/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * stepper/trinamic.cpp * Stepper driver indirection for Trinamic */ #include "../../inc/MarlinConfig.h" #if HAS_TRINAMIC_CONFIG #include "trinamic.h" #include "../stepper.h" #include #include enum StealthIndex : uint8_t { STEALTH_AXIS_XY, STEALTH_AXIS_Z, STEALTH_AXIS_E }; #define TMC_INIT(ST, STEALTH_INDEX) tmc_init(stepper##ST, ST##_CURRENT, ST##_MICROSTEPS, ST##_HYBRID_THRESHOLD, stealthchop_by_axis[STEALTH_INDEX]) // IC = TMC model number // ST = Stepper object letter // L = Label characters // AI = Axis Enum Index // SWHW = SW/SH UART selection #if ENABLED(TMC_USE_SW_SPI) #define __TMC_SPI_DEFINE(IC, ST, L, AI) TMCMarlin stepper##ST(ST##_CS_PIN, float(ST##_RSENSE), TMC_SW_MOSI, TMC_SW_MISO, TMC_SW_SCK, ST##_CHAIN_POS) #else #define __TMC_SPI_DEFINE(IC, ST, L, AI) TMCMarlin stepper##ST(ST##_CS_PIN, float(ST##_RSENSE), ST##_CHAIN_POS) #endif #define TMC_UART_HW_DEFINE(IC, ST, L, AI) TMCMarlin stepper##ST(&ST##_HARDWARE_SERIAL, float(ST##_RSENSE), ST##_SLAVE_ADDRESS) #define TMC_UART_SW_DEFINE(IC, ST, L, AI) TMCMarlin stepper##ST(ST##_SERIAL_RX_PIN, ST##_SERIAL_TX_PIN, float(ST##_RSENSE), ST##_SLAVE_ADDRESS, ST##_SERIAL_RX_PIN > -1) #define _TMC_SPI_DEFINE(IC, ST, AI) __TMC_SPI_DEFINE(IC, ST, TMC_##ST##_LABEL, AI) #define TMC_SPI_DEFINE(ST, AI) _TMC_SPI_DEFINE(ST##_DRIVER_TYPE, ST, AI##_AXIS) #define _TMC_UART_DEFINE(SWHW, IC, ST, AI) TMC_UART_##SWHW##_DEFINE(IC, ST, TMC_##ST##_LABEL, AI) #define TMC_UART_DEFINE(SWHW, ST, AI) _TMC_UART_DEFINE(SWHW, ST##_DRIVER_TYPE, ST, AI##_AXIS) #if ENABLED(DISTINCT_E_FACTORS) && E_STEPPERS > 1 #define TMC_SPI_DEFINE_E(AI) TMC_SPI_DEFINE(E##AI, E##AI) #define TMC_UART_DEFINE_E(SWHW, AI) TMC_UART_DEFINE(SWHW, E##AI, E##AI) #else #define TMC_SPI_DEFINE_E(AI) TMC_SPI_DEFINE(E##AI, E) #define TMC_UART_DEFINE_E(SWHW, AI) TMC_UART_DEFINE(SWHW, E##AI, E) #endif // Stepper objects of TMC2130/TMC2160/TMC2660/TMC5130/TMC5160 steppers used #if AXIS_HAS_SPI(X) TMC_SPI_DEFINE(X, X); #endif #if AXIS_HAS_SPI(X2) TMC_SPI_DEFINE(X2, X); #endif #if AXIS_HAS_SPI(Y) TMC_SPI_DEFINE(Y, Y); #endif #if AXIS_HAS_SPI(Y2) TMC_SPI_DEFINE(Y2, Y); #endif #if AXIS_HAS_SPI(Z) TMC_SPI_DEFINE(Z, Z); #endif #if AXIS_HAS_SPI(Z2) TMC_SPI_DEFINE(Z2, Z); #endif #if AXIS_HAS_SPI(Z3) TMC_SPI_DEFINE(Z3, Z); #endif #if AXIS_HAS_SPI(Z4) TMC_SPI_DEFINE(Z4, Z); #endif #if AXIS_HAS_SPI(E0) TMC_SPI_DEFINE_E(0); #endif #if AXIS_HAS_SPI(E1) TMC_SPI_DEFINE_E(1); #endif #if AXIS_HAS_SPI(E2) TMC_SPI_DEFINE_E(2); #endif #if AXIS_HAS_SPI(E3) TMC_SPI_DEFINE_E(3); #endif #if AXIS_HAS_SPI(E4) TMC_SPI_DEFINE_E(4); #endif #if AXIS_HAS_SPI(E5) TMC_SPI_DEFINE_E(5); #endif #if AXIS_HAS_SPI(E6) TMC_SPI_DEFINE_E(6); #endif #if AXIS_HAS_SPI(E7) TMC_SPI_DEFINE_E(7); #endif #ifndef TMC_BAUD_RATE #if HAS_TMC_SW_SERIAL // Reduce baud rate for boards not already overriding TMC_BAUD_RATE for software serial. // Testing has shown that 115200 is not 100% reliable on AVR platforms, occasionally // failing to read status properly. 32-bit platforms typically define an even lower // TMC_BAUD_RATE, due to differences in how SoftwareSerial libraries work on different // platforms. #define TMC_BAUD_RATE 57600 #else #define TMC_BAUD_RATE 115200 #endif #endif #if HAS_DRIVER(TMC2130) template void tmc_init(TMCMarlin &st, const uint16_t mA, const uint16_t microsteps, const uint32_t hyb_thrs, const bool stealth) { st.begin(); CHOPCONF_t chopconf{0}; chopconf.tbl = 1; chopconf.toff = chopper_timing.toff; chopconf.intpol = INTERPOLATE; chopconf.hend = chopper_timing.hend + 3; chopconf.hstrt = chopper_timing.hstrt - 1; TERN_(SQUARE_WAVE_STEPPING, chopconf.dedge = true); st.CHOPCONF(chopconf.sr); st.rms_current(mA, HOLD_MULTIPLIER); st.microsteps(microsteps); st.iholddelay(10); st.TPOWERDOWN(128); // ~2s until driver lowers to hold current st.en_pwm_mode(stealth); st.stored.stealthChop_enabled = stealth; PWMCONF_t pwmconf{0}; pwmconf.pwm_freq = 0b01; // f_pwm = 2/683 f_clk pwmconf.pwm_autoscale = true; pwmconf.pwm_grad = 5; pwmconf.pwm_ampl = 180; st.PWMCONF(pwmconf.sr); #if ENABLED(HYBRID_THRESHOLD) st.set_pwm_thrs(hyb_thrs); #else UNUSED(hyb_thrs); #endif st.GSTAT(); // Clear GSTAT } #endif // TMC2130 #if HAS_DRIVER(TMC2160) template void tmc_init(TMCMarlin &st, const uint16_t mA, const uint16_t microsteps, const uint32_t hyb_thrs, const bool stealth) { st.begin(); CHOPCONF_t chopconf{0}; chopconf.tbl = 1; chopconf.toff = chopper_timing.toff; chopconf.intpol = INTERPOLATE; chopconf.hend = chopper_timing.hend + 3; chopconf.hstrt = chopper_timing.hstrt - 1; TERN_(SQUARE_WAVE_STEPPING, chopconf.dedge = true); st.CHOPCONF(chopconf.sr); st.rms_current(mA, HOLD_MULTIPLIER); st.microsteps(microsteps); st.iholddelay(10); st.TPOWERDOWN(128); // ~2s until driver lowers to hold current st.en_pwm_mode(stealth); st.stored.stealthChop_enabled = stealth; TMC2160_n::PWMCONF_t pwmconf{0}; pwmconf.pwm_lim = 12; pwmconf.pwm_reg = 8; pwmconf.pwm_autograd = true; pwmconf.pwm_autoscale = true; pwmconf.pwm_freq = 0b01; pwmconf.pwm_grad = 14; pwmconf.pwm_ofs = 36; st.PWMCONF(pwmconf.sr); #if ENABLED(HYBRID_THRESHOLD) st.set_pwm_thrs(hyb_thrs); #else UNUSED(hyb_thrs); #endif st.GSTAT(); // Clear GSTAT } #endif // TMC2160 // // TMC2208/2209 Driver objects and inits // #if HAS_TMC220x #if AXIS_HAS_UART(X) #ifdef X_HARDWARE_SERIAL TMC_UART_DEFINE(HW, X, X); #else TMC_UART_DEFINE(SW, X, X); #endif #endif #if AXIS_HAS_UART(X2) #ifdef X2_HARDWARE_SERIAL TMC_UART_DEFINE(HW, X2, X); #else TMC_UART_DEFINE(SW, X2, X); #endif #endif #if AXIS_HAS_UART(Y) #ifdef Y_HARDWARE_SERIAL TMC_UART_DEFINE(HW, Y, Y); #else TMC_UART_DEFINE(SW, Y, Y); #endif #endif #if AXIS_HAS_UART(Y2) #ifdef Y2_HARDWARE_SERIAL TMC_UART_DEFINE(HW, Y2, Y); #else TMC_UART_DEFINE(SW, Y2, Y); #endif #endif #if AXIS_HAS_UART(Z) #ifdef Z_HARDWARE_SERIAL TMC_UART_DEFINE(HW, Z, Z); #else TMC_UART_DEFINE(SW, Z, Z); #endif #endif #if AXIS_HAS_UART(Z2) #ifdef Z2_HARDWARE_SERIAL TMC_UART_DEFINE(HW, Z2, Z); #else TMC_UART_DEFINE(SW, Z2, Z); #endif #endif #if AXIS_HAS_UART(Z3) #ifdef Z3_HARDWARE_SERIAL TMC_UART_DEFINE(HW, Z3, Z); #else TMC_UART_DEFINE(SW, Z3, Z); #endif #endif #if AXIS_HAS_UART(Z4) #ifdef Z4_HARDWARE_SERIAL TMC_UART_DEFINE(HW, Z4, Z); #else TMC_UART_DEFINE(SW, Z4, Z); #endif #endif #if AXIS_HAS_UART(E0) #ifdef E0_HARDWARE_SERIAL TMC_UART_DEFINE_E(HW, 0); #else TMC_UART_DEFINE_E(SW, 0); #endif #endif #if AXIS_HAS_UART(E1) #ifdef E1_HARDWARE_SERIAL TMC_UART_DEFINE_E(HW, 1); #else TMC_UART_DEFINE_E(SW, 1); #endif #endif #if AXIS_HAS_UART(E2) #ifdef E2_HARDWARE_SERIAL TMC_UART_DEFINE_E(HW, 2); #else TMC_UART_DEFINE_E(SW, 2); #endif #endif #if AXIS_HAS_UART(E3) #ifdef E3_HARDWARE_SERIAL TMC_UART_DEFINE_E(HW, 3); #else TMC_UART_DEFINE_E(SW, 3); #endif #endif #if AXIS_HAS_UART(E4) #ifdef E4_HARDWARE_SERIAL TMC_UART_DEFINE_E(HW, 4); #else TMC_UART_DEFINE_E(SW, 4); #endif #endif #if AXIS_HAS_UART(E5) #ifdef E5_HARDWARE_SERIAL TMC_UART_DEFINE_E(HW, 5); #else TMC_UART_DEFINE_E(SW, 5); #endif #endif #if AXIS_HAS_UART(E6) #ifdef E6_HARDWARE_SERIAL TMC_UART_DEFINE_E(HW, 6); #else TMC_UART_DEFINE_E(SW, 6); #endif #endif #if AXIS_HAS_UART(E7) #ifdef E7_HARDWARE_SERIAL TMC_UART_DEFINE_E(HW, 7); #else TMC_UART_DEFINE_E(SW, 7); #endif #endif enum TMCAxis : uint8_t { X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5, E6, E7, TOTAL }; void tmc_serial_begin() { struct { const void *ptr[TMCAxis::TOTAL]; bool began(const TMCAxis a, const void * const p) { LOOP_L_N(i, a) if (p == ptr[i]) return true; ptr[a] = p; return false; }; } sp_helper; #define HW_SERIAL_BEGIN(A) do{ if (!sp_helper.began(TMCAxis::A, &A##_HARDWARE_SERIAL)) \ A##_HARDWARE_SERIAL.begin(TMC_BAUD_RATE); }while(0) #if AXIS_HAS_UART(X) #ifdef X_HARDWARE_SERIAL HW_SERIAL_BEGIN(X); #else stepperX.beginSerial(TMC_BAUD_RATE); #endif #endif #if AXIS_HAS_UART(X2) #ifdef X2_HARDWARE_SERIAL HW_SERIAL_BEGIN(X2); #else stepperX2.beginSerial(TMC_BAUD_RATE); #endif #endif #if AXIS_HAS_UART(Y) #ifdef Y_HARDWARE_SERIAL HW_SERIAL_BEGIN(Y); #else stepperY.beginSerial(TMC_BAUD_RATE); #endif #endif #if AXIS_HAS_UART(Y2) #ifdef Y2_HARDWARE_SERIAL HW_SERIAL_BEGIN(Y2); #else stepperY2.beginSerial(TMC_BAUD_RATE); #endif #endif #if AXIS_HAS_UART(Z) #ifdef Z_HARDWARE_SERIAL HW_SERIAL_BEGIN(Z); #else stepperZ.beginSerial(TMC_BAUD_RATE); #endif #endif #if AXIS_HAS_UART(Z2) #ifdef Z2_HARDWARE_SERIAL HW_SERIAL_BEGIN(Z2); #else stepperZ2.beginSerial(TMC_BAUD_RATE); #endif #endif #if AXIS_HAS_UART(Z3) #ifdef Z3_HARDWARE_SERIAL HW_SERIAL_BEGIN(Z3); #else stepperZ3.beginSerial(TMC_BAUD_RATE); #endif #endif #if AXIS_HAS_UART(Z4) #ifdef Z4_HARDWARE_SERIAL HW_SERIAL_BEGIN(Z4); #else stepperZ4.beginSerial(TMC_BAUD_RATE); #endif #endif #if AXIS_HAS_UART(E0) #ifdef E0_HARDWARE_SERIAL HW_SERIAL_BEGIN(E0); #else stepperE0.beginSerial(TMC_BAUD_RATE); #endif #endif #if AXIS_HAS_UART(E1) #ifdef E1_HARDWARE_SERIAL HW_SERIAL_BEGIN(E1); #else stepperE1.beginSerial(TMC_BAUD_RATE); #endif #endif #if AXIS_HAS_UART(E2) #ifdef E2_HARDWARE_SERIAL HW_SERIAL_BEGIN(E2); #else stepperE2.beginSerial(TMC_BAUD_RATE); #endif #endif #if AXIS_HAS_UART(E3) #ifdef E3_HARDWARE_SERIAL HW_SERIAL_BEGIN(E3); #else stepperE3.beginSerial(TMC_BAUD_RATE); #endif #endif #if AXIS_HAS_UART(E4) #ifdef E4_HARDWARE_SERIAL HW_SERIAL_BEGIN(E4); #else stepperE4.beginSerial(TMC_BAUD_RATE); #endif #endif #if AXIS_HAS_UART(E5) #ifdef E5_HARDWARE_SERIAL HW_SERIAL_BEGIN(E5); #else stepperE5.beginSerial(TMC_BAUD_RATE); #endif #endif #if AXIS_HAS_UART(E6) #ifdef E6_HARDWARE_SERIAL HW_SERIAL_BEGIN(E6); #else stepperE6.beginSerial(TMC_BAUD_RATE); #endif #endif #if AXIS_HAS_UART(E7) #ifdef E7_HARDWARE_SERIAL HW_SERIAL_BEGIN(E7); #else stepperE7.beginSerial(TMC_BAUD_RATE); #endif #endif } #endif #if HAS_DRIVER(TMC2208) template void tmc_init(TMCMarlin &st, const uint16_t mA, const uint16_t microsteps, const uint32_t hyb_thrs, const bool stealth) { TMC2208_n::GCONF_t gconf{0}; gconf.pdn_disable = true; // Use UART gconf.mstep_reg_select = true; // Select microsteps with UART gconf.i_scale_analog = false; gconf.en_spreadcycle = !stealth; st.GCONF(gconf.sr); st.stored.stealthChop_enabled = stealth; TMC2208_n::CHOPCONF_t chopconf{0}; chopconf.tbl = 0b01; // blank_time = 24 chopconf.toff = chopper_timing.toff; chopconf.intpol = INTERPOLATE; chopconf.hend = chopper_timing.hend + 3; chopconf.hstrt = chopper_timing.hstrt - 1; TERN_(SQUARE_WAVE_STEPPING, chopconf.dedge = true); st.CHOPCONF(chopconf.sr); st.rms_current(mA, HOLD_MULTIPLIER); st.microsteps(microsteps); st.iholddelay(10); st.TPOWERDOWN(128); // ~2s until driver lowers to hold current TMC2208_n::PWMCONF_t pwmconf{0}; pwmconf.pwm_lim = 12; pwmconf.pwm_reg = 8; pwmconf.pwm_autograd = true; pwmconf.pwm_autoscale = true; pwmconf.pwm_freq = 0b01; pwmconf.pwm_grad = 14; pwmconf.pwm_ofs = 36; st.PWMCONF(pwmconf.sr); #if ENABLED(HYBRID_THRESHOLD) st.set_pwm_thrs(hyb_thrs); #else UNUSED(hyb_thrs); #endif st.GSTAT(0b111); // Clear delay(200); } #endif // TMC2208 #if HAS_DRIVER(TMC2209) template void tmc_init(TMCMarlin &st, const uint16_t mA, const uint16_t microsteps, const uint32_t hyb_thrs, const bool stealth) { TMC2208_n::GCONF_t gconf{0}; gconf.pdn_disable = true; // Use UART gconf.mstep_reg_select = true; // Select microsteps with UART gconf.i_scale_analog = false; gconf.en_spreadcycle = !stealth; st.GCONF(gconf.sr); st.stored.stealthChop_enabled = stealth; TMC2208_n::CHOPCONF_t chopconf{0}; chopconf.tbl = 0b01; // blank_time = 24 chopconf.toff = chopper_timing.toff; chopconf.intpol = INTERPOLATE; chopconf.hend = chopper_timing.hend + 3; chopconf.hstrt = chopper_timing.hstrt - 1; TERN_(SQUARE_WAVE_STEPPING, chopconf.dedge = true); st.CHOPCONF(chopconf.sr); st.rms_current(mA, HOLD_MULTIPLIER); st.microsteps(microsteps); st.iholddelay(10); st.TPOWERDOWN(128); // ~2s until driver lowers to hold current TMC2208_n::PWMCONF_t pwmconf{0}; pwmconf.pwm_lim = 12; pwmconf.pwm_reg = 8; pwmconf.pwm_autograd = true; pwmconf.pwm_autoscale = true; pwmconf.pwm_freq = 0b01; pwmconf.pwm_grad = 14; pwmconf.pwm_ofs = 36; st.PWMCONF(pwmconf.sr); #if ENABLED(HYBRID_THRESHOLD) st.set_pwm_thrs(hyb_thrs); #else UNUSED(hyb_thrs); #endif st.GSTAT(0b111); // Clear delay(200); } #endif // TMC2209 #if HAS_DRIVER(TMC2660) template void tmc_init(TMCMarlin &st, const uint16_t mA, const uint16_t microsteps, const uint32_t, const bool) { st.begin(); TMC2660_n::CHOPCONF_t chopconf{0}; chopconf.tbl = 1; chopconf.toff = chopper_timing.toff; chopconf.hend = chopper_timing.hend + 3; chopconf.hstrt = chopper_timing.hstrt - 1; st.CHOPCONF(chopconf.sr); st.sdoff(0); st.rms_current(mA); st.microsteps(microsteps); TERN_(SQUARE_WAVE_STEPPING, st.dedge(true)); st.intpol(INTERPOLATE); st.diss2g(true); // Disable short to ground protection. Too many false readings? TERN_(TMC_DEBUG, st.rdsel(0b01)); } #endif // TMC2660 #if HAS_DRIVER(TMC5130) template void tmc_init(TMCMarlin &st, const uint16_t mA, const uint16_t microsteps, const uint32_t hyb_thrs, const bool stealth) { st.begin(); CHOPCONF_t chopconf{0}; chopconf.tbl = 1; chopconf.toff = chopper_timing.toff; chopconf.intpol = INTERPOLATE; chopconf.hend = chopper_timing.hend + 3; chopconf.hstrt = chopper_timing.hstrt - 1; TERN_(SQUARE_WAVE_STEPPING, chopconf.dedge = true); st.CHOPCONF(chopconf.sr); st.rms_current(mA, HOLD_MULTIPLIER); st.microsteps(microsteps); st.iholddelay(10); st.TPOWERDOWN(128); // ~2s until driver lowers to hold current st.en_pwm_mode(stealth); st.stored.stealthChop_enabled = stealth; PWMCONF_t pwmconf{0}; pwmconf.pwm_freq = 0b01; // f_pwm = 2/683 f_clk pwmconf.pwm_autoscale = true; pwmconf.pwm_grad = 5; pwmconf.pwm_ampl = 180; st.PWMCONF(pwmconf.sr); #if ENABLED(HYBRID_THRESHOLD) st.set_pwm_thrs(hyb_thrs); #else UNUSED(hyb_thrs); #endif st.GSTAT(); // Clear GSTAT } #endif // TMC5130 #if HAS_DRIVER(TMC5160) template void tmc_init(TMCMarlin &st, const uint16_t mA, const uint16_t microsteps, const uint32_t hyb_thrs, const bool stealth) { st.begin(); CHOPCONF_t chopconf{0}; chopconf.tbl = 1; chopconf.toff = chopper_timing.toff; chopconf.intpol = INTERPOLATE; chopconf.hend = chopper_timing.hend + 3; chopconf.hstrt = chopper_timing.hstrt - 1; TERN_(SQUARE_WAVE_STEPPING, chopconf.dedge = true); st.CHOPCONF(chopconf.sr); st.rms_current(mA, HOLD_MULTIPLIER); st.microsteps(microsteps); st.iholddelay(10); st.TPOWERDOWN(128); // ~2s until driver lowers to hold current st.en_pwm_mode(stealth); st.stored.stealthChop_enabled = stealth; TMC2160_n::PWMCONF_t pwmconf{0}; pwmconf.pwm_lim = 12; pwmconf.pwm_reg = 8; pwmconf.pwm_autograd = true; pwmconf.pwm_autoscale = true; pwmconf.pwm_freq = 0b01; pwmconf.pwm_grad = 14; pwmconf.pwm_ofs = 36; st.PWMCONF(pwmconf.sr); #if ENABLED(HYBRID_THRESHOLD) st.set_pwm_thrs(hyb_thrs); #else UNUSED(hyb_thrs); #endif st.GSTAT(); // Clear GSTAT } #endif // TMC5160 void restore_trinamic_drivers() { #if AXIS_IS_TMC(X) stepperX.push(); #endif #if AXIS_IS_TMC(X2) stepperX2.push(); #endif #if AXIS_IS_TMC(Y) stepperY.push(); #endif #if AXIS_IS_TMC(Y2) stepperY2.push(); #endif #if AXIS_IS_TMC(Z) stepperZ.push(); #endif #if AXIS_IS_TMC(Z2) stepperZ2.push(); #endif #if AXIS_IS_TMC(Z3) stepperZ3.push(); #endif #if AXIS_IS_TMC(Z4) stepperZ4.push(); #endif #if AXIS_IS_TMC(E0) stepperE0.push(); #endif #if AXIS_IS_TMC(E1) stepperE1.push(); #endif #if AXIS_IS_TMC(E2) stepperE2.push(); #endif #if AXIS_IS_TMC(E3) stepperE3.push(); #endif #if AXIS_IS_TMC(E4) stepperE4.push(); #endif #if AXIS_IS_TMC(E5) stepperE5.push(); #endif #if AXIS_IS_TMC(E6) stepperE6.push(); #endif #if AXIS_IS_TMC(E7) stepperE7.push(); #endif } void reset_trinamic_drivers() { static constexpr bool stealthchop_by_axis[] = { #if ENABLED(STEALTHCHOP_XY) true #else false #endif , #if ENABLED(STEALTHCHOP_Z) true #else false #endif , #if ENABLED(STEALTHCHOP_E) true #else false #endif }; #if AXIS_IS_TMC(X) TMC_INIT(X, STEALTH_AXIS_XY); #endif #if AXIS_IS_TMC(X2) TMC_INIT(X2, STEALTH_AXIS_XY); #endif #if AXIS_IS_TMC(Y) TMC_INIT(Y, STEALTH_AXIS_XY); #endif #if AXIS_IS_TMC(Y2) TMC_INIT(Y2, STEALTH_AXIS_XY); #endif #if AXIS_IS_TMC(Z) TMC_INIT(Z, STEALTH_AXIS_Z); #endif #if AXIS_IS_TMC(Z2) TMC_INIT(Z2, STEALTH_AXIS_Z); #endif #if AXIS_IS_TMC(Z3) TMC_INIT(Z3, STEALTH_AXIS_Z); #endif #if AXIS_IS_TMC(Z4) TMC_INIT(Z4, STEALTH_AXIS_Z); #endif #if AXIS_IS_TMC(E0) TMC_INIT(E0, STEALTH_AXIS_E); #endif #if AXIS_IS_TMC(E1) TMC_INIT(E1, STEALTH_AXIS_E); #endif #if AXIS_IS_TMC(E2) TMC_INIT(E2, STEALTH_AXIS_E); #endif #if AXIS_IS_TMC(E3) TMC_INIT(E3, STEALTH_AXIS_E); #endif #if AXIS_IS_TMC(E4) TMC_INIT(E4, STEALTH_AXIS_E); #endif #if AXIS_IS_TMC(E5) TMC_INIT(E5, STEALTH_AXIS_E); #endif #if AXIS_IS_TMC(E6) TMC_INIT(E6, STEALTH_AXIS_E); #endif #if AXIS_IS_TMC(E7) TMC_INIT(E7, STEALTH_AXIS_E); #endif #if USE_SENSORLESS TERN_(X_SENSORLESS, stepperX.homing_threshold(X_STALL_SENSITIVITY)); TERN_(X2_SENSORLESS, stepperX2.homing_threshold(X2_STALL_SENSITIVITY)); TERN_(Y_SENSORLESS, stepperY.homing_threshold(Y_STALL_SENSITIVITY)); TERN_(Y2_SENSORLESS, stepperY2.homing_threshold(Y2_STALL_SENSITIVITY)); TERN_(Z_SENSORLESS, stepperZ.homing_threshold(Z_STALL_SENSITIVITY)); TERN_(Z2_SENSORLESS, stepperZ2.homing_threshold(Z2_STALL_SENSITIVITY)); TERN_(Z3_SENSORLESS, stepperZ3.homing_threshold(Z3_STALL_SENSITIVITY)); TERN_(Z4_SENSORLESS, stepperZ4.homing_threshold(Z4_STALL_SENSITIVITY)); #endif #ifdef TMC_ADV TMC_ADV() #endif stepper.set_directions(); } #endif // HAS_TRINAMIC_CONFIG