/** * Marlin 3D Printer Firmware * Copyright (C) 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * The class Servo uses the PWM class to implement it's functions * * The PWM1 module is only used to generate interrups at specified times. It * is NOT used to directly toggle pins. The ISR writes to the pin assigned to * that interrupt * * All PWMs use the same repetition rate - 20mS because that's the normal servo rate * */ /** * The data structures are setup to minimize the computation done by the ISR which * minimizes ISR execution time. Execution times are 1.7 to 1.9 microseconds. * * Two tables are used. active_table is used by the ISR. Changes to the table are * are done by copying the active_table into the work_table, updating the work_table * and then swapping the two tables. Swapping is done by manipulating pointers. * * Immediately after the swap the ISR uses the work_table until the start of the * next 20mS cycle. During this transition the "work_table" is actually the table * that was being used before the swap. The "active_table" contains the data that * will start being used at the start of the next 20mS period. This keeps the pins * well behaved during the transition. * * The ISR's priority is set to the maximum otherwise other ISRs can cause considerable * jitter in the PWM high time. */ #ifdef TARGET_LPC1768 #include //#include "../HAL.h" //#include "../../../macros.h" #include "serial.h" typedef struct { // holds all data needed to control the 6 PWM channels uint8_t sequence; // 0: available slot, 1 - 6: PWM channel assigned to that slot uint8_t logical_pin; uint16_t PWM_mask; volatile uint32_t* set_register; volatile uint32_t* clr_register; uint32_t write_mask; uint32_t microseconds; uint32_t min; uint32_t max; bool PWM_flag; // uint8_t servo_index; // 0 - MAX_SERVO -1 : servo index, 0xFF : PWM channel bool active_flag; } PWM_map; #define MICRO_MAX 0xffffffff #define PWM_MAP_INIT_ROW {0, 0xff, 0, 0, 0, 0, MICRO_MAX, 0, 0, 0, 0, 0} #define PWM_MAP_INIT {PWM_MAP_INIT_ROW,\ PWM_MAP_INIT_ROW,\ PWM_MAP_INIT_ROW,\ PWM_MAP_INIT_ROW,\ PWM_MAP_INIT_ROW,\ PWM_MAP_INIT_ROW,\ }; PWM_map PWM1_map_A[6] = PWM_MAP_INIT; PWM_map PWM1_map_B[6] = PWM_MAP_INIT; PWM_map *active_table = PWM1_map_A; PWM_map *work_table = PWM1_map_B; PWM_map *ISR_table; #define NUM_PWMS 6 volatile uint8_t PWM1_ISR_index = 0; #define IR_BIT(p) (p >= 0 && p <= 3 ? p : p + 4 ) #define COPY_ACTIVE_TABLE for (uint8_t i = 0; i < 6 ; i++) work_table[i] = active_table[i] #define PIN_IS_INVERTED(p) 0 // place holder in case inverting PWM output is offered /** * Prescale register and MR0 register values * * 100MHz PCLK 50MHz PCLK 25MHz PCLK 12.5MHz PCLK * ----------------- ----------------- ----------------- ----------------- * desired prescale MR0 prescale MR0 prescale MR0 prescale MR0 resolution * prescale register register register register register register register register in degrees * freq value value value value value value value value * * 8 11.5 159,999 5.25 159,999 2.13 159,999 0.5625 159,999 0.023 * 4 24 79,999 11.5 79,999 5.25 79,999 2.125 79,999 0.045 * 2 49 39,999 24 39,999 11.5 39,999 5.25 39,999 0.090 * 1 99 19,999 49 19,999 24 19,999 11.5 19,999 0.180 * 0.5 199 9,999 99 9,999 49 9,999 24 9,999 0.360 * 0.25 399 4,999 199 4,999 99 4,999 49 4,999 0.720 * 0.125 799 2,499 399 2,499 199 2,499 99 2,499 1.440 * * The desired prescale frequency comes from an input in the range of 544 - 2400 microseconds and the * desire to just shift the input left or right as needed. * * A resolution of 0.2 degrees seems reasonable so a prescale frequency output of 1MHz is being used. * It also means we don't need to scale the input. * * The PCLK is set to 25MHz because that's the slowest one that gives whole numbers for prescale and * MR0 registers. * * Final settings: * PCLKSEL0: 0x0 * PWM1PR: 0x018 (24) * PWM1MR0: 0x04E1F (19,999) * */ #define LPC_PWM1_MR0 19999 // base repetition rate minus one count - 20mS #define LPC_PWM1_PR 24 // prescaler value - prescaler divide by 24 + 1 - 1 MHz output #define LPC_PWM1_PCLKSEL0 0x00 // select clock source for prescaler - defaults to 25MHz on power up // 0: 25MHz, 1: 100MHz, 2: 50MHz, 3: 12.5MHZ to PWM1 prescaler #define MR0_MARGIN 200 // if channel value too close to MR0 the system locks up void LPC1768_PWM_init(void) { #define SBIT_CNTEN 0 // PWM1 counter & pre-scaler enable/disable #define SBIT_CNTRST 1 // reset counters to known state #define SBIT_PWMEN 3 // 1 - PWM, 0 - timer #define SBIT_PWMMR0R 1 #define PCPWM1 6 #define PCLK_PWM1 12 LPC_SC->PCONP |= (1 << PCPWM1); // enable PWM1 controller (enabled on power up) LPC_SC->PCLKSEL0 &= ~(0x3 << PCLK_PWM1); LPC_SC->PCLKSEL0 |= (LPC_PWM1_PCLKSEL0 << PCLK_PWM1); LPC_PWM1->MR0 = LPC_PWM1_MR0; // TC resets every 19,999 + 1 cycles - sets PWM cycle(Ton+Toff) to 20 mS // MR0 must be set before TCR enables the PWM LPC_PWM1->TCR = _BV(SBIT_CNTEN) | _BV(SBIT_CNTRST)| _BV(SBIT_PWMEN);; // enable counters, reset counters, set mode to PWM LPC_PWM1->TCR &= ~(_BV(SBIT_CNTRST)); // take counters out of reset LPC_PWM1->PR = LPC_PWM1_PR; LPC_PWM1->MCR = (_BV(SBIT_PWMMR0R) | _BV(0)); // Reset TC if it matches MR0, disable all interrupts except for MR0 LPC_PWM1->CTCR = 0; // disable counter mode (enable PWM mode) LPC_PWM1->LER = 0x07F; // Set the latch Enable Bits to load the new Match Values for MR0 - MR6 // Set all PWMs to single edge LPC_PWM1->PCR = 0; // single edge mode for all channels, PWM1 control of outputs off NVIC_EnableIRQ(PWM1_IRQn); // Enable interrupt handler // NVIC_SetPriority(PWM1_IRQn, NVIC_EncodePriority(0, 10, 0)); // normal priority for PWM module NVIC_SetPriority(PWM1_IRQn, NVIC_EncodePriority(0, 0, 0)); // minimizes jitter due to higher priority ISRs } bool PWM_table_swap; // flag to tell the ISR that the tables have been swapped bool LPC1768_PWM_attach_pin(uint8_t pin, uint32_t min = 1, uint32_t max = (LPC_PWM1_MR0 - MR0_MARGIN), uint8_t servo_index = 0xff) { COPY_ACTIVE_TABLE; // copy active table into work table uint8_t slot = 0; for (uint8_t i = 0; i < NUM_PWMS ; i++) // see if already in table if (work_table[i].logical_pin == pin) return 1; for (uint8_t i = 1; (i < NUM_PWMS + 1) && !slot; i++) // find empty slot if ( !(work_table[i - 1].set_register)) slot = i; // any item that can't be zero when active or just attached is OK if (!slot) return 0; slot--; // turn it into array index work_table[slot].logical_pin = pin; // init slot work_table[slot].PWM_mask = 0; // real value set by PWM_write work_table[slot].set_register = PIN_IS_INVERTED(pin) ? &LPC_GPIO(pin_map[pin].port)->FIOCLR : &LPC_GPIO(pin_map[pin].port)->FIOSET; work_table[slot].clr_register = PIN_IS_INVERTED(pin) ? &LPC_GPIO(pin_map[pin].port)->FIOSET : &LPC_GPIO(pin_map[pin].port)->FIOCLR; work_table[slot].write_mask = LPC_PIN(pin_map[pin].pin); work_table[slot].microseconds = MICRO_MAX; work_table[slot].min = min; work_table[slot].max = MIN(max, LPC_PWM1_MR0 - MR0_MARGIN); work_table[slot].servo_index = servo_index; work_table[slot].active_flag = false; //swap tables NVIC_DisableIRQ(PWM1_IRQn); PWM_map *pointer_swap = active_table; active_table = work_table; work_table = pointer_swap; PWM_table_swap = true; // tell the ISR that the tables have been swapped NVIC_EnableIRQ(PWM1_IRQn); // re-enable PWM interrupts return 1; } bool LPC1768_PWM_write(uint8_t pin, uint32_t value) { COPY_ACTIVE_TABLE; // copy active table into work table uint8_t slot = 0xFF; for (uint8_t i = 0; i < NUM_PWMS; i++) // find slot if (work_table[i].logical_pin == pin) slot = i; if (slot == 0xFF) return false; // return error if pin not found digitalWrite(pin, 0); // set pin to output & set it low work_table[slot].microseconds = MAX(MIN(value, work_table[slot].max), work_table[slot].min); work_table[slot].active_flag = true; for (uint8_t i = NUM_PWMS; --i;) { // (bubble) sort table by microseconds bool didSwap = false; PWM_map temp; for (uint16_t j = 0; j < i; ++j) { if (work_table[j].microseconds > work_table[j + 1].microseconds) { temp = work_table[j + 1]; work_table[j + 1] = work_table[j]; work_table[j] = temp; didSwap = true; } } if (!didSwap) break; } for (uint8_t i = 0; i < NUM_PWMS; i++) // set the index & PWM_mask if (work_table[i].active_flag == true) { work_table[i].sequence = i + 1; work_table[i].PWM_mask = _BV(IR_BIT(i + 1)); } else work_table[i].sequence = 0; uint32_t interrupt_mask = 0; // set match registers to new values, build IRQ mask if (work_table[0].active_flag == true) { LPC_PWM1->MR1 = work_table[0].microseconds; interrupt_mask |= _BV(3); } if (work_table[1].active_flag == true) { LPC_PWM1->MR2 = work_table[1].microseconds; interrupt_mask |= _BV(6); } if (work_table[2].active_flag == true) { LPC_PWM1->MR3 = work_table[2].microseconds; interrupt_mask |= _BV(9); } if (work_table[3].active_flag == true) { LPC_PWM1->MR4 = work_table[3].microseconds; interrupt_mask |= _BV(12); } if (work_table[4].active_flag == true) { LPC_PWM1->MR5 = work_table[4].microseconds; interrupt_mask |= _BV(15); } if (work_table[5].active_flag == true) { LPC_PWM1->MR6 = work_table[5].microseconds; interrupt_mask |= _BV(18); } interrupt_mask |= _BV(0); // add in MR0 interrupt // swap tables NVIC_DisableIRQ(PWM1_IRQn); LPC_PWM1->LER = 0x07E; // Set the latch Enable Bits to load the new Match Values for MR1 - MR6 PWM_map *pointer_swap = active_table; active_table = work_table; work_table = pointer_swap; PWM_table_swap = true; // tell the ISR that the tables have been swapped LPC_PWM1->MCR = interrupt_mask; // enable new PWM individual channel interrupts NVIC_EnableIRQ(PWM1_IRQn); // re-enable PWM interrupts return 1; } bool LPC1768_PWM_detach_pin(uint8_t pin) { COPY_ACTIVE_TABLE; // copy active table into work table uint8_t slot = 0xFF; for (uint8_t i = 0; i < NUM_PWMS; i++) // find slot if (work_table[i].logical_pin == pin) slot = i; if (slot == 0xFF) return false; // return error if pin not found pinMode(pin, INPUT_PULLUP); // set pin to input with pullup work_table[slot] = PWM_MAP_INIT_ROW; for (uint8_t i = NUM_PWMS; --i;) { // (bubble) sort table by microseconds bool didSwap = false; PWM_map temp; for (uint16_t j = 0; j < i; ++j) { if (work_table[j].microseconds > work_table[j + 1].microseconds) { temp = work_table[j + 1]; work_table[j + 1] = work_table[j]; work_table[j] = temp; didSwap = true; } } if (!didSwap) break; } for (uint8_t i = 0; i < NUM_PWMS; i++) // set the index & PWM_mask if (work_table[i].active_flag == true) { work_table[i].sequence = i + 1; work_table[i].PWM_mask = _BV(IR_BIT(i + 1)); } else work_table[i].sequence = 0; uint32_t interrupt_mask = 0; // set match registers to new values, build IRQ mask if (work_table[0].active_flag == true) { LPC_PWM1->MR1 = work_table[0].microseconds; interrupt_mask |= _BV(3); } if (work_table[1].active_flag == true) { LPC_PWM1->MR2 = work_table[1].microseconds; interrupt_mask |= _BV(6); } if (work_table[2].active_flag == true) { LPC_PWM1->MR3 = work_table[2].microseconds; interrupt_mask |= _BV(9); } if (work_table[3].active_flag == true) { LPC_PWM1->MR4 = work_table[3].microseconds; interrupt_mask |= _BV(12); } if (work_table[4].active_flag == true) { LPC_PWM1->MR5 = work_table[4].microseconds; interrupt_mask |= _BV(15); } if (work_table[5].active_flag == true) { LPC_PWM1->MR6 = work_table[5].microseconds; interrupt_mask |= _BV(18); } interrupt_mask |= _BV(0); // add in MR0 interrupt // swap tables NVIC_DisableIRQ(PWM1_IRQn); LPC_PWM1->LER = 0x07E; // Set the latch Enable Bits to load the new Match Values for MR1 - MR6 PWM_map *pointer_swap = active_table; active_table = work_table; work_table = pointer_swap; PWM_table_swap = true; // tell the ISR that the tables have been swapped LPC_PWM1->MCR = interrupt_mask; // enable remaining PWM individual channel interrupts NVIC_EnableIRQ(PWM1_IRQn); // re-enable PWM interrupts return 1; } //////////////////////////////////////////////////////////////////////////////// #define HAL_PWM_LPC1768_ISR extern "C" void PWM1_IRQHandler(void) HAL_PWM_LPC1768_ISR { if (PWM_table_swap) ISR_table = work_table; // use old table if a swap was just done else ISR_table = active_table; if (LPC_PWM1->IR & 0x1) { // MR0 interrupt PWM_table_swap = false; // MR0 means new values could have been ISR_table = active_table; // loaded so set everything to normal operation for (uint8_t i = 0; (i < NUM_PWMS) && ISR_table[i].active_flag ; i++) *ISR_table[i].set_register = ISR_table[i].write_mask; // set all enabled channels active LPC_PWM1->IR = 0x01; // clear the MR0 interrupt flag bit PWM1_ISR_index = 0; } else { if (ISR_table[PWM1_ISR_index].active_flag && (LPC_PWM1->IR & ISR_table[PWM1_ISR_index].PWM_mask)) { LPC_PWM1->IR = ISR_table[PWM1_ISR_index].PWM_mask; // clear the interrupt flag bit *ISR_table[PWM1_ISR_index].clr_register = ISR_table[PWM1_ISR_index].write_mask; // set channel to inactive } PWM1_ISR_index++; // should be the index for the next interrupt } return; } #endif