/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * delta.cpp */ #include "../inc/MarlinConfig.h" #if ENABLED(DELTA) #include "delta.h" #include "motion.h" // For homing: #include "planner.h" #include "endstops.h" #include "../lcd/marlinui.h" #include "../MarlinCore.h" #if HAS_BED_PROBE #include "probe.h" #endif #if ENABLED(SENSORLESS_HOMING) #include "../feature/tmc_util.h" #include "stepper/indirection.h" #endif #define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE) #include "../core/debug_out.h" // Initialized by settings.load() float delta_height; abc_float_t delta_endstop_adj{0}; float delta_radius, delta_diagonal_rod, delta_segments_per_second; abc_float_t delta_tower_angle_trim; xy_float_t delta_tower[ABC]; abc_float_t delta_diagonal_rod_2_tower; float delta_clip_start_height = Z_MAX_POS; abc_float_t delta_diagonal_rod_trim; float delta_safe_distance_from_top(); /** * Recalculate factors used for delta kinematics whenever * settings have been changed (e.g., by M665). */ void recalc_delta_settings() { constexpr abc_float_t trt = DELTA_RADIUS_TRIM_TOWER; delta_tower[A_AXIS].set(cos(RADIANS(210 + delta_tower_angle_trim.a)) * (delta_radius + trt.a), // front left tower sin(RADIANS(210 + delta_tower_angle_trim.a)) * (delta_radius + trt.a)); delta_tower[B_AXIS].set(cos(RADIANS(330 + delta_tower_angle_trim.b)) * (delta_radius + trt.b), // front right tower sin(RADIANS(330 + delta_tower_angle_trim.b)) * (delta_radius + trt.b)); delta_tower[C_AXIS].set(cos(RADIANS( 90 + delta_tower_angle_trim.c)) * (delta_radius + trt.c), // back middle tower sin(RADIANS( 90 + delta_tower_angle_trim.c)) * (delta_radius + trt.c)); delta_diagonal_rod_2_tower.set(sq(delta_diagonal_rod + delta_diagonal_rod_trim.a), sq(delta_diagonal_rod + delta_diagonal_rod_trim.b), sq(delta_diagonal_rod + delta_diagonal_rod_trim.c)); update_software_endstops(Z_AXIS); set_all_unhomed(); } /** * Get a safe radius for calibration */ #if EITHER(DELTA_AUTO_CALIBRATION, DELTA_CALIBRATION_MENU) #if ENABLED(DELTA_AUTO_CALIBRATION) float calibration_radius_factor = 1; #endif float delta_calibration_radius() { return calibration_radius_factor * ( #if HAS_BED_PROBE FLOOR((DELTA_PRINTABLE_RADIUS) - _MAX(HYPOT(probe.offset_xy.x, probe.offset_xy.y), PROBING_MARGIN)) #else DELTA_PRINTABLE_RADIUS #endif ); } #endif /** * Delta Inverse Kinematics * * Calculate the tower positions for a given machine * position, storing the result in the delta[] array. * * This is an expensive calculation, requiring 3 square * roots per segmented linear move, and strains the limits * of a Mega2560 with a Graphical Display. * * Suggested optimizations include: * * - Disable the home_offset (M206) and/or position_shift (G92) * features to remove up to 12 float additions. */ #define DELTA_DEBUG(VAR) do { \ SERIAL_ECHOLNPAIR_P(PSTR("Cartesian X"), VAR.x, SP_Y_STR, VAR.y, SP_Z_STR, VAR.z); \ SERIAL_ECHOLNPAIR_P(PSTR("Delta A"), delta.a, SP_B_STR, delta.b, SP_C_STR, delta.c); \ }while(0) void inverse_kinematics(const xyz_pos_t &raw) { #if HAS_HOTEND_OFFSET // Delta hotend offsets must be applied in Cartesian space with no "spoofing" xyz_pos_t pos = { raw.x - hotend_offset[active_extruder].x, raw.y - hotend_offset[active_extruder].y, raw.z }; DELTA_IK(pos); //DELTA_DEBUG(pos); #else DELTA_IK(raw); //DELTA_DEBUG(raw); #endif } /** * Calculate the highest Z position where the * effector has the full range of XY motion. */ float delta_safe_distance_from_top() { xyz_pos_t cartesian{0}; inverse_kinematics(cartesian); const float centered_extent = delta.a; cartesian.y = DELTA_PRINTABLE_RADIUS; inverse_kinematics(cartesian); return ABS(centered_extent - delta.a); } /** * Delta Forward Kinematics * * See the Wikipedia article "Trilateration" * https://en.wikipedia.org/wiki/Trilateration * * Establish a new coordinate system in the plane of the * three carriage points. This system has its origin at * tower1, with tower2 on the X axis. Tower3 is in the X-Y * plane with a Z component of zero. * We will define unit vectors in this coordinate system * in our original coordinate system. Then when we calculate * the Xnew, Ynew and Znew values, we can translate back into * the original system by moving along those unit vectors * by the corresponding values. * * Variable names matched to Marlin, c-version, and avoid the * use of any vector library. * * by Andreas Hardtung 2016-06-07 * based on a Java function from "Delta Robot Kinematics V3" * by Steve Graves * * The result is stored in the cartes[] array. */ void forward_kinematics(const float &z1, const float &z2, const float &z3) { // Create a vector in old coordinates along x axis of new coordinate const float p12[3] = { delta_tower[B_AXIS].x - delta_tower[A_AXIS].x, delta_tower[B_AXIS].y - delta_tower[A_AXIS].y, z2 - z1 }, // Get the reciprocal of Magnitude of vector. d2 = sq(p12[0]) + sq(p12[1]) + sq(p12[2]), inv_d = RSQRT(d2), // Create unit vector by multiplying by the inverse of the magnitude. ex[3] = { p12[0] * inv_d, p12[1] * inv_d, p12[2] * inv_d }, // Get the vector from the origin of the new system to the third point. p13[3] = { delta_tower[C_AXIS].x - delta_tower[A_AXIS].x, delta_tower[C_AXIS].y - delta_tower[A_AXIS].y, z3 - z1 }, // Use the dot product to find the component of this vector on the X axis. i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2], // Create a vector along the x axis that represents the x component of p13. iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i }; // Subtract the X component from the original vector leaving only Y. We use the // variable that will be the unit vector after we scale it. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] }; // The magnitude and the inverse of the magnitude of Y component const float j2 = sq(ey[0]) + sq(ey[1]) + sq(ey[2]), inv_j = RSQRT(j2); // Convert to a unit vector ey[0] *= inv_j; ey[1] *= inv_j; ey[2] *= inv_j; // The cross product of the unit x and y is the unit z // float[] ez = vectorCrossProd(ex, ey); const float ez[3] = { ex[1] * ey[2] - ex[2] * ey[1], ex[2] * ey[0] - ex[0] * ey[2], ex[0] * ey[1] - ex[1] * ey[0] }, // We now have the d, i and j values defined in Wikipedia. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew Xnew = (delta_diagonal_rod_2_tower.a - delta_diagonal_rod_2_tower.b + d2) * inv_d * 0.5, Ynew = ((delta_diagonal_rod_2_tower.a - delta_diagonal_rod_2_tower.c + sq(i) + j2) * 0.5 - i * Xnew) * inv_j, Znew = SQRT(delta_diagonal_rod_2_tower.a - HYPOT2(Xnew, Ynew)); // Start from the origin of the old coordinates and add vectors in the // old coords that represent the Xnew, Ynew and Znew to find the point // in the old system. cartes.set(delta_tower[A_AXIS].x + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew, delta_tower[A_AXIS].y + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew, z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew); } /** * A delta can only safely home all axes at the same time * This is like quick_home_xy() but for 3 towers. */ void home_delta() { DEBUG_SECTION(log_home_delta, "home_delta", DEBUGGING(LEVELING)); // Init the current position of all carriages to 0,0,0 current_position.reset(); destination.reset(); sync_plan_position(); // Disable stealthChop if used. Enable diag1 pin on driver. #if ENABLED(SENSORLESS_HOMING) TERN_(X_SENSORLESS, sensorless_t stealth_states_x = start_sensorless_homing_per_axis(X_AXIS)); TERN_(Y_SENSORLESS, sensorless_t stealth_states_y = start_sensorless_homing_per_axis(Y_AXIS)); TERN_(Z_SENSORLESS, sensorless_t stealth_states_z = start_sensorless_homing_per_axis(Z_AXIS)); #endif // Move all carriages together linearly until an endstop is hit. current_position.z = (delta_height + 10 - TERN0(HAS_BED_PROBE, probe.offset.z)); line_to_current_position(homing_feedrate(Z_AXIS)); planner.synchronize(); // Re-enable stealthChop if used. Disable diag1 pin on driver. #if ENABLED(SENSORLESS_HOMING) TERN_(X_SENSORLESS, end_sensorless_homing_per_axis(X_AXIS, stealth_states_x)); TERN_(Y_SENSORLESS, end_sensorless_homing_per_axis(Y_AXIS, stealth_states_y)); TERN_(Z_SENSORLESS, end_sensorless_homing_per_axis(Z_AXIS, stealth_states_z)); #endif endstops.validate_homing_move(); // At least one carriage has reached the top. // Now re-home each carriage separately. homeaxis(A_AXIS); homeaxis(B_AXIS); homeaxis(C_AXIS); // Set all carriages to their home positions // Do this here all at once for Delta, because // XYZ isn't ABC. Applying this per-tower would // give the impression that they are the same. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i); sync_plan_position(); #if DISABLED(DELTA_HOME_TO_SAFE_ZONE) && defined(HOMING_BACKOFF_POST_MM) constexpr xyz_float_t endstop_backoff = HOMING_BACKOFF_POST_MM; if (endstop_backoff.z) { current_position.z -= ABS(endstop_backoff.z) * Z_HOME_DIR; line_to_current_position(homing_feedrate(Z_AXIS)); } #endif } #endif // DELTA