS_HAS_STEALTHCHOP(Z) SERIAL_EOL_P(port); #endif #if AXIS_HAS_STEALTHCHOP(X2) || AXIS_HAS_STEALTHCHOP(Y2) || AXIS_HAS_STEALTHCHOP(Z2) say_M913(PORTVAR_SOLO); SERIAL_ECHOPGM_P(port, " I1"); #endif #if AXIS_HAS_STEALTHCHOP(X2) SERIAL_ECHOPAIR_P(port, " X", TMC_GET_PWMTHRS(X, X2)); #endif #if AXIS_HAS_STEALTHCHOP(Y2) SERIAL_ECHOPAIR_P(port, " Y", TMC_GET_PWMTHRS(Y, Y2)); #endif #if AXIS_HAS_STEALTHCHOP(Z2) SERIAL_ECHOPAIR_P(port, " Z", TMC_GET_PWMTHRS(Z, Z2)); #endif #if AXIS_HAS_STEALTHCHOP(X2) || AXIS_HAS_STEALTHCHOP(Y2) || AXIS_HAS_STEALTHCHOP(Z2) SERIAL_EOL_P(port); #endif #if AXIS_HAS_STEALTHCHOP(Z3) say_M913(PORTVAR_SOLO); SERIAL_ECHOPGM_P(port, " I2"); SERIAL_ECHOLNPAIR_P(port, " Z", TMC_GET_PWMTHRS(Z, Z3)); #endif #if AXIS_HAS_STEALTHCHOP(E0) say_M913(PORTVAR_SOLO); SERIAL_ECHOLNPAIR_P(port, " T0 E", TMC_GET_PWMTHRS(E, E0)); #endif #if AXIS_HAS_STEALTHCHOP(E1) say_M913(PORTVAR_SOLO); SERIAL_ECHOLNPAIR_P(port, " T1 E", TMC_GET_PWMTHRS(E, E1)); #endif #if AXIS_HAS_STEALTHCHOP(E2) say_M913(PORTVAR_SOLO); SERIAL_ECHOLNPAIR_P(port, " T2 E", TMC_GET_PWMTHRS(E, E2)); #endif #if AXIS_HAS_STEALTHCHOP(E3) say_M913(PORTVAR_SOLO); SERIAL_ECHOLNPAIR_P(port, " T3 E", TMC_GET_PWMTHRS(E, E3)); #endif #if AXIS_HAS_STEALTHCHOP(E4) say_M913(PORTVAR_SOLO); SERIAL_ECHOLNPAIR_P(port, " T4 E", TMC_GET_PWMTHRS(E, E4)); #endif #if AXIS_HAS_STEALTHCHOP(E5) say_M913(PORTVAR_SOLO); SERIAL_ECHOLNPAIR_P(port, " T5 E", TMC_GET_PWMTHRS(E, E5)); #endif SERIAL_EOL_P(port); #endif // HYBRID_THRESHOLD /** * TMC Sensorless homing thresholds */ #if USE_SENSORLESS if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM_P(port, "TMC2130 StallGuard threshold:"); } CONFIG_ECHO_START; #if X_SENSORLESS || Y_SENSORLESS || Z_SENSORLESS say_M914(PORTVAR_SOLO); #if X_SENSORLESS SERIAL_ECHOPAIR_P(port, " X", stepperX.sgt()); #endif #if Y_SENSORLESS SERIAL_ECHOPAIR_P(port, " Y", stepperY.sgt()); #endif #if Z_SENSORLESS SERIAL_ECHOPAIR_P(port, " Z", stepperZ.sgt()); #endif SERIAL_EOL_P(port); #endif #define HAS_X2_SENSORLESS (defined(X_STALL_SENSITIVITY) && AXIS_HAS_STALLGUARD(X2)) #define HAS_Y2_SENSORLESS (defined(Y_STALL_SENSITIVITY) && AXIS_HAS_STALLGUARD(Y2)) #define HAS_Z2_SENSORLESS (defined(Z_STALL_SENSITIVITY) && AXIS_HAS_STALLGUARD(Z2)) #define HAS_Z3_SENSORLESS (defined(Z_STALL_SENSITIVITY) && AXIS_HAS_STALLGUARD(Z3)) #if HAS_X2_SENSORLESS || HAS_Y2_SENSORLESS || HAS_Z2_SENSORLESS say_M914(PORTVAR_SOLO); SERIAL_ECHOPGM_P(port, " I1"); #if HAS_X2_SENSORLESS SERIAL_ECHOPAIR_P(port, " X", stepperX2.sgt()); #endif #if HAS_Y2_SENSORLESS SERIAL_ECHOPAIR_P(port, " Y", stepperY2.sgt()); #endif #if HAS_Z2_SENSORLESS SERIAL_ECHOPAIR_P(port, " Z", stepperZ2.sgt()); #endif SERIAL_EOL_P(port); #endif #if HAS_Z3_SENSORLESS say_M914(PORTVAR_SOLO); SERIAL_ECHOPGM_P(port, " I2"); SERIAL_ECHOLNPAIR_P(port, " Z", stepperZ3.sgt()); #endif #endif // USE_SENSORLESS #endif // HAS_TRINAMIC /** * Linear Advance */ #if ENABLED(LIN_ADVANCE) if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM_P(port, "Linear Advance:"); } CONFIG_ECHO_START; #if EXTRUDERS < 2 SERIAL_ECHOLNPAIR_P(port, " M900 K", planner.extruder_advance_K[0]); #else LOOP_L_N(i, EXTRUDERS) { SERIAL_ECHOPAIR_P(port, " M900 T", int(i)); SERIAL_ECHOLNPAIR_P(port, " K", planner.extruder_advance_K[i]); } #endif #endif #if HAS_MOTOR_CURRENT_PWM CONFIG_ECHO_START; if (!forReplay) { SERIAL_ECHOLNPGM_P(port, "Stepper motor currents:"); CONFIG_ECHO_START; } SERIAL_ECHOPAIR_P(port, " M907 X", stepper.motor_current_setting[0]); SERIAL_ECHOPAIR_P(port, " Z", stepper.motor_current_setting[1]); SERIAL_ECHOPAIR_P(port, " E", stepper.motor_current_setting[2]); SERIAL_EOL_P(port); #endif /** * Advanced Pause filament load & unload lengths */ #if ENABLED(ADVANCED_PAUSE_FEATURE) if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM_P(port, "Filament load/unload lengths:"); } CONFIG_ECHO_START; #if EXTRUDERS == 1 say_M603(PORTVAR_SOLO); SERIAL_ECHOPAIR_P(port, "L", LINEAR_UNIT(filament_change_load_length[0])); SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(filament_change_unload_length[0])); #else say_M603(PORTVAR_SOLO); SERIAL_ECHOPAIR_P(port, "T0 L", LINEAR_UNIT(filament_change_load_length[0])); SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(filament_change_unload_length[0])); CONFIG_ECHO_START; say_M603(PORTVAR_SOLO); SERIAL_ECHOPAIR_P(port, "T1 L", LINEAR_UNIT(filament_change_load_length[1])); SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(filament_change_unload_length[1])); #if EXTRUDERS > 2 CONFIG_ECHO_START; say_M603(PORTVAR_SOLO); SERIAL_ECHOPAIR_P(port, "T2 L", LINEAR_UNIT(filament_change_load_length[2])); SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(filament_change_unload_length[2])); #if EXTRUDERS > 3 CONFIG_ECHO_START; say_M603(PORTVAR_SOLO); SERIAL_ECHOPAIR_P(port, "T3 L", LINEAR_UNIT(filament_change_load_length[3])); SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(filament_change_unload_length[3])); #if EXTRUDERS > 4 CONFIG_ECHO_START; say_M603(PORTVAR_SOLO); SERIAL_ECHOPAIR_P(port, "T4 L", LINEAR_UNIT(filament_change_load_length[4])); SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(filament_change_unload_length[4])); #if EXTRUDERS > 5 CONFIG_ECHO_START; say_M603(PORTVAR_SOLO); SERIAL_ECHOPAIR_P(port, "T5 L", LINEAR_UNIT(filament_change_load_length[5])); SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(filament_change_unload_length[5])); #endif // EXTRUDERS > 5 #endif // EXTRUDERS > 4 #endif // EXTRUDERS > 3 #endif // EXTRUDERS > 2 #endif // EXTRUDERS == 1 #endif // ADVANCED_PAUSE_FEATURE #if ENABLED(SINGLENOZZLE) CONFIG_ECHO_START; if (!forReplay) { SERIAL_ECHOLNPGM_P(port, "SINGLENOZZLE:"); CONFIG_ECHO_START; } M217_report(true); #endif } #endif // !DISABLE_M503