/*
stepper.c - stepper motor driver: executes motion plans using stepper motors
Part of Grbl
Copyright (c) 2009-2011 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see .
*/
/* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
and Philipp Tiefenbacher. */
#include "stepper.h"
#include "Configuration.h"
#include "Marlin.h"
#include "planner.h"
#include "pins.h"
#include "fastio.h"
#include "temperature.h"
#include "ultralcd.h"
#include "speed_lookuptable.h"
//===========================================================================
//=============================public variables ============================
//===========================================================================
block_t *current_block; // A pointer to the block currently being traced
//===========================================================================
//=============================private variables ============================
//===========================================================================
//static makes it inpossible to be called from outside of this file by extern.!
// Variables used by The Stepper Driver Interrupt
static unsigned char out_bits; // The next stepping-bits to be output
static long counter_x, // Counter variables for the bresenham line tracer
counter_y,
counter_z,
counter_e;
static unsigned long step_events_completed; // The number of step events executed in the current block
#ifdef ADVANCE
static long advance_rate, advance, final_advance = 0;
static short old_advance = 0;
static short e_steps;
#endif
static unsigned char busy = false; // TRUE when SIG_OUTPUT_COMPARE1A is being serviced. Used to avoid retriggering that handler.
static long acceleration_time, deceleration_time;
//static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
static unsigned short acc_step_rate; // needed for deccelaration start point
static char step_loops;
volatile long endstops_trigsteps[3]={0,0,0};
volatile long endstops_stepsTotal,endstops_stepsDone;
static volatile bool endstops_hit=false;
// if DEBUG_STEPS is enabled, M114 can be used to compare two methods of determining the X,Y,Z position of the printer.
// for debugging purposes only, should be disabled by default
#ifdef DEBUG_STEPS
volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
volatile int count_direction[NUM_AXIS] = { 1, 1, 1, 1};
#endif
//===========================================================================
//=============================functions ============================
//===========================================================================
// intRes = intIn1 * intIn2 >> 16
// uses:
// r26 to store 0
// r27 to store the byte 1 of the 24 bit result
#define MultiU16X8toH16(intRes, charIn1, intIn2) \
asm volatile ( \
"clr r26 \n\t" \
"mul %A1, %B2 \n\t" \
"movw %A0, r0 \n\t" \
"mul %A1, %A2 \n\t" \
"add %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"lsr r0 \n\t" \
"adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \
"clr r1 \n\t" \
: \
"=&r" (intRes) \
: \
"d" (charIn1), \
"d" (intIn2) \
: \
"r26" \
)
// intRes = longIn1 * longIn2 >> 24
// uses:
// r26 to store 0
// r27 to store the byte 1 of the 48bit result
#define MultiU24X24toH16(intRes, longIn1, longIn2) \
asm volatile ( \
"clr r26 \n\t" \
"mul %A1, %B2 \n\t" \
"mov r27, r1 \n\t" \
"mul %B1, %C2 \n\t" \
"movw %A0, r0 \n\t" \
"mul %C1, %C2 \n\t" \
"add %B0, r0 \n\t" \
"mul %C1, %B2 \n\t" \
"add %A0, r0 \n\t" \
"adc %B0, r1 \n\t" \
"mul %A1, %C2 \n\t" \
"add r27, r0 \n\t" \
"adc %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"mul %B1, %B2 \n\t" \
"add r27, r0 \n\t" \
"adc %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"mul %C1, %A2 \n\t" \
"add r27, r0 \n\t" \
"adc %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"mul %B1, %A2 \n\t" \
"add r27, r1 \n\t" \
"adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \
"lsr r27 \n\t" \
"adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \
"clr r1 \n\t" \
: \
"=&r" (intRes) \
: \
"d" (longIn1), \
"d" (longIn2) \
: \
"r26" , "r27" \
)
// Some useful constants
#define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<step_event_count;
endstops_stepsDone=stepstaken;
endstops_trigsteps[0]=current_block->steps_x;
endstops_trigsteps[1]=current_block->steps_y;
endstops_trigsteps[2]=current_block->steps_z;
endstops_hit=true;
}
void checkHitEndstops()
{
if( !endstops_hit)
return;
float endstops_triggerpos[3]={0,0,0};
float ratiodone=endstops_stepsDone/float(endstops_stepsTotal); //ratio of current_block thas was performed
endstops_triggerpos[0]=current_position[0]-(endstops_trigsteps[0]*ratiodone)/float(axis_steps_per_unit[0]);
endstops_triggerpos[1]=current_position[1]-(endstops_trigsteps[1]*ratiodone)/float(axis_steps_per_unit[1]);
endstops_triggerpos[2]=current_position[2]-(endstops_trigsteps[2]*ratiodone)/float(axis_steps_per_unit[2]);
SERIAL_ECHO_START;
SERIAL_ECHOPGM("endstops hit: ");
SERIAL_ECHOPAIR(" X:",endstops_triggerpos[0]);
SERIAL_ECHOPAIR(" Y:",endstops_triggerpos[1]);
SERIAL_ECHOPAIR(" Z:",endstops_triggerpos[2]);
SERIAL_ECHOLN("");
endstops_hit=false;
}
void endstops_hit_on_purpose()
{
endstops_hit=false;
}
// __________________________
// /| |\ _________________ ^
// / | | \ /| |\ |
// / | | \ / | | \ s
// / | | | | | \ p
// / | | | | | \ e
// +-----+------------------------+---+--+---------------+----+ e
// | BLOCK 1 | BLOCK 2 | d
//
// time ----->
//
// The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
// first block->accelerate_until step_events_completed, then keeps going at constant speed until
// step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
// The slope of acceleration is calculated with the leib ramp alghorithm.
void st_wake_up() {
// TCNT1 = 0;
if(busy == false)
ENABLE_STEPPER_DRIVER_INTERRUPT();
}
inline unsigned short calc_timer(unsigned short step_rate) {
unsigned short timer;
if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
step_rate = step_rate >> 2;
step_loops = 4;
}
else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times
step_rate = step_rate >> 1;
step_loops = 2;
}
else {
step_loops = 1;
}
if(step_rate < 32) step_rate = 32;
step_rate -= 32; // Correct for minimal speed
if(step_rate >= (8*256)){ // higher step rate
unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
unsigned char tmp_step_rate = (step_rate & 0x00ff);
unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
MultiU16X8toH16(timer, tmp_step_rate, gain);
timer = (unsigned short)pgm_read_word_near(table_address) - timer;
}
else { // lower step rates
unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
table_address += ((step_rate)>>1) & 0xfffc;
timer = (unsigned short)pgm_read_word_near(table_address);
timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
}
//if(timer < 100) timer = 100;
return timer;
}
// Initializes the trapezoid generator from the current block. Called whenever a new
// block begins.
inline void trapezoid_generator_reset() {
#ifdef ADVANCE
advance = current_block->initial_advance;
final_advance = current_block->final_advance;
#endif
deceleration_time = 0;
// step_rate to timer interval
acc_step_rate = current_block->initial_rate;
acceleration_time = calc_timer(acc_step_rate);
OCR1A = acceleration_time;
}
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
ISR(TIMER1_COMPA_vect)
{
if(busy){
SERIAL_ERROR_START
SERIAL_ERROR(*(unsigned short *)OCR1A);
SERIAL_ERRORLNPGM(" ISR overtaking itself.");
return;
} // The busy-flag is used to avoid reentering this interrupt
busy = true;
sei(); // Re enable interrupts (normally disabled while inside an interrupt handler)
// If there is no current block, attempt to pop one from the buffer
if (current_block == NULL) {
// Anything in the buffer?
current_block = plan_get_current_block();
if (current_block != NULL) {
trapezoid_generator_reset();
counter_x = -(current_block->step_event_count >> 1);
counter_y = counter_x;
counter_z = counter_x;
counter_e = counter_x;
step_events_completed = 0;
#ifdef ADVANCE
e_steps = 0;
#endif
}
else {
// DISABLE_STEPPER_DRIVER_INTERRUPT();
}
}
if (current_block != NULL) {
// Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
out_bits = current_block->direction_bits;
#ifdef ADVANCE
// Calculate E early.
counter_e += current_block->steps_e;
if (counter_e > 0) {
counter_e -= current_block->step_event_count;
if ((out_bits & (1<> 16) - old_advance);
CRITICAL_SECTION_END;
old_advance = advance >> 16;
#endif //ADVANCE
// Set direction en check limit switches
if ((out_bits & (1< -1
if(READ(X_MIN_PIN) != ENDSTOPS_INVERTING) {
endstops_triggered(step_events_completed);
step_events_completed = current_block->step_event_count;
}
#endif
}
else { // +direction
WRITE(X_DIR_PIN,!INVERT_X_DIR);
#ifdef DEBUG_STEPS
count_direction[X_AXIS]=1;
#endif
#if X_MAX_PIN > -1
if((READ(X_MAX_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_x >0)){
endstops_triggered(step_events_completed);
step_events_completed = current_block->step_event_count;
}
#endif
}
if ((out_bits & (1< -1
if(READ(Y_MIN_PIN) != ENDSTOPS_INVERTING) {
endstops_triggered(step_events_completed);
step_events_completed = current_block->step_event_count;
}
#endif
}
else { // +direction
WRITE(Y_DIR_PIN,!INVERT_Y_DIR);
#ifdef DEBUG_STEPS
count_direction[Y_AXIS]=1;
#endif
#if Y_MAX_PIN > -1
if((READ(Y_MAX_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_y >0)){
endstops_triggered(step_events_completed);
step_events_completed = current_block->step_event_count;
}
#endif
}
if ((out_bits & (1< -1
if(READ(Z_MIN_PIN) != ENDSTOPS_INVERTING) {
endstops_triggered(step_events_completed);
step_events_completed = current_block->step_event_count;
}
#endif
}
else { // +direction
WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
#ifdef DEBUG_STEPS
count_direction[Z_AXIS]=1;
#endif
#if Z_MAX_PIN > -1
if((READ(Z_MAX_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_z >0)){
endstops_triggered(step_events_completed);
step_events_completed = current_block->step_event_count;
}
#endif
}
#ifndef ADVANCE
if ((out_bits & (1<steps_x;
if (counter_x > 0) {
WRITE(X_STEP_PIN, HIGH);
counter_x -= current_block->step_event_count;
WRITE(X_STEP_PIN, LOW);
#ifdef DEBUG_STEPS
count_position[X_AXIS]+=count_direction[X_AXIS];
#endif
}
counter_y += current_block->steps_y;
if (counter_y > 0) {
WRITE(Y_STEP_PIN, HIGH);
counter_y -= current_block->step_event_count;
WRITE(Y_STEP_PIN, LOW);
#ifdef DEBUG_STEPS
count_position[Y_AXIS]+=count_direction[Y_AXIS];
#endif
}
counter_z += current_block->steps_z;
if (counter_z > 0) {
WRITE(Z_STEP_PIN, HIGH);
counter_z -= current_block->step_event_count;
WRITE(Z_STEP_PIN, LOW);
#ifdef DEBUG_STEPS
count_position[Z_AXIS]+=count_direction[Z_AXIS];
#endif
}
#ifndef ADVANCE
counter_e += current_block->steps_e;
if (counter_e > 0) {
WRITE(E_STEP_PIN, HIGH);
counter_e -= current_block->step_event_count;
WRITE(E_STEP_PIN, LOW);
}
#endif //!ADVANCE
step_events_completed += 1;
if(step_events_completed >= current_block->step_event_count) break;
}
// Calculare new timer value
unsigned short timer;
unsigned short step_rate;
if (step_events_completed <= current_block->accelerate_until) {
MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
acc_step_rate += current_block->initial_rate;
// upper limit
if(acc_step_rate > current_block->nominal_rate)
acc_step_rate = current_block->nominal_rate;
// step_rate to timer interval
timer = calc_timer(acc_step_rate);
#ifdef ADVANCE
advance += advance_rate;
#endif
acceleration_time += timer;
OCR1A = timer;
}
else if (step_events_completed > current_block->decelerate_after) {
MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
if(step_rate > acc_step_rate) { // Check step_rate stays positive
step_rate = current_block->final_rate;
}
else {
step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
}
// lower limit
if(step_rate < current_block->final_rate)
step_rate = current_block->final_rate;
// step_rate to timer interval
timer = calc_timer(step_rate);
#ifdef ADVANCE
advance -= advance_rate;
if(advance < final_advance)
advance = final_advance;
#endif //ADVANCE
deceleration_time += timer;
OCR1A = timer;
}
else {
timer = calc_timer(current_block->nominal_rate);
OCR1A = timer;
}
// If current block is finished, reset pointer
if (step_events_completed >= current_block->step_event_count) {
current_block = NULL;
plan_discard_current_block();
}
}
cli(); // disable interrupts
busy=false;
}
#ifdef ADVANCE
unsigned char old_OCR0A;
// Timer interrupt for E. e_steps is set in the main routine;
// Timer 0 is shared with millies
ISR(TIMER0_COMPA_vect)
{
// Critical section needed because Timer 1 interrupt has higher priority.
// The pin set functions are placed on trategic position to comply with the stepper driver timing.
WRITE(E_STEP_PIN, LOW);
// Set E direction (Depends on E direction + advance)
if (e_steps < 0) {
WRITE(E_DIR_PIN,INVERT_E_DIR);
e_steps++;
WRITE(E_STEP_PIN, HIGH);
}
if (e_steps > 0) {
WRITE(E_DIR_PIN,!INVERT_E_DIR);
e_steps--;
WRITE(E_STEP_PIN, HIGH);
}
old_OCR0A += 25; // 10kHz interrupt
OCR0A = old_OCR0A;
}
#endif // ADVANCE
void st_init()
{
//Initialize Dir Pins
#if X_DIR_PIN > -1
SET_OUTPUT(X_DIR_PIN);
#endif
#if Y_DIR_PIN > -1
SET_OUTPUT(Y_DIR_PIN);
#endif
#if Z_DIR_PIN > -1
SET_OUTPUT(Z_DIR_PIN);
#endif
#if E_DIR_PIN > -1
SET_OUTPUT(E_DIR_PIN);
#endif
//Initialize Enable Pins - steppers default to disabled.
#if (X_ENABLE_PIN > -1)
SET_OUTPUT(X_ENABLE_PIN);
if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
#endif
#if (Y_ENABLE_PIN > -1)
SET_OUTPUT(Y_ENABLE_PIN);
if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
#endif
#if (Z_ENABLE_PIN > -1)
SET_OUTPUT(Z_ENABLE_PIN);
if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
#endif
#if (E_ENABLE_PIN > -1)
SET_OUTPUT(E_ENABLE_PIN);
if(!E_ENABLE_ON) WRITE(E_ENABLE_PIN,HIGH);
#endif
//endstops and pullups
#ifdef ENDSTOPPULLUPS
#if X_MIN_PIN > -1
SET_INPUT(X_MIN_PIN);
WRITE(X_MIN_PIN,HIGH);
#endif
#if X_MAX_PIN > -1
SET_INPUT(X_MAX_PIN);
WRITE(X_MAX_PIN,HIGH);
#endif
#if Y_MIN_PIN > -1
SET_INPUT(Y_MIN_PIN);
WRITE(Y_MIN_PIN,HIGH);
#endif
#if Y_MAX_PIN > -1
SET_INPUT(Y_MAX_PIN);
WRITE(Y_MAX_PIN,HIGH);
#endif
#if Z_MIN_PIN > -1
SET_INPUT(Z_MIN_PIN);
WRITE(Z_MIN_PIN,HIGH);
#endif
#if Z_MAX_PIN > -1
SET_INPUT(Z_MAX_PIN);
WRITE(Z_MAX_PIN,HIGH);
#endif
#else //ENDSTOPPULLUPS
#if X_MIN_PIN > -1
SET_INPUT(X_MIN_PIN);
#endif
#if X_MAX_PIN > -1
SET_INPUT(X_MAX_PIN);
#endif
#if Y_MIN_PIN > -1
SET_INPUT(Y_MIN_PIN);
#endif
#if Y_MAX_PIN > -1
SET_INPUT(Y_MAX_PIN);
#endif
#if Z_MIN_PIN > -1
SET_INPUT(Z_MIN_PIN);
#endif
#if Z_MAX_PIN > -1
SET_INPUT(Z_MAX_PIN);
#endif
#endif //ENDSTOPPULLUPS
//Initialize Step Pins
#if (X_STEP_PIN > -1)
SET_OUTPUT(X_STEP_PIN);
#endif
#if (Y_STEP_PIN > -1)
SET_OUTPUT(Y_STEP_PIN);
#endif
#if (Z_STEP_PIN > -1)
SET_OUTPUT(Z_STEP_PIN);
#endif
#if (E_STEP_PIN > -1)
SET_OUTPUT(E_STEP_PIN);
#endif
// waveform generation = 0100 = CTC
TCCR1B &= ~(1<