/** * Marlin 3D Printer Firmware * Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #include "../../../inc/MarlinConfig.h" #if ENABLED(AUTO_BED_LEVELING_UBL) #include "../bedlevel.h" #include "../../../module/planner.h" #include "../../../module/stepper.h" #include "../../../module/motion.h" #if ENABLED(DELTA) #include "../../../module/delta.h" #endif #include "../../../MarlinCore.h" #include #if !UBL_SEGMENTED void unified_bed_leveling::line_to_destination_cartesian(const feedRate_t &scaled_fr_mm_s, const uint8_t extruder) { /** * Much of the nozzle movement will be within the same cell. So we will do as little computation * as possible to determine if this is the case. If this move is within the same cell, we will * just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave */ #if HAS_POSITION_MODIFIERS xyze_pos_t start = current_position, end = destination; planner.apply_modifiers(start); planner.apply_modifiers(end); #else const xyze_pos_t &start = current_position, &end = destination; #endif const xy_int8_t istart = cell_indexes(start), iend = cell_indexes(end); // A move within the same cell needs no splitting if (istart == iend) { // For a move off the bed, use a constant Z raise if (!WITHIN(iend.x, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iend.y, 0, GRID_MAX_POINTS_Y - 1)) { // Note: There is no Z Correction in this case. We are off the grid and don't know what // a reasonable correction would be. If the user has specified a UBL_Z_RAISE_WHEN_OFF_MESH // value, that will be used instead of a calculated (Bi-Linear interpolation) correction. #ifdef UBL_Z_RAISE_WHEN_OFF_MESH end.z += UBL_Z_RAISE_WHEN_OFF_MESH; #endif planner.buffer_segment(end, scaled_fr_mm_s, extruder); current_position = destination; return; } FINAL_MOVE: // The distance is always MESH_X_DIST so multiply by the constant reciprocal. const float xratio = (end.x - mesh_index_to_xpos(iend.x)) * RECIPROCAL(MESH_X_DIST); float z1, z2; if (iend.x >= GRID_MAX_POINTS_X - 1) z1 = z2 = 0.0; else { z1 = z_values[iend.x ][iend.y ] + xratio * (z_values[iend.x + 1][iend.y ] - z_values[iend.x][iend.y ]), z2 = z_values[iend.x ][iend.y + 1] + xratio * (z_values[iend.x + 1][iend.y + 1] - z_values[iend.x][iend.y + 1]); } // X cell-fraction done. Interpolate the two Z offsets with the Y fraction for the final Z offset. const float yratio = (end.y - mesh_index_to_ypos(iend.y)) * RECIPROCAL(MESH_Y_DIST), z0 = iend.y < GRID_MAX_POINTS_Y - 1 ? (z1 + (z2 - z1) * yratio) * planner.fade_scaling_factor_for_z(end.z) : 0.0; // Undefined parts of the Mesh in z_values[][] are NAN. // Replace NAN corrections with 0.0 to prevent NAN propagation. if (!isnan(z0)) end.z += z0; planner.buffer_segment(end, scaled_fr_mm_s, extruder); current_position = destination; return; } /** * Past this point the move is known to cross one or more mesh lines. Check for the most common * case - crossing only one X or Y line - after details are worked out to reduce computation. */ const xy_float_t dist = end - start; const xy_bool_t neg { dist.x < 0, dist.y < 0 }; const xy_int8_t ineg { int8_t(neg.x), int8_t(neg.y) }; const xy_float_t sign { neg.x ? -1.0f : 1.0f, neg.y ? -1.0f : 1.0f }; const xy_int8_t iadd { int8_t(iend.x == istart.x ? 0 : sign.x), int8_t(iend.y == istart.y ? 0 : sign.y) }; /** * Compute the extruder scaling factor for each partial move, checking for * zero-length moves that would result in an infinite scaling factor. * A float divide is required for this, but then it just multiplies. * Also select a scaling factor based on the larger of the X and Y * components. The larger of the two is used to preserve precision. */ const xy_float_t ad = sign * dist; const bool use_x_dist = ad.x > ad.y; float on_axis_distance = use_x_dist ? dist.x : dist.y, e_position = end.e - start.e, z_position = end.z - start.z; const float e_normalized_dist = e_position / on_axis_distance, // Allow divide by zero z_normalized_dist = z_position / on_axis_distance; xy_int8_t icell = istart; const float ratio = dist.y / dist.x, // Allow divide by zero c = start.y - ratio * start.x; const bool inf_normalized_flag = isinf(e_normalized_dist), inf_ratio_flag = isinf(ratio); /** * Handle vertical lines that stay within one column. * These need not be perfectly vertical. */ if (iadd.x == 0) { // Vertical line? icell.y += ineg.y; // Line going down? Just go to the bottom. while (icell.y != iend.y + ineg.y) { icell.y += iadd.y; const float next_mesh_line_y = mesh_index_to_ypos(icell.y); /** * Skip the calculations for an infinite slope. * For others the next X is the same so this can continue. * Calculate X at the next Y mesh line. */ const float rx = inf_ratio_flag ? start.x : (next_mesh_line_y - c) / ratio; float z0 = z_correction_for_x_on_horizontal_mesh_line(rx, icell.x, icell.y) * planner.fade_scaling_factor_for_z(end.z); // Undefined parts of the Mesh in z_values[][] are NAN. // Replace NAN corrections with 0.0 to prevent NAN propagation. if (isnan(z0)) z0 = 0.0; const float ry = mesh_index_to_ypos(icell.y); /** * Without this check, it's possible to generate a zero length move, as in the case where * the line is heading down, starting exactly on a mesh line boundary. Since this is rare * it might be fine to remove this check and let planner.buffer_segment() filter it out. */ if (ry != start.y) { if (!inf_normalized_flag) { // fall-through faster than branch on_axis_distance = use_x_dist ? rx - start.x : ry - start.y; e_position = start.e + on_axis_distance * e_normalized_dist; z_position = start.z + on_axis_distance * z_normalized_dist; } else { e_position = end.e; z_position = end.z; } planner.buffer_segment(rx, ry, z_position + z0, e_position, scaled_fr_mm_s, extruder); } //else printf("FIRST MOVE PRUNED "); } // At the final destination? Usually not, but when on a Y Mesh Line it's completed. if (xy_pos_t(current_position) != xy_pos_t(end)) goto FINAL_MOVE; current_position = destination; return; } /** * Handle horizontal lines that stay within one row. * These need not be perfectly horizontal. */ if (iadd.y == 0) { // Horizontal line? icell.x += ineg.x; // Heading left? Just go to the left edge of the cell for the first move. while (icell.x != iend.x + ineg.x) { icell.x += iadd.x; const float rx = mesh_index_to_xpos(icell.x); const float ry = ratio * rx + c; // Calculate Y at the next X mesh line float z0 = z_correction_for_y_on_vertical_mesh_line(ry, icell.x, icell.y) * planner.fade_scaling_factor_for_z(end.z); // Undefined parts of the Mesh in z_values[][] are NAN. // Replace NAN corrections with 0.0 to prevent NAN propagation. if (isnan(z0)) z0 = 0.0; /** * Without this check, it's possible to generate a zero length move, as in the case where * the line is heading left, starting exactly on a mesh line boundary. Since this is rare * it might be fine to remove this check and let planner.buffer_segment() filter it out. */ if (rx != start.x) { if (!inf_normalized_flag) { on_axis_distance = use_x_dist ? rx - start.x : ry - start.y; e_position = start.e + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move z_position = start.z + on_axis_distance * z_normalized_dist; } else { e_position = end.e; z_position = end.z; } if (!planner.buffer_segment(rx, ry, z_position + z0, e_position, scaled_fr_mm_s, extruder)) break; } //else printf("FIRST MOVE PRUNED "); } if (xy_pos_t(current_position) != xy_pos_t(end)) goto FINAL_MOVE; current_position = destination; return; } /** * * Generic case of a line crossing both X and Y Mesh lines. * */ xy_int8_t cnt = (istart - iend).ABS(); icell += ineg; while (cnt) { const float next_mesh_line_x = mesh_index_to_xpos(icell.x + iadd.x), next_mesh_line_y = mesh_index_to_ypos(icell.y + iadd.y), ry = ratio * next_mesh_line_x + c, // Calculate Y at the next X mesh line rx = (next_mesh_line_y - c) / ratio; // Calculate X at the next Y mesh line // (No need to worry about ratio == 0. // In that case, it was already detected // as a vertical line move above.) if (neg.x == (rx > next_mesh_line_x)) { // Check if we hit the Y line first // Yes! Crossing a Y Mesh Line next float z0 = z_correction_for_x_on_horizontal_mesh_line(rx, icell.x - ineg.x, icell.y + iadd.y) * planner.fade_scaling_factor_for_z(end.z); // Undefined parts of the Mesh in z_values[][] are NAN. // Replace NAN corrections with 0.0 to prevent NAN propagation. if (isnan(z0)) z0 = 0.0; if (!inf_normalized_flag) { on_axis_distance = use_x_dist ? rx - start.x : next_mesh_line_y - start.y; e_position = start.e + on_axis_distance * e_normalized_dist; z_position = start.z + on_axis_distance * z_normalized_dist; } else { e_position = end.e; z_position = end.z; } if (!planner.buffer_segment(rx, next_mesh_line_y, z_position + z0, e_position, scaled_fr_mm_s, extruder)) break; icell.y += iadd.y; cnt.y--; } else { // Yes! Crossing a X Mesh Line next float z0 = z_correction_for_y_on_vertical_mesh_line(ry, icell.x + iadd.x, icell.y - ineg.y) * planner.fade_scaling_factor_for_z(end.z); // Undefined parts of the Mesh in z_values[][] are NAN. // Replace NAN corrections with 0.0 to prevent NAN propagation. if (isnan(z0)) z0 = 0.0; if (!inf_normalized_flag) { on_axis_distance = use_x_dist ? next_mesh_line_x - start.x : ry - start.y; e_position = start.e + on_axis_distance * e_normalized_dist; z_position = start.z + on_axis_distance * z_normalized_dist; } else { e_position = end.e; z_position = end.z; } if (!planner.buffer_segment(next_mesh_line_x, ry, z_position + z0, e_position, scaled_fr_mm_s, extruder)) break; icell.x += iadd.x; cnt.x--; } if (cnt.x < 0 || cnt.y < 0) break; // Too far! Exit the loop and go to FINAL_MOVE } if (xy_pos_t(current_position) != xy_pos_t(end)) goto FINAL_MOVE; current_position = destination; } #else // UBL_SEGMENTED #if IS_SCARA #define DELTA_SEGMENT_MIN_LENGTH 0.25 // SCARA minimum segment size is 0.25mm #elif ENABLED(DELTA) #define DELTA_SEGMENT_MIN_LENGTH 0.10 // mm (still subject to DELTA_SEGMENTS_PER_SECOND) #else // CARTESIAN #ifdef LEVELED_SEGMENT_LENGTH #define DELTA_SEGMENT_MIN_LENGTH LEVELED_SEGMENT_LENGTH #else #define DELTA_SEGMENT_MIN_LENGTH 1.00 // mm (similar to G2/G3 arc segmentation) #endif #endif /** * Prepare a segmented linear move for DELTA/SCARA/CARTESIAN with UBL and FADE semantics. * This calls planner.buffer_segment multiple times for small incremental moves. * Returns true if did NOT move, false if moved (requires current_position update). */ bool _O2 unified_bed_leveling::line_to_destination_segmented(const feedRate_t &scaled_fr_mm_s) { if (!position_is_reachable(destination)) // fail if moving outside reachable boundary return true; // did not move, so current_position still accurate const xyze_pos_t total = destination - current_position; const float cart_xy_mm_2 = HYPOT2(total.x, total.y), cart_xy_mm = SQRT(cart_xy_mm_2); // Total XY distance #if IS_KINEMATIC const float seconds = cart_xy_mm / scaled_fr_mm_s; // Duration of XY move at requested rate uint16_t segments = LROUND(delta_segments_per_second * seconds), // Preferred number of segments for distance @ feedrate seglimit = LROUND(cart_xy_mm * RECIPROCAL(DELTA_SEGMENT_MIN_LENGTH)); // Number of segments at minimum segment length NOMORE(segments, seglimit); // Limit to minimum segment length (fewer segments) #else uint16_t segments = LROUND(cart_xy_mm * RECIPROCAL(DELTA_SEGMENT_MIN_LENGTH)); // Cartesian fixed segment length #endif NOLESS(segments, 1U); // Must have at least one segment const float inv_segments = 1.0f / segments, // Reciprocal to save calculation segment_xyz_mm = SQRT(cart_xy_mm_2 + sq(total.z)) * inv_segments; // Length of each segment #if ENABLED(SCARA_FEEDRATE_SCALING) const float inv_duration = scaled_fr_mm_s / segment_xyz_mm; #endif xyze_float_t diff = total * inv_segments; // Note that E segment distance could vary slightly as z mesh height // changes for each segment, but small enough to ignore. xyze_pos_t raw = current_position; // Just do plain segmentation if UBL is inactive or the target is above the fade height if (!planner.leveling_active || !planner.leveling_active_at_z(destination.z)) { while (--segments) { raw += diff; planner.buffer_line(raw, scaled_fr_mm_s, active_extruder, segment_xyz_mm #if ENABLED(SCARA_FEEDRATE_SCALING) , inv_duration #endif ); } planner.buffer_line(destination, scaled_fr_mm_s, active_extruder, segment_xyz_mm #if ENABLED(SCARA_FEEDRATE_SCALING) , inv_duration #endif ); return false; // Did not set current from destination } // Otherwise perform per-segment leveling #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) const float fade_scaling_factor = planner.fade_scaling_factor_for_z(destination.z); #endif // Move to first segment destination raw += diff; for (;;) { // for each mesh cell encountered during the move // Compute mesh cell invariants that remain constant for all segments within cell. // Note for cell index, if point is outside the mesh grid (in MESH_INSET perimeter) // the bilinear interpolation from the adjacent cell within the mesh will still work. // Inner loop will exit each time (because out of cell bounds) but will come back // in top of loop and again re-find same adjacent cell and use it, just less efficient // for mesh inset area. xy_int8_t icell = { int8_t((raw.x - (MESH_MIN_X)) * RECIPROCAL(MESH_X_DIST)), int8_t((raw.y - (MESH_MIN_Y)) * RECIPROCAL(MESH_Y_DIST)) }; LIMIT(icell.x, 0, (GRID_MAX_POINTS_X) - 1); LIMIT(icell.y, 0, (GRID_MAX_POINTS_Y) - 1); float z_x0y0 = z_values[icell.x ][icell.y ], // z at lower left corner z_x1y0 = z_values[icell.x+1][icell.y ], // z at upper left corner z_x0y1 = z_values[icell.x ][icell.y+1], // z at lower right corner z_x1y1 = z_values[icell.x+1][icell.y+1]; // z at upper right corner if (isnan(z_x0y0)) z_x0y0 = 0; // ideally activating planner.leveling_active (G29 A) if (isnan(z_x1y0)) z_x1y0 = 0; // should refuse if any invalid mesh points if (isnan(z_x0y1)) z_x0y1 = 0; // in order to avoid isnan tests per cell, if (isnan(z_x1y1)) z_x1y1 = 0; // thus guessing zero for undefined points const xy_pos_t pos = { mesh_index_to_xpos(icell.x), mesh_index_to_ypos(icell.y) }; xy_pos_t cell = raw - pos; const float z_xmy0 = (z_x1y0 - z_x0y0) * RECIPROCAL(MESH_X_DIST), // z slope per x along y0 (lower left to lower right) z_xmy1 = (z_x1y1 - z_x0y1) * RECIPROCAL(MESH_X_DIST); // z slope per x along y1 (upper left to upper right) float z_cxy0 = z_x0y0 + z_xmy0 * cell.x; // z height along y0 at cell.x (changes for each cell.x in cell) const float z_cxy1 = z_x0y1 + z_xmy1 * cell.x, // z height along y1 at cell.x z_cxyd = z_cxy1 - z_cxy0; // z height difference along cell.x from y0 to y1 float z_cxym = z_cxyd * RECIPROCAL(MESH_Y_DIST); // z slope per y along cell.x from pos.y to y1 (changes for each cell.x in cell) // float z_cxcy = z_cxy0 + z_cxym * cell.y; // interpolated mesh z height along cell.x at cell.y (do inside the segment loop) // As subsequent segments step through this cell, the z_cxy0 intercept will change // and the z_cxym slope will change, both as a function of cell.x within the cell, and // each change by a constant for fixed segment lengths. const float z_sxy0 = z_xmy0 * diff.x, // per-segment adjustment to z_cxy0 z_sxym = (z_xmy1 - z_xmy0) * RECIPROCAL(MESH_Y_DIST) * diff.x; // per-segment adjustment to z_cxym for (;;) { // for all segments within this mesh cell if (--segments == 0) raw = destination; // if this is last segment, use destination for exact const float z_cxcy = (z_cxy0 + z_cxym * cell.y) // interpolated mesh z height along cell.x at cell.y #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) * fade_scaling_factor // apply fade factor to interpolated mesh height #endif ; planner.buffer_line(raw.x, raw.y, raw.z + z_cxcy, raw.e, scaled_fr_mm_s, active_extruder, segment_xyz_mm #if ENABLED(SCARA_FEEDRATE_SCALING) , inv_duration #endif ); if (segments == 0) // done with last segment return false; // didn't set current from destination raw += diff; cell += diff; if (!WITHIN(cell.x, 0, MESH_X_DIST) || !WITHIN(cell.y, 0, MESH_Y_DIST)) // done within this cell, break to next break; // Next segment still within same mesh cell, adjust the per-segment // slope and intercept to compute next z height. z_cxy0 += z_sxy0; // adjust z_cxy0 by per-segment z_sxy0 z_cxym += z_sxym; // adjust z_cxym by per-segment z_sxym } // segment loop } // cell loop return false; // caller will update current_position } #endif // UBL_SEGMENTED #endif // AUTO_BED_LEVELING_UBL