/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #pragma once #include "../inc/MarlinConfig.h" #include "../lcd/ultralcd.h" #if HAS_TRINAMIC_CONFIG #include #include "../module/planner.h" #define CHOPPER_DEFAULT_12V { 3, -1, 1 } #define CHOPPER_DEFAULT_19V { 4, 1, 1 } #define CHOPPER_DEFAULT_24V { 4, 2, 1 } #define CHOPPER_DEFAULT_36V { 5, 2, 4 } #define CHOPPER_PRUSAMK3_24V { 3, -2, 6 } #define CHOPPER_MARLIN_119 { 5, 2, 3 } #if ENABLED(MONITOR_DRIVER_STATUS) && !defined(MONITOR_DRIVER_STATUS_INTERVAL_MS) #define MONITOR_DRIVER_STATUS_INTERVAL_MS 500u #endif constexpr uint16_t _tmc_thrs(const uint16_t msteps, const uint32_t thrs, const uint32_t spmm) { return 12650000UL * msteps / (256 * thrs * spmm); } template class TMCStorage { protected: // Only a child class has access to constructor => Don't create on its own! "Poor man's abstract class" TMCStorage() {} public: uint16_t val_mA = 0; #if ENABLED(MONITOR_DRIVER_STATUS) uint8_t otpw_count = 0, error_count = 0; bool flag_otpw = false; inline bool getOTPW() { return flag_otpw; } inline void clear_otpw() { flag_otpw = 0; } #endif inline uint16_t getMilliamps() { return val_mA; } inline void printLabel() { SERIAL_CHAR(AXIS_LETTER); if (DRIVER_ID > '0') SERIAL_CHAR(DRIVER_ID); } struct { #if HAS_STEALTHCHOP bool stealthChop_enabled = false; #endif #if ENABLED(HYBRID_THRESHOLD) uint8_t hybrid_thrs = 0; #endif #if USE_SENSORLESS int16_t homing_thrs = 0; #endif } stored; }; template class TMCMarlin : public TMC, public TMCStorage { public: TMCMarlin(const uint16_t cs_pin, const float RS) : TMC(cs_pin, RS) {} TMCMarlin(const uint16_t cs_pin, const float RS, const uint8_t axis_chain_index) : TMC(cs_pin, RS, axis_chain_index) {} TMCMarlin(const uint16_t CS, const float RS, const uint16_t pinMOSI, const uint16_t pinMISO, const uint16_t pinSCK) : TMC(CS, RS, pinMOSI, pinMISO, pinSCK) {} TMCMarlin(const uint16_t CS, const float RS, const uint16_t pinMOSI, const uint16_t pinMISO, const uint16_t pinSCK, const uint8_t axis_chain_index) : TMC(CS, RS, pinMOSI, pinMISO, pinSCK, axis_chain_index) {} inline uint16_t rms_current() { return TMC::rms_current(); } inline void rms_current(uint16_t mA) { this->val_mA = mA; TMC::rms_current(mA); } inline void rms_current(const uint16_t mA, const float mult) { this->val_mA = mA; TMC::rms_current(mA, mult); } inline uint16_t get_microstep_counter() { return TMC::MSCNT(); } #if HAS_STEALTHCHOP inline void refresh_stepping_mode() { this->en_pwm_mode(this->stored.stealthChop_enabled); } inline bool get_stealthChop_status() { return this->en_pwm_mode(); } #endif #if ENABLED(HYBRID_THRESHOLD) uint32_t get_pwm_thrs() { return _tmc_thrs(this->microsteps(), this->TPWMTHRS(), planner.settings.axis_steps_per_mm[AXIS_ID]); } void set_pwm_thrs(const uint32_t thrs) { TMC::TPWMTHRS(_tmc_thrs(this->microsteps(), thrs, planner.settings.axis_steps_per_mm[AXIS_ID])); #if HAS_LCD_MENU this->stored.hybrid_thrs = thrs; #endif } #endif #if USE_SENSORLESS inline int16_t homing_threshold() { return TMC::sgt(); } void homing_threshold(int16_t sgt_val) { sgt_val = (int16_t)constrain(sgt_val, sgt_min, sgt_max); TMC::sgt(sgt_val); #if HAS_LCD_MENU this->stored.homing_thrs = sgt_val; #endif } #if ENABLED(SPI_ENDSTOPS) bool test_stall_status(); #endif #endif #if HAS_LCD_MENU inline void refresh_stepper_current() { rms_current(this->val_mA); } #if ENABLED(HYBRID_THRESHOLD) inline void refresh_hybrid_thrs() { set_pwm_thrs(this->stored.hybrid_thrs); } #endif #if USE_SENSORLESS inline void refresh_homing_thrs() { homing_threshold(this->stored.homing_thrs); } #endif #endif static constexpr int8_t sgt_min = -64, sgt_max = 63; }; template class TMCMarlin : public TMC2208Stepper, public TMCStorage { public: TMCMarlin(Stream * SerialPort, const float RS, const uint8_t) : TMC2208Stepper(SerialPort, RS) {} TMCMarlin(const uint16_t RX, const uint16_t TX, const float RS, const uint8_t, const bool has_rx=true) : TMC2208Stepper(RX, TX, RS, has_rx) {} uint16_t rms_current() { return TMC2208Stepper::rms_current(); } inline void rms_current(const uint16_t mA) { this->val_mA = mA; TMC2208Stepper::rms_current(mA); } inline void rms_current(const uint16_t mA, const float mult) { this->val_mA = mA; TMC2208Stepper::rms_current(mA, mult); } inline uint16_t get_microstep_counter() { return TMC2208Stepper::MSCNT(); } #if HAS_STEALTHCHOP inline void refresh_stepping_mode() { en_spreadCycle(!this->stored.stealthChop_enabled); } inline bool get_stealthChop_status() { return !this->en_spreadCycle(); } #endif #if ENABLED(HYBRID_THRESHOLD) uint32_t get_pwm_thrs() { return _tmc_thrs(this->microsteps(), this->TPWMTHRS(), planner.settings.axis_steps_per_mm[AXIS_ID]); } void set_pwm_thrs(const uint32_t thrs) { TMC2208Stepper::TPWMTHRS(_tmc_thrs(this->microsteps(), thrs, planner.settings.axis_steps_per_mm[AXIS_ID])); #if HAS_LCD_MENU this->stored.hybrid_thrs = thrs; #endif } #endif #if HAS_LCD_MENU inline void refresh_stepper_current() { rms_current(this->val_mA); } #if ENABLED(HYBRID_THRESHOLD) inline void refresh_hybrid_thrs() { set_pwm_thrs(this->stored.hybrid_thrs); } #endif #endif }; template class TMCMarlin : public TMC2209Stepper, public TMCStorage { public: TMCMarlin(Stream * SerialPort, const float RS, const uint8_t addr) : TMC2209Stepper(SerialPort, RS, addr) {} TMCMarlin(const uint16_t RX, const uint16_t TX, const float RS, const uint8_t addr, const bool) : TMC2209Stepper(RX, TX, RS, addr) {} uint8_t get_address() { return slave_address; } uint16_t rms_current() { return TMC2209Stepper::rms_current(); } inline void rms_current(const uint16_t mA) { this->val_mA = mA; TMC2209Stepper::rms_current(mA); } inline void rms_current(const uint16_t mA, const float mult) { this->val_mA = mA; TMC2209Stepper::rms_current(mA, mult); } inline uint16_t get_microstep_counter() { return TMC2209Stepper::MSCNT(); } #if HAS_STEALTHCHOP inline void refresh_stepping_mode() { en_spreadCycle(!this->stored.stealthChop_enabled); } inline bool get_stealthChop_status() { return !this->en_spreadCycle(); } #endif #if ENABLED(HYBRID_THRESHOLD) uint32_t get_pwm_thrs() { return _tmc_thrs(this->microsteps(), this->TPWMTHRS(), planner.settings.axis_steps_per_mm[AXIS_ID]); } void set_pwm_thrs(const uint32_t thrs) { TMC2209Stepper::TPWMTHRS(_tmc_thrs(this->microsteps(), thrs, planner.settings.axis_steps_per_mm[AXIS_ID])); #if HAS_LCD_MENU this->stored.hybrid_thrs = thrs; #endif } #endif #if USE_SENSORLESS inline int16_t homing_threshold() { return TMC2209Stepper::SGTHRS(); } void homing_threshold(int16_t sgt_val) { sgt_val = (int16_t)constrain(sgt_val, sgt_min, sgt_max); TMC2209Stepper::SGTHRS(sgt_val); #if HAS_LCD_MENU this->stored.homing_thrs = sgt_val; #endif } #endif #if HAS_LCD_MENU inline void refresh_stepper_current() { rms_current(this->val_mA); } #if ENABLED(HYBRID_THRESHOLD) inline void refresh_hybrid_thrs() { set_pwm_thrs(this->stored.hybrid_thrs); } #endif #if USE_SENSORLESS inline void refresh_homing_thrs() { homing_threshold(this->stored.homing_thrs); } #endif #endif static constexpr uint8_t sgt_min = 0, sgt_max = 255; }; template class TMCMarlin : public TMC2660Stepper, public TMCStorage { public: TMCMarlin(const uint16_t cs_pin, const float RS, const uint8_t) : TMC2660Stepper(cs_pin, RS) {} TMCMarlin(const uint16_t CS, const float RS, const uint16_t pinMOSI, const uint16_t pinMISO, const uint16_t pinSCK, const uint8_t) : TMC2660Stepper(CS, RS, pinMOSI, pinMISO, pinSCK) {} inline uint16_t rms_current() { return TMC2660Stepper::rms_current(); } inline void rms_current(const uint16_t mA) { this->val_mA = mA; TMC2660Stepper::rms_current(mA); } inline uint16_t get_microstep_counter() { return TMC2660Stepper::mstep(); } #if USE_SENSORLESS inline int16_t homing_threshold() { return TMC2660Stepper::sgt(); } void homing_threshold(int16_t sgt_val) { sgt_val = (int16_t)constrain(sgt_val, sgt_min, sgt_max); TMC2660Stepper::sgt(sgt_val); #if HAS_LCD_MENU this->stored.homing_thrs = sgt_val; #endif } #endif #if HAS_LCD_MENU inline void refresh_stepper_current() { rms_current(this->val_mA); } #if USE_SENSORLESS inline void refresh_homing_thrs() { homing_threshold(this->stored.homing_thrs); } #endif #endif static constexpr int8_t sgt_min = -64, sgt_max = 63; }; template void tmc_print_current(TMC &st) { st.printLabel(); SERIAL_ECHOLNPAIR(" driver current: ", st.getMilliamps()); } #if ENABLED(MONITOR_DRIVER_STATUS) template void tmc_report_otpw(TMC &st) { st.printLabel(); SERIAL_ECHOPGM(" temperature prewarn triggered: "); serialprint_truefalse(st.getOTPW()); SERIAL_EOL(); } template void tmc_clear_otpw(TMC &st) { st.clear_otpw(); st.printLabel(); SERIAL_ECHOLNPGM(" prewarn flag cleared"); } #endif #if ENABLED(HYBRID_THRESHOLD) template void tmc_print_pwmthrs(TMC &st) { st.printLabel(); SERIAL_ECHOLNPAIR(" stealthChop max speed: ", st.get_pwm_thrs()); } #endif #if USE_SENSORLESS template void tmc_print_sgt(TMC &st) { st.printLabel(); SERIAL_ECHOPGM(" homing sensitivity: "); SERIAL_PRINTLN(st.homing_threshold(), DEC); } #endif void monitor_tmc_drivers(); void test_tmc_connection(const bool test_x, const bool test_y, const bool test_z, const bool test_e); #if ENABLED(TMC_DEBUG) #if ENABLED(MONITOR_DRIVER_STATUS) void tmc_set_report_interval(const uint16_t update_interval); #endif void tmc_report_all(const bool print_x, const bool print_y, const bool print_z, const bool print_e); void tmc_get_registers(const bool print_x, const bool print_y, const bool print_z, const bool print_e); #endif /** * TMC2130-specific sensorless homing using stallGuard2. * stallGuard2 only works when in spreadCycle mode. * spreadCycle and stealthChop are mutually-exclusive. * * Defined here because of limitations with templates and headers. */ #if USE_SENSORLESS // Track enabled status of stealthChop and only re-enable where applicable struct sensorless_t { bool x, y, z, x2, y2, z2, z3, z4; }; #if ENABLED(IMPROVE_HOMING_RELIABILITY) extern millis_t sg_guard_period; constexpr uint16_t default_sg_guard_duration = 400; struct slow_homing_t { xy_ulong_t acceleration; #if HAS_CLASSIC_JERK xy_float_t jerk_xy; #endif }; #endif bool tmc_enable_stallguard(TMC2130Stepper &st); void tmc_disable_stallguard(TMC2130Stepper &st, const bool restore_stealth); bool tmc_enable_stallguard(TMC2209Stepper &st); void tmc_disable_stallguard(TMC2209Stepper &st, const bool restore_stealth); bool tmc_enable_stallguard(TMC2660Stepper); void tmc_disable_stallguard(TMC2660Stepper, const bool); #if ENABLED(SPI_ENDSTOPS) template bool TMCMarlin::test_stall_status() { this->switchCSpin(LOW); // read stallGuard flag from TMC library, will handle HW and SW SPI TMC2130_n::DRV_STATUS_t drv_status{0}; drv_status.sr = this->DRV_STATUS(); this->switchCSpin(HIGH); return drv_status.stallGuard; } #endif // SPI_ENDSTOPS #endif // USE_SENSORLESS #if HAS_TMC_SPI void tmc_init_cs_pins(); #endif #endif // HAS_TRINAMIC_CONFIG