/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #pragma once #include "../inc/MarlinConfig.h" #include "../lcd/marlinui.h" #if HAS_TRINAMIC_CONFIG #include #include "../module/planner.h" #define CHOPPER_DEFAULT_12V { 3, -1, 1 } #define CHOPPER_DEFAULT_19V { 4, 1, 1 } #define CHOPPER_DEFAULT_24V { 4, 2, 1 } #define CHOPPER_DEFAULT_36V { 5, 2, 4 } #define CHOPPER_PRUSAMK3_24V { 3, -2, 6 } #define CHOPPER_MARLIN_119 { 5, 2, 3 } #define CHOPPER_09STEP_24V { 3, -1, 5 } #if ENABLED(MONITOR_DRIVER_STATUS) && !defined(MONITOR_DRIVER_STATUS_INTERVAL_MS) #define MONITOR_DRIVER_STATUS_INTERVAL_MS 500U #endif constexpr uint16_t _tmc_thrs(const uint16_t msteps, const uint32_t thrs, const uint32_t spmm) { return 12650000UL * msteps / (256 * thrs * spmm); } typedef struct { uint8_t toff; int8_t hend; uint8_t hstrt; } chopper_timing_t; template class TMCStorage { protected: // Only a child class has access to constructor => Don't create on its own! "Poor man's abstract class" TMCStorage() {} public: uint16_t val_mA = 0; #if ENABLED(MONITOR_DRIVER_STATUS) uint8_t otpw_count = 0, error_count = 0; bool flag_otpw = false; bool getOTPW() { return flag_otpw; } void clear_otpw() { flag_otpw = 0; } #endif uint16_t getMilliamps() { return val_mA; } void printLabel() { SERIAL_CHAR(AXIS_LETTER); if (DRIVER_ID > '0') SERIAL_CHAR(DRIVER_ID); } struct { OPTCODE(HAS_STEALTHCHOP, bool stealthChop_enabled = false) OPTCODE(HYBRID_THRESHOLD, uint8_t hybrid_thrs = 0) OPTCODE(USE_SENSORLESS, int16_t homing_thrs = 0) } stored; }; template class TMCMarlin : public TMC, public TMCStorage { public: TMCMarlin(const uint16_t cs_pin, const float RS) : TMC(cs_pin, RS) {} TMCMarlin(const uint16_t cs_pin, const float RS, const uint8_t axis_chain_index) : TMC(cs_pin, RS, axis_chain_index) {} TMCMarlin(const uint16_t CS, const float RS, const uint16_t pinMOSI, const uint16_t pinMISO, const uint16_t pinSCK) : TMC(CS, RS, pinMOSI, pinMISO, pinSCK) {} TMCMarlin(const uint16_t CS, const float RS, const uint16_t pinMOSI, const uint16_t pinMISO, const uint16_t pinSCK, const uint8_t axis_chain_index) : TMC(CS, RS, pinMOSI, pinMISO, pinSCK, axis_chain_index) {} uint16_t rms_current() { return TMC::rms_current(); } void rms_current(uint16_t mA) { this->val_mA = mA; TMC::rms_current(mA); } void rms_current(const uint16_t mA, const float mult) { this->val_mA = mA; TMC::rms_current(mA, mult); } uint16_t get_microstep_counter() { return TMC::MSCNT(); } #if HAS_STEALTHCHOP bool get_stealthChop() { return this->en_pwm_mode(); } bool get_stored_stealthChop() { return this->stored.stealthChop_enabled; } void refresh_stepping_mode() { this->en_pwm_mode(this->stored.stealthChop_enabled); } void set_stealthChop(const bool stch) { this->stored.stealthChop_enabled = stch; refresh_stepping_mode(); } bool toggle_stepping_mode() { set_stealthChop(!this->stored.stealthChop_enabled); return get_stealthChop(); } #endif void set_chopper_times(const chopper_timing_t &ct) { TMC::toff(ct.toff); TMC::hysteresis_end(ct.hend); TMC::hysteresis_start(ct.hstrt); } #if ENABLED(HYBRID_THRESHOLD) uint32_t get_pwm_thrs() { return _tmc_thrs(this->microsteps(), this->TPWMTHRS(), planner.settings.axis_steps_per_mm[AXIS_ID]); } void set_pwm_thrs(const uint32_t thrs) { TMC::TPWMTHRS(_tmc_thrs(this->microsteps(), thrs, planner.settings.axis_steps_per_mm[AXIS_ID])); TERN_(HAS_LCD_MENU, this->stored.hybrid_thrs = thrs); } #endif #if USE_SENSORLESS int16_t homing_threshold() { return TMC::sgt(); } void homing_threshold(int16_t sgt_val) { sgt_val = (int16_t)constrain(sgt_val, sgt_min, sgt_max); TMC::sgt(sgt_val); TERN_(HAS_LCD_MENU, this->stored.homing_thrs = sgt_val); } #if ENABLED(SPI_ENDSTOPS) bool test_stall_status(); #endif #endif #if HAS_LCD_MENU void refresh_stepper_current() { rms_current(this->val_mA); } #if ENABLED(HYBRID_THRESHOLD) void refresh_hybrid_thrs() { set_pwm_thrs(this->stored.hybrid_thrs); } #endif #if USE_SENSORLESS void refresh_homing_thrs() { homing_threshold(this->stored.homing_thrs); } #endif #endif static constexpr int8_t sgt_min = -64, sgt_max = 63; }; template class TMCMarlin : public TMC2208Stepper, public TMCStorage { public: TMCMarlin(Stream * SerialPort, const float RS, const uint8_t) : TMC2208Stepper(SerialPort, RS) {} TMCMarlin(Stream * SerialPort, const float RS, uint8_t addr, const uint16_t mul_pin1, const uint16_t mul_pin2) : TMC2208Stepper(SerialPort, RS, addr, mul_pin1, mul_pin2) {} TMCMarlin(const uint16_t RX, const uint16_t TX, const float RS, const uint8_t) : TMC2208Stepper(RX, TX, RS) {} uint16_t rms_current() { return TMC2208Stepper::rms_current(); } void rms_current(const uint16_t mA) { this->val_mA = mA; TMC2208Stepper::rms_current(mA); } void rms_current(const uint16_t mA, const float mult) { this->val_mA = mA; TMC2208Stepper::rms_current(mA, mult); } uint16_t get_microstep_counter() { return TMC2208Stepper::MSCNT(); } #if HAS_STEALTHCHOP bool get_stealthChop() { return !this->en_spreadCycle(); } bool get_stored_stealthChop() { return this->stored.stealthChop_enabled; } void refresh_stepping_mode() { this->en_spreadCycle(!this->stored.stealthChop_enabled); } void set_stealthChop(const bool stch) { this->stored.stealthChop_enabled = stch; refresh_stepping_mode(); } bool toggle_stepping_mode() { set_stealthChop(!this->stored.stealthChop_enabled); return get_stealthChop(); } #endif void set_chopper_times(const chopper_timing_t &ct) { TMC2208Stepper::toff(ct.toff); TMC2208Stepper::hysteresis_end(ct.hend); TMC2208Stepper::hysteresis_start(ct.hstrt); } #if ENABLED(HYBRID_THRESHOLD) uint32_t get_pwm_thrs() { return _tmc_thrs(this->microsteps(), this->TPWMTHRS(), planner.settings.axis_steps_per_mm[AXIS_ID]); } void set_pwm_thrs(const uint32_t thrs) { TMC2208Stepper::TPWMTHRS(_tmc_thrs(this->microsteps(), thrs, planner.settings.axis_steps_per_mm[AXIS_ID])); TERN_(HAS_LCD_MENU, this->stored.hybrid_thrs = thrs); } #endif #if HAS_LCD_MENU void refresh_stepper_current() { rms_current(this->val_mA); } #if ENABLED(HYBRID_THRESHOLD) void refresh_hybrid_thrs() { set_pwm_thrs(this->stored.hybrid_thrs); } #endif #endif }; template class TMCMarlin : public TMC2209Stepper, public TMCStorage { public: TMCMarlin(Stream * SerialPort, const float RS, const uint8_t addr) : TMC2209Stepper(SerialPort, RS, addr) {} TMCMarlin(const uint16_t RX, const uint16_t TX, const float RS, const uint8_t addr) : TMC2209Stepper(RX, TX, RS, addr) {} uint8_t get_address() { return slave_address; } uint16_t rms_current() { return TMC2209Stepper::rms_current(); } void rms_current(const uint16_t mA) { this->val_mA = mA; TMC2209Stepper::rms_current(mA); } void rms_current(const uint16_t mA, const float mult) { this->val_mA = mA; TMC2209Stepper::rms_current(mA, mult); } uint16_t get_microstep_counter() { return TMC2209Stepper::MSCNT(); } #if HAS_STEALTHCHOP bool get_stealthChop() { return !this->en_spreadCycle(); } bool get_stored_stealthChop() { return this->stored.stealthChop_enabled; } void refresh_stepping_mode() { this->en_spreadCycle(!this->stored.stealthChop_enabled); } void set_stealthChop(const bool stch) { this->stored.stealthChop_enabled = stch; refresh_stepping_mode(); } bool toggle_stepping_mode() { set_stealthChop(!this->stored.stealthChop_enabled); return get_stealthChop(); } #endif void set_chopper_times(const chopper_timing_t &ct) { TMC2209Stepper::toff(ct.toff); TMC2209Stepper::hysteresis_end(ct.hend); TMC2209Stepper::hysteresis_start(ct.hstrt); } #if ENABLED(HYBRID_THRESHOLD) uint32_t get_pwm_thrs() { return _tmc_thrs(this->microsteps(), this->TPWMTHRS(), planner.settings.axis_steps_per_mm[AXIS_ID]); } void set_pwm_thrs(const uint32_t thrs) { TMC2209Stepper::TPWMTHRS(_tmc_thrs(this->microsteps(), thrs, planner.settings.axis_steps_per_mm[AXIS_ID])); TERN_(HAS_LCD_MENU, this->stored.hybrid_thrs = thrs); } #endif #if USE_SENSORLESS int16_t homing_threshold() { return TMC2209Stepper::SGTHRS(); } void homing_threshold(int16_t sgt_val) { sgt_val = (int16_t)constrain(sgt_val, sgt_min, sgt_max); TMC2209Stepper::SGTHRS(sgt_val); TERN_(HAS_LCD_MENU, this->stored.homing_thrs = sgt_val); } #endif #if HAS_LCD_MENU void refresh_stepper_current() { rms_current(this->val_mA); } #if ENABLED(HYBRID_THRESHOLD) void refresh_hybrid_thrs() { set_pwm_thrs(this->stored.hybrid_thrs); } #endif #if USE_SENSORLESS void refresh_homing_thrs() { homing_threshold(this->stored.homing_thrs); } #endif #endif static constexpr uint8_t sgt_min = 0, sgt_max = 255; }; template class TMCMarlin : public TMC2660Stepper, public TMCStorage { public: TMCMarlin(const uint16_t cs_pin, const float RS, const uint8_t) : TMC2660Stepper(cs_pin, RS) {} TMCMarlin(const uint16_t CS, const float RS, const uint16_t pinMOSI, const uint16_t pinMISO, const uint16_t pinSCK, const uint8_t) : TMC2660Stepper(CS, RS, pinMOSI, pinMISO, pinSCK) {} uint16_t rms_current() { return TMC2660Stepper::rms_current(); } void rms_current(const uint16_t mA) { this->val_mA = mA; TMC2660Stepper::rms_current(mA); } uint16_t get_microstep_counter() { return TMC2660Stepper::mstep(); } void set_chopper_times(const chopper_timing_t &ct) { TMC2660Stepper::toff(ct.toff); TMC2660Stepper::hysteresis_end(ct.hend); TMC2660Stepper::hysteresis_start(ct.hstrt); } #if USE_SENSORLESS int16_t homing_threshold() { return TMC2660Stepper::sgt(); } void homing_threshold(int16_t sgt_val) { sgt_val = (int16_t)constrain(sgt_val, sgt_min, sgt_max); TMC2660Stepper::sgt(sgt_val); TERN_(HAS_LCD_MENU, this->stored.homing_thrs = sgt_val); } #endif #if HAS_LCD_MENU void refresh_stepper_current() { rms_current(this->val_mA); } #if USE_SENSORLESS void refresh_homing_thrs() { homing_threshold(this->stored.homing_thrs); } #endif #endif static constexpr int8_t sgt_min = -64, sgt_max = 63; }; void monitor_tmc_drivers(); void test_tmc_connection(LOGICAL_AXIS_DECL(const bool, true)); #if ENABLED(TMC_DEBUG) #if ENABLED(MONITOR_DRIVER_STATUS) void tmc_set_report_interval(const uint16_t update_interval); #endif void tmc_report_all(LOGICAL_AXIS_DECL(const bool, true)); void tmc_get_registers(LOGICAL_AXIS_ARGS(const bool)); #endif /** * TMC2130-specific sensorless homing using stallGuard2. * stallGuard2 only works when in spreadCycle mode. * spreadCycle and stealthChop are mutually-exclusive. * * Defined here because of limitations with templates and headers. */ #if USE_SENSORLESS // Track enabled status of stealthChop and only re-enable where applicable struct sensorless_t { bool LINEAR_AXIS_ARGS(), x2, y2, z2, z3, z4; }; #if ENABLED(IMPROVE_HOMING_RELIABILITY) extern millis_t sg_guard_period; constexpr uint16_t default_sg_guard_duration = 400; #endif bool tmc_enable_stallguard(TMC2130Stepper &st); void tmc_disable_stallguard(TMC2130Stepper &st, const bool restore_stealth); bool tmc_enable_stallguard(TMC2209Stepper &st); void tmc_disable_stallguard(TMC2209Stepper &st, const bool restore_stealth); bool tmc_enable_stallguard(TMC2660Stepper); void tmc_disable_stallguard(TMC2660Stepper, const bool); #if ENABLED(SPI_ENDSTOPS) template bool TMCMarlin::test_stall_status() { this->switchCSpin(LOW); // read stallGuard flag from TMC library, will handle HW and SW SPI TMC2130_n::DRV_STATUS_t drv_status{0}; drv_status.sr = this->DRV_STATUS(); this->switchCSpin(HIGH); return drv_status.stallGuard; } #endif // SPI_ENDSTOPS #endif // USE_SENSORLESS #if HAS_TMC_SPI void tmc_init_cs_pins(); #endif #endif // HAS_TRINAMIC_CONFIG