/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * configuration_store.cpp * * Configuration and EEPROM storage * * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM * in the functions below, also increment the version number. This makes sure that * the default values are used whenever there is a change to the data, to prevent * wrong data being written to the variables. * * ALSO: Variables in the Store and Retrieve sections must be in the same order. * If a feature is disabled, some data must still be written that, when read, * either sets a Sane Default, or results in No Change to the existing value. * */ #define EEPROM_VERSION "V29" // Change EEPROM version if these are changed: #define EEPROM_OFFSET 100 /** * V29 EEPROM Layout: * * 100 Version (char x4) * 104 EEPROM Checksum (uint16_t) * * 106 E_STEPPERS (uint8_t) * 107 M92 XYZE planner.axis_steps_per_mm (float x4 ... x7) * 123 M203 XYZE planner.max_feedrate_mm_s (float x4 ... x7) * 139 M201 XYZE planner.max_acceleration_mm_per_s2 (uint32_t x4 ... x7) * 155 M204 P planner.acceleration (float) * 159 M204 R planner.retract_acceleration (float) * 163 M204 T planner.travel_acceleration (float) * 167 M205 S planner.min_feedrate_mm_s (float) * 171 M205 T planner.min_travel_feedrate_mm_s (float) * 175 M205 B planner.min_segment_time (ulong) * 179 M205 X planner.max_jerk[X_AXIS] (float) * 183 M205 Y planner.max_jerk[Y_AXIS] (float) * 187 M205 Z planner.max_jerk[Z_AXIS] (float) * 191 M205 E planner.max_jerk[E_AXIS] (float) * 195 M206 XYZ home_offset (float x3) * 207 M218 XYZ hotend_offset (float x3 per additional hotend) * * Mesh bed leveling: * 219 M420 S from mbl.status (bool) * 220 mbl.z_offset (float) * 224 MESH_NUM_X_POINTS (uint8 as set in firmware) * 225 MESH_NUM_Y_POINTS (uint8 as set in firmware) * 226 G29 S3 XYZ z_values[][] (float x9, by default, up to float x 81) +288 * * AUTO BED LEVELING * 262 M851 zprobe_zoffset (float) * * ABL_PLANAR (or placeholder): 36 bytes * 266 planner.bed_level_matrix (matrix_3x3 = float x9) * * AUTO_BED_LEVELING_BILINEAR (or placeholder): 47 bytes * 302 ABL_GRID_MAX_POINTS_X (uint8_t) * 303 ABL_GRID_MAX_POINTS_Y (uint8_t) * 304 bilinear_grid_spacing (int x2) from G29: (B-F)/X, (R-L)/Y * 308 G29 L F bilinear_start (int x2) * 312 bed_level_grid[][] (float x9, up to float x256) +988 * * DELTA (if deltabot): 36 bytes * 348 M666 XYZ endstop_adj (float x3) * 360 M665 R delta_radius (float) * 364 M665 L delta_diagonal_rod (float) * 368 M665 S delta_segments_per_second (float) * 372 M665 A delta_diagonal_rod_trim_tower_1 (float) * 376 M665 B delta_diagonal_rod_trim_tower_2 (float) * 380 M665 C delta_diagonal_rod_trim_tower_3 (float) * * Z_DUAL_ENDSTOPS: 4 bytes * 384 M666 Z z_endstop_adj (float) * * ULTIPANEL: 6 bytes * 388 M145 S0 H lcd_preheat_hotend_temp (int x2) * 392 M145 S0 B lcd_preheat_bed_temp (int x2) * 396 M145 S0 F lcd_preheat_fan_speed (int x2) * * PIDTEMP: 66 bytes * 400 M301 E0 PIDC Kp[0], Ki[0], Kd[0], Kc[0] (float x4) * 416 M301 E1 PIDC Kp[1], Ki[1], Kd[1], Kc[1] (float x4) * 432 M301 E2 PIDC Kp[2], Ki[2], Kd[2], Kc[2] (float x4) * 448 M301 E3 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4) * 464 M301 L lpq_len (int) * * PIDTEMPBED: * 466 M304 PID thermalManager.bedKp, thermalManager.bedKi, thermalManager.bedKd (float x3) * * DOGLCD: 2 bytes * 478 M250 C lcd_contrast (int) * * FWRETRACT: 29 bytes * 480 M209 S autoretract_enabled (bool) * 481 M207 S retract_length (float) * 485 M207 W retract_length_swap (float) * 489 M207 F retract_feedrate_mm_s (float) * 493 M207 Z retract_zlift (float) * 497 M208 S retract_recover_length (float) * 501 M208 W retract_recover_length_swap (float) * 505 M208 F retract_recover_feedrate_mm_s (float) * * Volumetric Extrusion: 17 bytes * 509 M200 D volumetric_enabled (bool) * 510 M200 T D filament_size (float x4) (T0..3) * * 526 Minimum end-point * 1847 (526 + 36 + 9 + 288 + 988) Maximum end-point * */ #include "Marlin.h" #include "language.h" #include "endstops.h" #include "planner.h" #include "temperature.h" #include "ultralcd.h" #include "configuration_store.h" #if ENABLED(MESH_BED_LEVELING) #include "mesh_bed_leveling.h" #endif #if ENABLED(ABL_BILINEAR_SUBDIVISION) extern void bed_level_virt_interpolate(); #endif /** * Post-process after Retrieve or Reset */ void Config_Postprocess() { // steps per s2 needs to be updated to agree with units per s2 planner.reset_acceleration_rates(); // Make sure delta kinematics are updated before refreshing the // planner position so the stepper counts will be set correctly. #if ENABLED(DELTA) recalc_delta_settings(delta_radius, delta_diagonal_rod); #endif // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm // and init stepper.count[], planner.position[] with current_position planner.refresh_positioning(); #if ENABLED(PIDTEMP) thermalManager.updatePID(); #endif calculate_volumetric_multipliers(); #if DISABLED(NO_WORKSPACE_OFFSETS) || ENABLED(DUAL_X_CARRIAGE) || ENABLED(DELTA) // Software endstops depend on home_offset LOOP_XYZ(i) update_software_endstops((AxisEnum)i); #endif } #if ENABLED(EEPROM_SETTINGS) uint16_t eeprom_checksum; const char version[4] = EEPROM_VERSION; bool eeprom_write_error; void _EEPROM_writeData(int &pos, const uint8_t* value, uint16_t size) { if (eeprom_write_error) return; while (size--) { uint8_t * const p = (uint8_t * const)pos; const uint8_t v = *value; // EEPROM has only ~100,000 write cycles, // so only write bytes that have changed! if (v != eeprom_read_byte(p)) { eeprom_write_byte(p, v); if (eeprom_read_byte(p) != v) { SERIAL_ECHO_START; SERIAL_ECHOLNPGM(MSG_ERR_EEPROM_WRITE); eeprom_write_error = true; return; } } eeprom_checksum += v; pos++; value++; }; } bool eeprom_read_error; void _EEPROM_readData(int &pos, uint8_t* value, uint16_t size) { do { uint8_t c = eeprom_read_byte((unsigned char*)pos); if (!eeprom_read_error) *value = c; eeprom_checksum += c; pos++; value++; } while (--size); } #define DUMMY_PID_VALUE 3000.0f #define EEPROM_START() int eeprom_index = EEPROM_OFFSET #define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR) #define EEPROM_WRITE(VAR) _EEPROM_writeData(eeprom_index, (uint8_t*)&VAR, sizeof(VAR)) #define EEPROM_READ(VAR) _EEPROM_readData(eeprom_index, (uint8_t*)&VAR, sizeof(VAR)) #define EEPROM_ASSERT(TST,ERR) if () do{ SERIAL_ERROR_START; SERIAL_ERRORLNPGM(ERR); eeprom_read_error |= true; }while(0) /** * M500 - Store Configuration */ void Config_StoreSettings() { float dummy = 0.0f; char ver[4] = "000"; EEPROM_START(); eeprom_write_error = false; EEPROM_WRITE(ver); // invalidate data first EEPROM_SKIP(eeprom_checksum); // Skip the checksum slot eeprom_checksum = 0; // clear before first "real data" const uint8_t esteppers = COUNT(planner.axis_steps_per_mm) - XYZ; EEPROM_WRITE(esteppers); EEPROM_WRITE(planner.axis_steps_per_mm); EEPROM_WRITE(planner.max_feedrate_mm_s); EEPROM_WRITE(planner.max_acceleration_mm_per_s2); EEPROM_WRITE(planner.acceleration); EEPROM_WRITE(planner.retract_acceleration); EEPROM_WRITE(planner.travel_acceleration); EEPROM_WRITE(planner.min_feedrate_mm_s); EEPROM_WRITE(planner.min_travel_feedrate_mm_s); EEPROM_WRITE(planner.min_segment_time); EEPROM_WRITE(planner.max_jerk); #if ENABLED(NO_WORKSPACE_OFFSETS) float home_offset[XYZ] = { 0 }; #endif EEPROM_WRITE(home_offset); #if HOTENDS > 1 // Skip hotend 0 which must be 0 for (uint8_t e = 1; e < HOTENDS; e++) LOOP_XYZ(i) EEPROM_WRITE(hotend_offset[i][e]); #endif // // Mesh Bed Leveling // #if ENABLED(MESH_BED_LEVELING) // Compile time test that sizeof(mbl.z_values) is as expected typedef char c_assert[(sizeof(mbl.z_values) == (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS) * sizeof(dummy)) ? 1 : -1]; const bool leveling_is_on = TEST(mbl.status, MBL_STATUS_HAS_MESH_BIT); const uint8_t mesh_num_x = MESH_NUM_X_POINTS, mesh_num_y = MESH_NUM_Y_POINTS; EEPROM_WRITE(leveling_is_on); EEPROM_WRITE(mbl.z_offset); EEPROM_WRITE(mesh_num_x); EEPROM_WRITE(mesh_num_y); EEPROM_WRITE(mbl.z_values); #else // For disabled MBL write a default mesh const bool leveling_is_on = false; dummy = 0.0f; const uint8_t mesh_num_x = 3, mesh_num_y = 3; EEPROM_WRITE(leveling_is_on); EEPROM_WRITE(dummy); // z_offset EEPROM_WRITE(mesh_num_x); EEPROM_WRITE(mesh_num_y); for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummy); #endif // MESH_BED_LEVELING #if !HAS_BED_PROBE float zprobe_zoffset = 0; #endif EEPROM_WRITE(zprobe_zoffset); // // Planar Bed Leveling matrix // #if ABL_PLANAR EEPROM_WRITE(planner.bed_level_matrix); #else dummy = 0.0; for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy); #endif // // Bilinear Auto Bed Leveling // #if ENABLED(AUTO_BED_LEVELING_BILINEAR) // Compile time test that sizeof(bed_level_grid) is as expected typedef char c_assert[(sizeof(bed_level_grid) == (ABL_GRID_MAX_POINTS_X) * (ABL_GRID_MAX_POINTS_Y) * sizeof(dummy)) ? 1 : -1]; const uint8_t grid_max_x = ABL_GRID_MAX_POINTS_X, grid_max_y = ABL_GRID_MAX_POINTS_Y; EEPROM_WRITE(grid_max_x); // 1 byte EEPROM_WRITE(grid_max_y); // 1 byte EEPROM_WRITE(bilinear_grid_spacing); // 2 ints EEPROM_WRITE(bilinear_start); // 2 ints EEPROM_WRITE(bed_level_grid); // 9-256 floats #else // For disabled Bilinear Grid write an empty 3x3 grid const uint8_t grid_max_x = 3, grid_max_y = 3; const int bilinear_start[2] = { 0 }, bilinear_grid_spacing[2] = { 0 }; dummy = 0.0f; EEPROM_WRITE(grid_max_x); EEPROM_WRITE(grid_max_y); EEPROM_WRITE(bilinear_grid_spacing); EEPROM_WRITE(bilinear_start); for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummy); #endif // AUTO_BED_LEVELING_BILINEAR // 9 floats for DELTA / Z_DUAL_ENDSTOPS #if ENABLED(DELTA) EEPROM_WRITE(endstop_adj); // 3 floats EEPROM_WRITE(delta_radius); // 1 float EEPROM_WRITE(delta_diagonal_rod); // 1 float EEPROM_WRITE(delta_segments_per_second); // 1 float EEPROM_WRITE(delta_diagonal_rod_trim_tower_1); // 1 float EEPROM_WRITE(delta_diagonal_rod_trim_tower_2); // 1 float EEPROM_WRITE(delta_diagonal_rod_trim_tower_3); // 1 float #elif ENABLED(Z_DUAL_ENDSTOPS) EEPROM_WRITE(z_endstop_adj); // 1 float dummy = 0.0f; for (uint8_t q = 8; q--;) EEPROM_WRITE(dummy); #else dummy = 0.0f; for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy); #endif #if DISABLED(ULTIPANEL) const int lcd_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND }, lcd_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED }, lcd_preheat_fan_speed[2] = { PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED }; #endif // !ULTIPANEL EEPROM_WRITE(lcd_preheat_hotend_temp); EEPROM_WRITE(lcd_preheat_bed_temp); EEPROM_WRITE(lcd_preheat_fan_speed); for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) { #if ENABLED(PIDTEMP) if (e < HOTENDS) { EEPROM_WRITE(PID_PARAM(Kp, e)); EEPROM_WRITE(PID_PARAM(Ki, e)); EEPROM_WRITE(PID_PARAM(Kd, e)); #if ENABLED(PID_EXTRUSION_SCALING) EEPROM_WRITE(PID_PARAM(Kc, e)); #else dummy = 1.0f; // 1.0 = default kc EEPROM_WRITE(dummy); #endif } else #endif // !PIDTEMP { dummy = DUMMY_PID_VALUE; // When read, will not change the existing value EEPROM_WRITE(dummy); // Kp dummy = 0.0f; for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); // Ki, Kd, Kc } } // Hotends Loop #if DISABLED(PID_EXTRUSION_SCALING) int lpq_len = 20; #endif EEPROM_WRITE(lpq_len); #if DISABLED(PIDTEMPBED) dummy = DUMMY_PID_VALUE; for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); #else EEPROM_WRITE(thermalManager.bedKp); EEPROM_WRITE(thermalManager.bedKi); EEPROM_WRITE(thermalManager.bedKd); #endif #if !HAS_LCD_CONTRAST const int lcd_contrast = 32; #endif EEPROM_WRITE(lcd_contrast); #if ENABLED(FWRETRACT) EEPROM_WRITE(autoretract_enabled); EEPROM_WRITE(retract_length); #if EXTRUDERS > 1 EEPROM_WRITE(retract_length_swap); #else dummy = 0.0f; EEPROM_WRITE(dummy); #endif EEPROM_WRITE(retract_feedrate_mm_s); EEPROM_WRITE(retract_zlift); EEPROM_WRITE(retract_recover_length); #if EXTRUDERS > 1 EEPROM_WRITE(retract_recover_length_swap); #else dummy = 0.0f; EEPROM_WRITE(dummy); #endif EEPROM_WRITE(retract_recover_feedrate_mm_s); #endif // FWRETRACT EEPROM_WRITE(volumetric_enabled); // Save filament sizes for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) { if (q < COUNT(filament_size)) dummy = filament_size[q]; EEPROM_WRITE(dummy); } if (!eeprom_write_error) { uint16_t final_checksum = eeprom_checksum, eeprom_size = eeprom_index; // Write the EEPROM header eeprom_index = EEPROM_OFFSET; EEPROM_WRITE(version); EEPROM_WRITE(final_checksum); // Report storage size SERIAL_ECHO_START; SERIAL_ECHOPAIR("Settings Stored (", eeprom_size - (EEPROM_OFFSET)); SERIAL_ECHOLNPGM(" bytes)"); } } /** * M501 - Retrieve Configuration */ void Config_RetrieveSettings() { EEPROM_START(); eeprom_read_error = false; // If set EEPROM_READ won't write into RAM char stored_ver[4]; EEPROM_READ(stored_ver); uint16_t stored_checksum; EEPROM_READ(stored_checksum); // SERIAL_ECHOPAIR("Version: [", version); // SERIAL_ECHOPAIR("] Stored version: [", stored_ver); // SERIAL_CHAR(']'); // SERIAL_EOL; // Version has to match or defaults are used if (strncmp(version, stored_ver, 3) != 0) { Config_ResetDefault(); } else { float dummy = 0; eeprom_checksum = 0; // clear before reading first "real data" // Number of esteppers may change uint8_t esteppers; EEPROM_READ(esteppers); // Get only the number of E stepper parameters previously stored // Any steppers added later are set to their defaults const float def1[] = DEFAULT_AXIS_STEPS_PER_UNIT, def2[] = DEFAULT_MAX_FEEDRATE; const uint32_t def3[] = DEFAULT_MAX_ACCELERATION; float tmp1[XYZ + esteppers], tmp2[XYZ + esteppers]; uint32_t tmp3[XYZ + esteppers]; EEPROM_READ(tmp1); EEPROM_READ(tmp2); EEPROM_READ(tmp3); LOOP_XYZE_N(i) { planner.axis_steps_per_mm[i] = i < XYZ + esteppers ? tmp1[i] : def1[i < COUNT(def1) ? i : COUNT(def1) - 1]; planner.max_feedrate_mm_s[i] = i < XYZ + esteppers ? tmp2[i] : def2[i < COUNT(def2) ? i : COUNT(def2) - 1]; planner.max_acceleration_mm_per_s2[i] = i < XYZ + esteppers ? tmp3[i] : def3[i < COUNT(def3) ? i : COUNT(def3) - 1]; } EEPROM_READ(planner.acceleration); EEPROM_READ(planner.retract_acceleration); EEPROM_READ(planner.travel_acceleration); EEPROM_READ(planner.min_feedrate_mm_s); EEPROM_READ(planner.min_travel_feedrate_mm_s); EEPROM_READ(planner.min_segment_time); EEPROM_READ(planner.max_jerk); #if ENABLED(NO_WORKSPACE_OFFSETS) float home_offset[XYZ]; #endif EEPROM_READ(home_offset); #if HOTENDS > 1 // Skip hotend 0 which must be 0 for (uint8_t e = 1; e < HOTENDS; e++) LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]); #endif // // Mesh (Manual) Bed Leveling // bool leveling_is_on; uint8_t mesh_num_x, mesh_num_y; EEPROM_READ(leveling_is_on); EEPROM_READ(dummy); EEPROM_READ(mesh_num_x); EEPROM_READ(mesh_num_y); #if ENABLED(MESH_BED_LEVELING) mbl.status = leveling_is_on ? _BV(MBL_STATUS_HAS_MESH_BIT) : 0; mbl.z_offset = dummy; if (mesh_num_x == MESH_NUM_X_POINTS && mesh_num_y == MESH_NUM_Y_POINTS) { // EEPROM data fits the current mesh EEPROM_READ(mbl.z_values); } else { // EEPROM data is stale mbl.reset(); for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy); } #else // MBL is disabled - skip the stored data for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy); #endif // MESH_BED_LEVELING #if !HAS_BED_PROBE float zprobe_zoffset = 0; #endif EEPROM_READ(zprobe_zoffset); // // Planar Bed Leveling matrix // #if ABL_PLANAR EEPROM_READ(planner.bed_level_matrix); #else for (uint8_t q = 9; q--;) EEPROM_READ(dummy); #endif // // Bilinear Auto Bed Leveling // uint8_t grid_max_x, grid_max_y; EEPROM_READ(grid_max_x); // 1 byte EEPROM_READ(grid_max_y); // 1 byte #if ENABLED(AUTO_BED_LEVELING_BILINEAR) if (grid_max_x == ABL_GRID_MAX_POINTS_X && grid_max_y == ABL_GRID_MAX_POINTS_Y) { set_bed_leveling_enabled(false); EEPROM_READ(bilinear_grid_spacing); // 2 ints EEPROM_READ(bilinear_start); // 2 ints EEPROM_READ(bed_level_grid); // 9 to 256 floats #if ENABLED(ABL_BILINEAR_SUBDIVISION) bed_level_virt_interpolate(); #endif //set_bed_leveling_enabled(leveling_is_on); } else // EEPROM data is stale #endif // AUTO_BED_LEVELING_BILINEAR { // Skip past disabled (or stale) Bilinear Grid data int bgs[2], bs[2]; EEPROM_READ(bgs); EEPROM_READ(bs); for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummy); } #if ENABLED(DELTA) EEPROM_READ(endstop_adj); // 3 floats EEPROM_READ(delta_radius); // 1 float EEPROM_READ(delta_diagonal_rod); // 1 float EEPROM_READ(delta_segments_per_second); // 1 float EEPROM_READ(delta_diagonal_rod_trim_tower_1); // 1 float EEPROM_READ(delta_diagonal_rod_trim_tower_2); // 1 float EEPROM_READ(delta_diagonal_rod_trim_tower_3); // 1 float #elif ENABLED(Z_DUAL_ENDSTOPS) EEPROM_READ(z_endstop_adj); dummy = 0.0f; for (uint8_t q=8; q--;) EEPROM_READ(dummy); #else dummy = 0.0f; for (uint8_t q=9; q--;) EEPROM_READ(dummy); #endif #if DISABLED(ULTIPANEL) int lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2], lcd_preheat_fan_speed[2]; #endif EEPROM_READ(lcd_preheat_hotend_temp); EEPROM_READ(lcd_preheat_bed_temp); EEPROM_READ(lcd_preheat_fan_speed); #if ENABLED(PIDTEMP) for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) { EEPROM_READ(dummy); // Kp if (e < HOTENDS && dummy != DUMMY_PID_VALUE) { // do not need to scale PID values as the values in EEPROM are already scaled PID_PARAM(Kp, e) = dummy; EEPROM_READ(PID_PARAM(Ki, e)); EEPROM_READ(PID_PARAM(Kd, e)); #if ENABLED(PID_EXTRUSION_SCALING) EEPROM_READ(PID_PARAM(Kc, e)); #else EEPROM_READ(dummy); #endif } else { for (uint8_t q=3; q--;) EEPROM_READ(dummy); // Ki, Kd, Kc } } #else // !PIDTEMP // 4 x 4 = 16 slots for PID parameters for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ(dummy); // Kp, Ki, Kd, Kc #endif // !PIDTEMP #if DISABLED(PID_EXTRUSION_SCALING) int lpq_len; #endif EEPROM_READ(lpq_len); #if ENABLED(PIDTEMPBED) EEPROM_READ(dummy); // bedKp if (dummy != DUMMY_PID_VALUE) { thermalManager.bedKp = dummy; EEPROM_READ(thermalManager.bedKi); EEPROM_READ(thermalManager.bedKd); } #else for (uint8_t q=3; q--;) EEPROM_READ(dummy); // bedKp, bedKi, bedKd #endif #if !HAS_LCD_CONTRAST int lcd_contrast; #endif EEPROM_READ(lcd_contrast); #if ENABLED(FWRETRACT) EEPROM_READ(autoretract_enabled); EEPROM_READ(retract_length); #if EXTRUDERS > 1 EEPROM_READ(retract_length_swap); #else EEPROM_READ(dummy); #endif EEPROM_READ(retract_feedrate_mm_s); EEPROM_READ(retract_zlift); EEPROM_READ(retract_recover_length); #if EXTRUDERS > 1 EEPROM_READ(retract_recover_length_swap); #else EEPROM_READ(dummy); #endif EEPROM_READ(retract_recover_feedrate_mm_s); #endif // FWRETRACT EEPROM_READ(volumetric_enabled); for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) { EEPROM_READ(dummy); if (q < COUNT(filament_size)) filament_size[q] = dummy; } if (eeprom_checksum == stored_checksum) { if (eeprom_read_error) Config_ResetDefault(); else { Config_Postprocess(); SERIAL_ECHO_START; SERIAL_ECHO(version); SERIAL_ECHOPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET)); SERIAL_ECHOLNPGM(" bytes)"); } } else { SERIAL_ERROR_START; SERIAL_ERRORLNPGM("EEPROM checksum mismatch"); Config_ResetDefault(); } } #if ENABLED(EEPROM_CHITCHAT) Config_PrintSettings(); #endif } #else // !EEPROM_SETTINGS void Config_StoreSettings() { SERIAL_ERROR_START; SERIAL_ERRORLNPGM("EEPROM disabled"); } #endif // !EEPROM_SETTINGS /** * M502 - Reset Configuration */ void Config_ResetDefault() { const float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT, tmp2[] = DEFAULT_MAX_FEEDRATE; const uint32_t tmp3[] = DEFAULT_MAX_ACCELERATION; LOOP_XYZE_N(i) { planner.axis_steps_per_mm[i] = tmp1[i < COUNT(tmp1) ? i : COUNT(tmp1) - 1]; planner.max_feedrate_mm_s[i] = tmp2[i < COUNT(tmp2) ? i : COUNT(tmp2) - 1]; planner.max_acceleration_mm_per_s2[i] = tmp3[i < COUNT(tmp3) ? i : COUNT(tmp3) - 1]; } planner.acceleration = DEFAULT_ACCELERATION; planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION; planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION; planner.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE; planner.min_segment_time = DEFAULT_MINSEGMENTTIME; planner.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE; planner.max_jerk[X_AXIS] = DEFAULT_XJERK; planner.max_jerk[Y_AXIS] = DEFAULT_YJERK; planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK; planner.max_jerk[E_AXIS] = DEFAULT_EJERK; #if DISABLED(NO_WORKSPACE_OFFSETS) ZERO(home_offset); #endif #if HOTENDS > 1 constexpr float tmp4[XYZ][HOTENDS] = { HOTEND_OFFSET_X, HOTEND_OFFSET_Y #ifdef HOTEND_OFFSET_Z , HOTEND_OFFSET_Z #else , { 0 } #endif }; static_assert( tmp4[X_AXIS][0] == 0 && tmp4[Y_AXIS][0] == 0 && tmp4[Z_AXIS][0] == 0, "Offsets for the first hotend must be 0.0." ); LOOP_XYZ(i) HOTEND_LOOP() hotend_offset[i][e] = tmp4[i][e]; #endif // Applies to all MBL and ABL #if PLANNER_LEVELING reset_bed_level(); #endif #if HAS_BED_PROBE zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER; #endif #if ENABLED(DELTA) const float adj[ABC] = DELTA_ENDSTOP_ADJ; endstop_adj[A_AXIS] = adj[A_AXIS]; endstop_adj[B_AXIS] = adj[B_AXIS]; endstop_adj[C_AXIS] = adj[C_AXIS]; delta_radius = DELTA_RADIUS; delta_diagonal_rod = DELTA_DIAGONAL_ROD; delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND; delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1; delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2; delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3; #elif ENABLED(Z_DUAL_ENDSTOPS) z_endstop_adj = 0; #endif #if ENABLED(ULTIPANEL) lcd_preheat_hotend_temp[0] = PREHEAT_1_TEMP_HOTEND; lcd_preheat_hotend_temp[1] = PREHEAT_2_TEMP_HOTEND; lcd_preheat_bed_temp[0] = PREHEAT_1_TEMP_BED; lcd_preheat_bed_temp[1] = PREHEAT_2_TEMP_BED; lcd_preheat_fan_speed[0] = PREHEAT_1_FAN_SPEED; lcd_preheat_fan_speed[1] = PREHEAT_2_FAN_SPEED; #endif #if HAS_LCD_CONTRAST lcd_contrast = DEFAULT_LCD_CONTRAST; #endif #if ENABLED(PIDTEMP) #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1 HOTEND_LOOP() #endif { PID_PARAM(Kp, e) = DEFAULT_Kp; PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki); PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd); #if ENABLED(PID_EXTRUSION_SCALING) PID_PARAM(Kc, e) = DEFAULT_Kc; #endif } #if ENABLED(PID_EXTRUSION_SCALING) lpq_len = 20; // default last-position-queue size #endif #endif // PIDTEMP #if ENABLED(PIDTEMPBED) thermalManager.bedKp = DEFAULT_bedKp; thermalManager.bedKi = scalePID_i(DEFAULT_bedKi); thermalManager.bedKd = scalePID_d(DEFAULT_bedKd); #endif #if ENABLED(FWRETRACT) autoretract_enabled = false; retract_length = RETRACT_LENGTH; #if EXTRUDERS > 1 retract_length_swap = RETRACT_LENGTH_SWAP; #endif retract_feedrate_mm_s = RETRACT_FEEDRATE; retract_zlift = RETRACT_ZLIFT; retract_recover_length = RETRACT_RECOVER_LENGTH; #if EXTRUDERS > 1 retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP; #endif retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE; #endif volumetric_enabled = #if ENABLED(VOLUMETRIC_DEFAULT_ON) true #else false #endif ; for (uint8_t q = 0; q < COUNT(filament_size); q++) filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA; endstops.enable_globally( #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT) (true) #else (false) #endif ); Config_Postprocess(); SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded"); } #if DISABLED(DISABLE_M503) #define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START; }while(0) /** * M503 - Print Configuration */ void Config_PrintSettings(bool forReplay) { // Always have this function, even with EEPROM_SETTINGS disabled, the current values will be shown CONFIG_ECHO_START; if (!forReplay) { SERIAL_ECHOLNPGM("Steps per unit:"); CONFIG_ECHO_START; } SERIAL_ECHOPAIR(" M92 X", planner.axis_steps_per_mm[X_AXIS]); SERIAL_ECHOPAIR(" Y", planner.axis_steps_per_mm[Y_AXIS]); SERIAL_ECHOPAIR(" Z", planner.axis_steps_per_mm[Z_AXIS]); #if DISABLED(DISTINCT_E_FACTORS) SERIAL_ECHOPAIR(" E", planner.axis_steps_per_mm[E_AXIS]); #endif SERIAL_EOL; #if ENABLED(DISTINCT_E_FACTORS) for (uint8_t i = 0; i < E_STEPPERS; i++) { SERIAL_ECHOPAIR(" M92 T", (int)i); SERIAL_ECHOLNPAIR(" E", planner.axis_steps_per_mm[E_AXIS + i]); } #endif CONFIG_ECHO_START; if (!forReplay) { SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):"); CONFIG_ECHO_START; } SERIAL_ECHOPAIR(" M203 X", planner.max_feedrate_mm_s[X_AXIS]); SERIAL_ECHOPAIR(" Y", planner.max_feedrate_mm_s[Y_AXIS]); SERIAL_ECHOPAIR(" Z", planner.max_feedrate_mm_s[Z_AXIS]); #if DISABLED(DISTINCT_E_FACTORS) SERIAL_ECHOPAIR(" E", planner.max_feedrate_mm_s[E_AXIS]); #endif SERIAL_EOL; #if ENABLED(DISTINCT_E_FACTORS) for (uint8_t i = 0; i < E_STEPPERS; i++) { SERIAL_ECHOPAIR(" M203 T", (int)i); SERIAL_ECHOLNPAIR(" E", planner.max_feedrate_mm_s[E_AXIS + i]); } #endif CONFIG_ECHO_START; if (!forReplay) { SERIAL_ECHOLNPGM("Maximum Acceleration (mm/s2):"); CONFIG_ECHO_START; } SERIAL_ECHOPAIR(" M201 X", planner.max_acceleration_mm_per_s2[X_AXIS]); SERIAL_ECHOPAIR(" Y", planner.max_acceleration_mm_per_s2[Y_AXIS]); SERIAL_ECHOPAIR(" Z", planner.max_acceleration_mm_per_s2[Z_AXIS]); #if DISABLED(DISTINCT_E_FACTORS) SERIAL_ECHOPAIR(" E", planner.max_acceleration_mm_per_s2[E_AXIS]); #endif SERIAL_EOL; #if ENABLED(DISTINCT_E_FACTORS) for (uint8_t i = 0; i < E_STEPPERS; i++) { SERIAL_ECHOPAIR(" M201 T", (int)i); SERIAL_ECHOLNPAIR(" E", planner.max_acceleration_mm_per_s2[E_AXIS + i]); } #endif CONFIG_ECHO_START; if (!forReplay) { SERIAL_ECHOLNPGM("Accelerations: P=printing, R=retract and T=travel"); CONFIG_ECHO_START; } SERIAL_ECHOPAIR(" M204 P", planner.acceleration); SERIAL_ECHOPAIR(" R", planner.retract_acceleration); SERIAL_ECHOPAIR(" T", planner.travel_acceleration); SERIAL_EOL; CONFIG_ECHO_START; if (!forReplay) { SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)"); CONFIG_ECHO_START; } SERIAL_ECHOPAIR(" M205 S", planner.min_feedrate_mm_s); SERIAL_ECHOPAIR(" T", planner.min_travel_feedrate_mm_s); SERIAL_ECHOPAIR(" B", planner.min_segment_time); SERIAL_ECHOPAIR(" X", planner.max_jerk[X_AXIS]); SERIAL_ECHOPAIR(" Y", planner.max_jerk[Y_AXIS]); SERIAL_ECHOPAIR(" Z", planner.max_jerk[Z_AXIS]); SERIAL_ECHOPAIR(" E", planner.max_jerk[E_AXIS]); SERIAL_EOL; #if DISABLED(NO_WORKSPACE_OFFSETS) CONFIG_ECHO_START; if (!forReplay) { SERIAL_ECHOLNPGM("Home offset (mm)"); CONFIG_ECHO_START; } SERIAL_ECHOPAIR(" M206 X", home_offset[X_AXIS]); SERIAL_ECHOPAIR(" Y", home_offset[Y_AXIS]); SERIAL_ECHOPAIR(" Z", home_offset[Z_AXIS]); SERIAL_EOL; #endif #if HOTENDS > 1 CONFIG_ECHO_START; if (!forReplay) { SERIAL_ECHOLNPGM("Hotend offsets (mm)"); CONFIG_ECHO_START; } for (uint8_t e = 1; e < HOTENDS; e++) { SERIAL_ECHOPAIR(" M218 T", (int)e); SERIAL_ECHOPAIR(" X", hotend_offset[X_AXIS][e]); SERIAL_ECHOPAIR(" Y", hotend_offset[Y_AXIS][e]); #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER) SERIAL_ECHOPAIR(" Z", hotend_offset[Z_AXIS][e]); #endif SERIAL_EOL; } #endif #if ENABLED(MESH_BED_LEVELING) if (!forReplay) { SERIAL_ECHOLNPGM("Mesh Bed Leveling:"); CONFIG_ECHO_START; } SERIAL_ECHOLNPAIR(" M420 S", mbl.has_mesh() ? 1 : 0); for (uint8_t py = 1; py <= MESH_NUM_Y_POINTS; py++) { for (uint8_t px = 1; px <= MESH_NUM_X_POINTS; px++) { CONFIG_ECHO_START; SERIAL_ECHOPAIR(" G29 S3 X", (int)px); SERIAL_ECHOPAIR(" Y", (int)py); SERIAL_ECHOPGM(" Z"); SERIAL_PROTOCOL_F(mbl.z_values[py-1][px-1], 5); SERIAL_EOL; } } #elif HAS_ABL if (!forReplay) { SERIAL_ECHOLNPGM("Auto Bed Leveling:"); CONFIG_ECHO_START; } SERIAL_ECHOLNPAIR(" M420 S", planner.abl_enabled ? 1 : 0); #endif #if ENABLED(DELTA) CONFIG_ECHO_START; if (!forReplay) { SERIAL_ECHOLNPGM("Endstop adjustment (mm):"); CONFIG_ECHO_START; } SERIAL_ECHOPAIR(" M666 X", endstop_adj[X_AXIS]); SERIAL_ECHOPAIR(" Y", endstop_adj[Y_AXIS]); SERIAL_ECHOPAIR(" Z", endstop_adj[Z_AXIS]); SERIAL_EOL; CONFIG_ECHO_START; if (!forReplay) { SERIAL_ECHOLNPGM("Delta settings: L=diagonal_rod, R=radius, S=segments_per_second, ABC=diagonal_rod_trim_tower_[123]"); CONFIG_ECHO_START; } SERIAL_ECHOPAIR(" M665 L", delta_diagonal_rod); SERIAL_ECHOPAIR(" R", delta_radius); SERIAL_ECHOPAIR(" S", delta_segments_per_second); SERIAL_ECHOPAIR(" A", delta_diagonal_rod_trim_tower_1); SERIAL_ECHOPAIR(" B", delta_diagonal_rod_trim_tower_2); SERIAL_ECHOPAIR(" C", delta_diagonal_rod_trim_tower_3); SERIAL_EOL; #elif ENABLED(Z_DUAL_ENDSTOPS) CONFIG_ECHO_START; if (!forReplay) { SERIAL_ECHOLNPGM("Z2 Endstop adjustment (mm):"); CONFIG_ECHO_START; } SERIAL_ECHOPAIR(" M666 Z", z_endstop_adj); SERIAL_EOL; #endif // DELTA #if ENABLED(ULTIPANEL) CONFIG_ECHO_START; if (!forReplay) { SERIAL_ECHOLNPGM("Material heatup parameters:"); CONFIG_ECHO_START; } for (uint8_t i = 0; i < COUNT(lcd_preheat_hotend_temp); i++) { SERIAL_ECHOPAIR(" M145 S", (int)i); SERIAL_ECHOPAIR(" H", lcd_preheat_hotend_temp[i]); SERIAL_ECHOPAIR(" B", lcd_preheat_bed_temp[i]); SERIAL_ECHOPAIR(" F", lcd_preheat_fan_speed[i]); SERIAL_EOL; } #endif // ULTIPANEL #if HAS_PID_HEATING CONFIG_ECHO_START; if (!forReplay) { SERIAL_ECHOLNPGM("PID settings:"); } #if ENABLED(PIDTEMP) #if HOTENDS > 1 if (forReplay) { HOTEND_LOOP() { CONFIG_ECHO_START; SERIAL_ECHOPAIR(" M301 E", e); SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, e)); SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, e))); SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, e))); #if ENABLED(PID_EXTRUSION_SCALING) SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e)); if (e == 0) SERIAL_ECHOPAIR(" L", lpq_len); #endif SERIAL_EOL; } } else #endif // HOTENDS > 1 // !forReplay || HOTENDS == 1 { CONFIG_ECHO_START; SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0 SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0))); SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0))); #if ENABLED(PID_EXTRUSION_SCALING) SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, 0)); SERIAL_ECHOPAIR(" L", lpq_len); #endif SERIAL_EOL; } #endif // PIDTEMP #if ENABLED(PIDTEMPBED) CONFIG_ECHO_START; SERIAL_ECHOPAIR(" M304 P", thermalManager.bedKp); SERIAL_ECHOPAIR(" I", unscalePID_i(thermalManager.bedKi)); SERIAL_ECHOPAIR(" D", unscalePID_d(thermalManager.bedKd)); SERIAL_EOL; #endif #endif // PIDTEMP || PIDTEMPBED #if HAS_LCD_CONTRAST CONFIG_ECHO_START; if (!forReplay) { SERIAL_ECHOLNPGM("LCD Contrast:"); CONFIG_ECHO_START; } SERIAL_ECHOPAIR(" M250 C", lcd_contrast); SERIAL_EOL; #endif #if ENABLED(FWRETRACT) CONFIG_ECHO_START; if (!forReplay) { SERIAL_ECHOLNPGM("Retract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)"); CONFIG_ECHO_START; } SERIAL_ECHOPAIR(" M207 S", retract_length); #if EXTRUDERS > 1 SERIAL_ECHOPAIR(" W", retract_length_swap); #endif SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_feedrate_mm_s)); SERIAL_ECHOPAIR(" Z", retract_zlift); SERIAL_EOL; CONFIG_ECHO_START; if (!forReplay) { SERIAL_ECHOLNPGM("Recover: S=Extra length (mm) F:Speed (mm/m)"); CONFIG_ECHO_START; } SERIAL_ECHOPAIR(" M208 S", retract_recover_length); #if EXTRUDERS > 1 SERIAL_ECHOPAIR(" W", retract_recover_length_swap); #endif SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_recover_feedrate_mm_s)); SERIAL_EOL; CONFIG_ECHO_START; if (!forReplay) { SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries"); CONFIG_ECHO_START; } SERIAL_ECHOPAIR(" M209 S", autoretract_enabled ? 1 : 0); SERIAL_EOL; #endif // FWRETRACT /** * Volumetric extrusion M200 */ if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOPGM("Filament settings:"); if (volumetric_enabled) SERIAL_EOL; else SERIAL_ECHOLNPGM(" Disabled"); } CONFIG_ECHO_START; SERIAL_ECHOPAIR(" M200 D", filament_size[0]); SERIAL_EOL; #if EXTRUDERS > 1 CONFIG_ECHO_START; SERIAL_ECHOPAIR(" M200 T1 D", filament_size[1]); SERIAL_EOL; #if EXTRUDERS > 2 CONFIG_ECHO_START; SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]); SERIAL_EOL; #if EXTRUDERS > 3 CONFIG_ECHO_START; SERIAL_ECHOPAIR(" M200 T3 D", filament_size[3]); SERIAL_EOL; #endif #endif #endif if (!volumetric_enabled) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM(" M200 D0"); } /** * Auto Bed Leveling */ #if HAS_BED_PROBE if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM("Z-Probe Offset (mm):"); } CONFIG_ECHO_START; SERIAL_ECHOPAIR(" M851 Z", zprobe_zoffset); SERIAL_EOL; #endif } #endif // !DISABLE_M503