/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
*/
/**
* motion.cpp
*/
#include "motion.h"
#include "endstops.h"
#include "stepper.h"
#include "planner.h"
#include "temperature.h"
#include "../gcode/gcode.h"
#include "../inc/MarlinConfig.h"
#if IS_SCARA
#include "../libs/buzzer.h"
#include "../lcd/marlinui.h"
#endif
#if HAS_BED_PROBE
#include "probe.h"
#endif
#if HAS_LEVELING
#include "../feature/bedlevel/bedlevel.h"
#endif
#if ENABLED(BLTOUCH)
#include "../feature/bltouch.h"
#endif
#if HAS_STATUS_MESSAGE
#include "../lcd/marlinui.h"
#endif
#if HAS_FILAMENT_SENSOR
#include "../feature/runout.h"
#endif
#if ENABLED(SENSORLESS_HOMING)
#include "../feature/tmc_util.h"
#endif
#if ENABLED(FWRETRACT)
#include "../feature/fwretract.h"
#endif
#if ENABLED(BABYSTEP_DISPLAY_TOTAL)
#include "../feature/babystep.h"
#endif
#define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
#include "../core/debug_out.h"
// Relative Mode. Enable with G91, disable with G90.
bool relative_mode; // = false;
/**
* Cartesian Current Position
* Used to track the native machine position as moves are queued.
* Used by 'line_to_current_position' to do a move after changing it.
* Used by 'sync_plan_position' to update 'planner.position'.
*/
#ifdef Z_IDLE_HEIGHT
#define Z_INIT_POS Z_IDLE_HEIGHT
#else
#define Z_INIT_POS Z_HOME_POS
#endif
xyze_pos_t current_position = LOGICAL_AXIS_ARRAY(0, X_HOME_POS, Y_HOME_POS, Z_INIT_POS, I_HOME_POS, J_HOME_POS, K_HOME_POS);
/**
* Cartesian Destination
* The destination for a move, filled in by G-code movement commands,
* and expected by functions like 'prepare_line_to_destination'.
* G-codes can set destination using 'get_destination_from_command'
*/
xyze_pos_t destination; // {0}
// G60/G61 Position Save and Return
#if SAVED_POSITIONS
uint8_t saved_slots[(SAVED_POSITIONS + 7) >> 3];
xyze_pos_t stored_position[SAVED_POSITIONS];
#endif
// The active extruder (tool). Set with T command.
#if HAS_MULTI_EXTRUDER
uint8_t active_extruder = 0; // = 0
#endif
#if ENABLED(LCD_SHOW_E_TOTAL)
float e_move_accumulator; // = 0
#endif
// Extruder offsets
#if HAS_HOTEND_OFFSET
xyz_pos_t hotend_offset[HOTENDS]; // Initialized by settings.load()
void reset_hotend_offsets() {
constexpr float tmp[XYZ][HOTENDS] = { HOTEND_OFFSET_X, HOTEND_OFFSET_Y, HOTEND_OFFSET_Z };
static_assert(
!tmp[X_AXIS][0] && !tmp[Y_AXIS][0] && !tmp[Z_AXIS][0],
"Offsets for the first hotend must be 0.0."
);
// Transpose from [XYZ][HOTENDS] to [HOTENDS][XYZ]
HOTEND_LOOP() LOOP_LINEAR_AXES(a) hotend_offset[e][a] = tmp[a][e];
#if ENABLED(DUAL_X_CARRIAGE)
hotend_offset[1].x = _MAX(X2_HOME_POS, X2_MAX_POS);
#endif
}
#endif
// The feedrate for the current move, often used as the default if
// no other feedrate is specified. Overridden for special moves.
// Set by the last G0 through G5 command's "F" parameter.
// Functions that override this for custom moves *must always* restore it!
feedRate_t feedrate_mm_s = MMM_TO_MMS(1500);
int16_t feedrate_percentage = 100;
// Cartesian conversion result goes here:
xyz_pos_t cartes;
#if IS_KINEMATIC
abce_pos_t delta;
#if HAS_SCARA_OFFSET
abc_pos_t scara_home_offset;
#endif
#if HAS_SOFTWARE_ENDSTOPS
float delta_max_radius, delta_max_radius_2;
#elif IS_SCARA
constexpr float delta_max_radius = SCARA_PRINTABLE_RADIUS,
delta_max_radius_2 = sq(SCARA_PRINTABLE_RADIUS);
#else // DELTA
constexpr float delta_max_radius = DELTA_PRINTABLE_RADIUS,
delta_max_radius_2 = sq(DELTA_PRINTABLE_RADIUS);
#endif
#endif
/**
* The workspace can be offset by some commands, or
* these offsets may be omitted to save on computation.
*/
#if HAS_POSITION_SHIFT
// The distance that XYZ has been offset by G92. Reset by G28.
xyz_pos_t position_shift{0};
#endif
#if HAS_HOME_OFFSET
// This offset is added to the configured home position.
// Set by M206, M428, or menu item. Saved to EEPROM.
xyz_pos_t home_offset{0};
#endif
#if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
// The above two are combined to save on computes
xyz_pos_t workspace_offset{0};
#endif
#if HAS_ABL_NOT_UBL
feedRate_t xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_FEEDRATE);
#endif
/**
* Output the current position to serial
*/
inline void report_more_positions() {
stepper.report_positions();
TERN_(IS_SCARA, scara_report_positions());
}
// Report the logical position for a given machine position
inline void report_logical_position(const xyze_pos_t &rpos) {
const xyze_pos_t lpos = rpos.asLogical();
SERIAL_ECHOPAIR_P(
LIST_N(DOUBLE(LINEAR_AXES),
X_LBL, lpos.x,
SP_Y_LBL, lpos.y,
SP_Z_LBL, lpos.z,
SP_I_LBL, lpos.i,
SP_J_LBL, lpos.j,
SP_K_LBL, lpos.k
)
#if HAS_EXTRUDERS
, SP_E_LBL, lpos.e
#endif
);
}
// Report the real current position according to the steppers.
// Forward kinematics and un-leveling are applied.
void report_real_position() {
get_cartesian_from_steppers();
xyze_pos_t npos = LOGICAL_AXIS_ARRAY(
planner.get_axis_position_mm(E_AXIS),
cartes.x, cartes.y, cartes.z,
planner.get_axis_position_mm(I_AXIS),
planner.get_axis_position_mm(J_AXIS),
planner.get_axis_position_mm(K_AXIS)
);
TERN_(HAS_POSITION_MODIFIERS, planner.unapply_modifiers(npos, true));
report_logical_position(npos);
report_more_positions();
}
// Report the logical current position according to the most recent G-code command
void report_current_position() {
report_logical_position(current_position);
report_more_positions();
}
/**
* Report the logical current position according to the most recent G-code command.
* The planner.position always corresponds to the last G-code too. This makes M114
* suitable for debugging kinematics and leveling while avoiding planner sync that
* definitively interrupts the printing flow.
*/
void report_current_position_projected() {
report_logical_position(current_position);
stepper.report_a_position(planner.position);
}
#if ENABLED(AUTO_REPORT_POSITION)
//struct PositionReport { void report() { report_current_position_projected(); } };
AutoReporter position_auto_reporter;
#endif
#if EITHER(FULL_REPORT_TO_HOST_FEATURE, REALTIME_REPORTING_COMMANDS)
M_StateEnum M_State_grbl = M_INIT;
/**
* Output the current grbl compatible state to serial while moving
*/
void report_current_grblstate_moving() { SERIAL_ECHOLNPAIR("S_XYZ:", int(M_State_grbl)); }
/**
* Output the current position (processed) to serial while moving
*/
void report_current_position_moving() {
get_cartesian_from_steppers();
const xyz_pos_t lpos = cartes.asLogical();
SERIAL_ECHOPAIR("X:", lpos.x, " Y:", lpos.y, " Z:", lpos.z, " E:", current_position.e);
stepper.report_positions();
#if IS_SCARA
scara_report_positions();
#endif
report_current_grblstate_moving();
}
/**
* Set a Grbl-compatible state from the current marlin_state
*/
M_StateEnum grbl_state_for_marlin_state() {
switch (marlin_state) {
case MF_INITIALIZING: return M_INIT;
case MF_SD_COMPLETE: return M_ALARM;
case MF_WAITING: return M_IDLE;
case MF_STOPPED: return M_END;
case MF_RUNNING: return M_RUNNING;
case MF_PAUSED: return M_HOLD;
case MF_KILLED: return M_ERROR;
default: return M_IDLE;
}
}
#endif
/**
* Run out the planner buffer and re-sync the current
* position from the last-updated stepper positions.
*/
void quickstop_stepper() {
planner.quick_stop();
planner.synchronize();
set_current_from_steppers_for_axis(ALL_AXES_ENUM);
sync_plan_position();
}
#if ENABLED(REALTIME_REPORTING_COMMANDS)
void quickpause_stepper() {
planner.quick_pause();
//planner.synchronize();
}
void quickresume_stepper() {
planner.quick_resume();
//planner.synchronize();
}
#endif
/**
* Set the planner/stepper positions directly from current_position with
* no kinematic translation. Used for homing axes and cartesian/core syncing.
*/
void sync_plan_position() {
if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
planner.set_position_mm(current_position);
}
#if HAS_EXTRUDERS
void sync_plan_position_e() { planner.set_e_position_mm(current_position.e); }
#endif
/**
* Get the stepper positions in the cartes[] array.
* Forward kinematics are applied for DELTA and SCARA.
*
* The result is in the current coordinate space with
* leveling applied. The coordinates need to be run through
* unapply_leveling to obtain the "ideal" coordinates
* suitable for current_position, etc.
*/
void get_cartesian_from_steppers() {
#if ENABLED(DELTA)
forward_kinematics(planner.get_axis_positions_mm());
#elif IS_SCARA
forward_kinematics(
planner.get_axis_position_degrees(A_AXIS), planner.get_axis_position_degrees(B_AXIS)
OPTARG(AXEL_TPARA, planner.get_axis_position_degrees(C_AXIS))
);
cartes.z = planner.get_axis_position_mm(Z_AXIS);
#else
LINEAR_AXIS_CODE(
cartes.x = planner.get_axis_position_mm(X_AXIS),
cartes.y = planner.get_axis_position_mm(Y_AXIS),
cartes.z = planner.get_axis_position_mm(Z_AXIS),
cartes.i = planner.get_axis_position_mm(I_AXIS),
cartes.j = planner.get_axis_position_mm(J_AXIS),
cartes.k = planner.get_axis_position_mm(K_AXIS)
);
#endif
}
/**
* Set the current_position for an axis based on
* the stepper positions, removing any leveling that
* may have been applied.
*
* To prevent small shifts in axis position always call
* sync_plan_position after updating axes with this.
*
* To keep hosts in sync, always call report_current_position
* after updating the current_position.
*/
void set_current_from_steppers_for_axis(const AxisEnum axis) {
get_cartesian_from_steppers();
xyze_pos_t pos = cartes;
TERN_(HAS_EXTRUDERS, pos.e = planner.get_axis_position_mm(E_AXIS));
TERN_(HAS_POSITION_MODIFIERS, planner.unapply_modifiers(pos, true));
if (axis == ALL_AXES_ENUM)
current_position = pos;
else
current_position[axis] = pos[axis];
}
/**
* Move the planner to the current position from wherever it last moved
* (or from wherever it has been told it is located).
*/
void line_to_current_position(const_feedRate_t fr_mm_s/*=feedrate_mm_s*/) {
planner.buffer_line(current_position, fr_mm_s);
}
#if HAS_EXTRUDERS
void unscaled_e_move(const_float_t length, const_feedRate_t fr_mm_s) {
TERN_(HAS_FILAMENT_SENSOR, runout.reset());
current_position.e += length / planner.e_factor[active_extruder];
line_to_current_position(fr_mm_s);
planner.synchronize();
}
#endif
#if IS_KINEMATIC
/**
* Buffer a fast move without interpolation. Set current_position to destination
*/
void prepare_fast_move_to_destination(const_feedRate_t scaled_fr_mm_s/*=MMS_SCALED(feedrate_mm_s)*/) {
if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_fast_move_to_destination", destination);
#if UBL_SEGMENTED
// UBL segmented line will do Z-only moves in single segment
ubl.line_to_destination_segmented(scaled_fr_mm_s);
#else
if (current_position == destination) return;
planner.buffer_line(destination, scaled_fr_mm_s);
#endif
current_position = destination;
}
#endif // IS_KINEMATIC
/**
* Do a fast or normal move to 'destination' with an optional FR.
* - Move at normal speed regardless of feedrate percentage.
* - Extrude the specified length regardless of flow percentage.
*/
void _internal_move_to_destination(const_feedRate_t fr_mm_s/*=0.0f*/
OPTARG(IS_KINEMATIC, const bool is_fast/*=false*/)
) {
const feedRate_t old_feedrate = feedrate_mm_s;
if (fr_mm_s) feedrate_mm_s = fr_mm_s;
const uint16_t old_pct = feedrate_percentage;
feedrate_percentage = 100;
#if HAS_EXTRUDERS
const float old_fac = planner.e_factor[active_extruder];
planner.e_factor[active_extruder] = 1.0f;
#endif
if (TERN0(IS_KINEMATIC, is_fast))
TERN(IS_KINEMATIC, prepare_fast_move_to_destination(), NOOP);
else
prepare_line_to_destination();
feedrate_mm_s = old_feedrate;
feedrate_percentage = old_pct;
TERN_(HAS_EXTRUDERS, planner.e_factor[active_extruder] = old_fac);
}
/**
* Plan a move to (X, Y, Z, [I, [J, [K]]]) and set the current_position
* Plan a move to (X, Y, Z) with separation of Z from other components.
*
* - If Z is moving up, the Z move is done before XY, etc.
* - If Z is moving down, the Z move is done after XY, etc.
* - Delta may lower Z first to get into the free motion zone.
* - Before returning, wait for the planner buffer to empty.
*/
void do_blocking_move_to(LINEAR_AXIS_ARGS(const float), const_feedRate_t fr_mm_s/*=0.0f*/) {
DEBUG_SECTION(log_move, "do_blocking_move_to", DEBUGGING(LEVELING));
if (DEBUGGING(LEVELING)) DEBUG_XYZ("> ", LINEAR_AXIS_ARGS());
const feedRate_t xy_feedrate = fr_mm_s ?: feedRate_t(XY_PROBE_FEEDRATE_MM_S);
#if HAS_Z_AXIS
const feedRate_t z_feedrate = fr_mm_s ?: homing_feedrate(Z_AXIS);
#endif
#if EITHER(DELTA, IS_SCARA)
if (!position_is_reachable(x, y)) return;
destination = current_position; // sync destination at the start
#endif
#if ENABLED(DELTA)
REMEMBER(fr, feedrate_mm_s, xy_feedrate);
if (DEBUGGING(LEVELING)) DEBUG_POS("destination = current_position", destination);
// when in the danger zone
if (current_position.z > delta_clip_start_height) {
if (z > delta_clip_start_height) { // staying in the danger zone
destination.set(x, y, z); // move directly (uninterpolated)
prepare_internal_fast_move_to_destination(); // set current_position from destination
if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
return;
}
destination.z = delta_clip_start_height;
prepare_internal_fast_move_to_destination(); // set current_position from destination
if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
}
if (z > current_position.z) { // raising?
destination.z = z;
prepare_internal_fast_move_to_destination(z_feedrate); // set current_position from destination
if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
}
destination.set(x, y);
prepare_internal_move_to_destination(); // set current_position from destination
if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
if (z < current_position.z) { // lowering?
destination.z = z;
prepare_internal_fast_move_to_destination(z_feedrate); // set current_position from destination
if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
}
#elif IS_SCARA
// If Z needs to raise, do it before moving XY
if (destination.z < z) {
destination.z = z;
prepare_internal_fast_move_to_destination(z_feedrate);
}
destination.set(x, y);
prepare_internal_fast_move_to_destination(xy_feedrate);
// If Z needs to lower, do it after moving XY
if (destination.z > z) {
destination.z = z;
prepare_internal_fast_move_to_destination(z_feedrate);
}
#else
#if HAS_Z_AXIS
// If Z needs to raise, do it before moving XY
if (current_position.z < z) {
current_position.z = z;
line_to_current_position(z_feedrate);
}
#endif
current_position.set(x, y);
line_to_current_position(xy_feedrate);
#if HAS_Z_AXIS
// If Z needs to lower, do it after moving XY
if (current_position.z > z) {
current_position.z = z;
line_to_current_position(z_feedrate);
}
#endif
#endif
planner.synchronize();
}
void do_blocking_move_to(const xy_pos_t &raw, const_feedRate_t fr_mm_s/*=0.0f*/) {
do_blocking_move_to(LINEAR_AXIS_LIST(raw.x, raw.y, current_position.z, current_position.i, current_position.j, current_position.k), fr_mm_s);
}
void do_blocking_move_to(const xyz_pos_t &raw, const_feedRate_t fr_mm_s/*=0.0f*/) {
do_blocking_move_to(LINEAR_AXIS_ELEM(raw), fr_mm_s);
}
void do_blocking_move_to(const xyze_pos_t &raw, const_feedRate_t fr_mm_s/*=0.0f*/) {
do_blocking_move_to(LINEAR_AXIS_ELEM(raw), fr_mm_s);
}
void do_blocking_move_to_x(const_float_t rx, const_feedRate_t fr_mm_s/*=0.0*/) {
do_blocking_move_to(
LINEAR_AXIS_LIST(rx, current_position.y, current_position.z, current_position.i, current_position.j, current_position.k),
fr_mm_s
);
}
#if HAS_Y_AXIS
void do_blocking_move_to_y(const_float_t ry, const_feedRate_t fr_mm_s/*=0.0*/) {
do_blocking_move_to(
LINEAR_AXIS_LIST(current_position.x, ry, current_position.z, current_position.i, current_position.j, current_position.k),
fr_mm_s
);
}
#endif
#if HAS_Z_AXIS
void do_blocking_move_to_z(const_float_t rz, const_feedRate_t fr_mm_s/*=0.0*/) {
do_blocking_move_to_xy_z(current_position, rz, fr_mm_s);
}
#endif
#if LINEAR_AXES >= 4
void do_blocking_move_to_i(const_float_t ri, const_feedRate_t fr_mm_s/*=0.0*/) {
do_blocking_move_to_xyz_i(current_position, ri, fr_mm_s);
}
void do_blocking_move_to_xyz_i(const xyze_pos_t &raw, const_float_t i, const_feedRate_t fr_mm_s/*=0.0f*/) {
do_blocking_move_to(
LINEAR_AXIS_LIST(raw.x, raw.y, raw.z, i, raw.j, raw.k),
fr_mm_s
);
}
#endif
#if LINEAR_AXES >= 5
void do_blocking_move_to_j(const_float_t rj, const_feedRate_t fr_mm_s/*=0.0*/) {
do_blocking_move_to_xyzi_j(current_position, rj, fr_mm_s);
}
void do_blocking_move_to_xyzi_j(const xyze_pos_t &raw, const_float_t j, const_feedRate_t fr_mm_s/*=0.0f*/) {
do_blocking_move_to(
LINEAR_AXIS_LIST(raw.x, raw.y, raw.z, raw.i, j, raw.k),
fr_mm_s
);
}
#endif
#if LINEAR_AXES >= 6
void do_blocking_move_to_k(const_float_t rk, const_feedRate_t fr_mm_s/*=0.0*/) {
do_blocking_move_to_xyzij_k(current_position, rk, fr_mm_s);
}
void do_blocking_move_to_xyzij_k(const xyze_pos_t &raw, const_float_t k, const_feedRate_t fr_mm_s/*=0.0f*/) {
do_blocking_move_to(
LINEAR_AXIS_LIST(raw.x, raw.y, raw.z, raw.i, raw.j, k),
fr_mm_s
);
}
#endif
#if HAS_Y_AXIS
void do_blocking_move_to_xy(const_float_t rx, const_float_t ry, const_feedRate_t fr_mm_s/*=0.0*/) {
do_blocking_move_to(
LINEAR_AXIS_LIST(rx, ry, current_position.z, current_position.i, current_position.j, current_position.k),
fr_mm_s
);
}
void do_blocking_move_to_xy(const xy_pos_t &raw, const_feedRate_t fr_mm_s/*=0.0f*/) {
do_blocking_move_to_xy(raw.x, raw.y, fr_mm_s);
}
#endif
#if HAS_Z_AXIS
void do_blocking_move_to_xy_z(const xy_pos_t &raw, const_float_t z, const_feedRate_t fr_mm_s/*=0.0f*/) {
do_blocking_move_to(
LINEAR_AXIS_LIST(raw.x, raw.y, z, current_position.i, current_position.j, current_position.k),
fr_mm_s
);
}
void do_z_clearance(const_float_t zclear, const bool lower_allowed/*=false*/) {
float zdest = zclear;
if (!lower_allowed) NOLESS(zdest, current_position.z);
do_blocking_move_to_z(_MIN(zdest, Z_MAX_POS), TERN(HAS_BED_PROBE, z_probe_fast_mm_s, homing_feedrate(Z_AXIS)));
}
#endif
//
// Prepare to do endstop or probe moves with custom feedrates.
// - Save / restore current feedrate and multiplier
//
static float saved_feedrate_mm_s;
static int16_t saved_feedrate_percentage;
void remember_feedrate_and_scaling() {
saved_feedrate_mm_s = feedrate_mm_s;
saved_feedrate_percentage = feedrate_percentage;
}
void remember_feedrate_scaling_off() {
remember_feedrate_and_scaling();
feedrate_percentage = 100;
}
void restore_feedrate_and_scaling() {
feedrate_mm_s = saved_feedrate_mm_s;
feedrate_percentage = saved_feedrate_percentage;
}
#if HAS_SOFTWARE_ENDSTOPS
// Software Endstops are based on the configured limits.
soft_endstops_t soft_endstop = {
true, false,
LINEAR_AXIS_ARRAY(X_MIN_POS, Y_MIN_POS, Z_MIN_POS, I_MIN_POS, J_MIN_POS, K_MIN_POS),
LINEAR_AXIS_ARRAY(X_MAX_BED, Y_MAX_BED, Z_MAX_POS, I_MAX_POS, J_MAX_POS, K_MAX_POS)
};
/**
* Software endstops can be used to monitor the open end of
* an axis that has a hardware endstop on the other end. Or
* they can prevent axes from moving past endstops and grinding.
*
* To keep doing their job as the coordinate system changes,
* the software endstop positions must be refreshed to remain
* at the same positions relative to the machine.
*/
void update_software_endstops(const AxisEnum axis
OPTARG(HAS_HOTEND_OFFSET, const uint8_t old_tool_index/*=0*/)
OPTARG(HAS_HOTEND_OFFSET, const uint8_t new_tool_index/*=0*/)
) {
#if ENABLED(DUAL_X_CARRIAGE)
if (axis == X_AXIS) {
// In Dual X mode hotend_offset[X] is T1's home position
const float dual_max_x = _MAX(hotend_offset[1].x, X2_MAX_POS);
if (new_tool_index != 0) {
// T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
soft_endstop.min.x = X2_MIN_POS;
soft_endstop.max.x = dual_max_x;
}
else if (idex_is_duplicating()) {
// In Duplication Mode, T0 can move as far left as X1_MIN_POS
// but not so far to the right that T1 would move past the end
soft_endstop.min.x = X1_MIN_POS;
soft_endstop.max.x = _MIN(X1_MAX_POS, dual_max_x - duplicate_extruder_x_offset);
}
else {
// In other modes, T0 can move from X1_MIN_POS to X1_MAX_POS
soft_endstop.min.x = X1_MIN_POS;
soft_endstop.max.x = X1_MAX_POS;
}
}
#elif ENABLED(DELTA)
soft_endstop.min[axis] = base_min_pos(axis);
soft_endstop.max[axis] = (axis == Z_AXIS) ? DIFF_TERN(HAS_BED_PROBE, delta_height, probe.offset.z) : base_max_pos(axis);
switch (axis) {
case X_AXIS:
case Y_AXIS:
// Get a minimum radius for clamping
delta_max_radius = _MIN(ABS(_MAX(soft_endstop.min.x, soft_endstop.min.y)), soft_endstop.max.x, soft_endstop.max.y);
delta_max_radius_2 = sq(delta_max_radius);
break;
case Z_AXIS:
delta_clip_start_height = soft_endstop.max[axis] - delta_safe_distance_from_top();
default: break;
}
#elif HAS_HOTEND_OFFSET
// Software endstops are relative to the tool 0 workspace, so
// the movement limits must be shifted by the tool offset to
// retain the same physical limit when other tools are selected.
if (new_tool_index == old_tool_index || axis == Z_AXIS) { // The Z axis is "special" and shouldn't be modified
const float offs = (axis == Z_AXIS) ? 0 : hotend_offset[active_extruder][axis];
soft_endstop.min[axis] = base_min_pos(axis) + offs;
soft_endstop.max[axis] = base_max_pos(axis) + offs;
}
else {
const float diff = hotend_offset[new_tool_index][axis] - hotend_offset[old_tool_index][axis];
soft_endstop.min[axis] += diff;
soft_endstop.max[axis] += diff;
}
#else
soft_endstop.min[axis] = base_min_pos(axis);
soft_endstop.max[axis] = base_max_pos(axis);
#endif
if (DEBUGGING(LEVELING))
SERIAL_ECHOLNPAIR("Axis ", AS_CHAR(AXIS_CHAR(axis)), " min:", soft_endstop.min[axis], " max:", soft_endstop.max[axis]);
}
/**
* Constrain the given coordinates to the software endstops.
*
* For DELTA/SCARA the XY constraint is based on the smallest
* radius within the set software endstops.
*/
void apply_motion_limits(xyz_pos_t &target) {
if (!soft_endstop._enabled) return;
#if IS_KINEMATIC
if (TERN0(DELTA, !all_axes_homed())) return;
#if BOTH(HAS_HOTEND_OFFSET, DELTA)
// The effector center position will be the target minus the hotend offset.
const xy_pos_t offs = hotend_offset[active_extruder];
#else
// SCARA needs to consider the angle of the arm through the entire move, so for now use no tool offset.
constexpr xy_pos_t offs{0};
#endif
if (TERN1(IS_SCARA, axis_was_homed(X_AXIS) && axis_was_homed(Y_AXIS))) {
const float dist_2 = HYPOT2(target.x - offs.x, target.y - offs.y);
if (dist_2 > delta_max_radius_2)
target *= float(delta_max_radius / SQRT(dist_2)); // 200 / 300 = 0.66
}
#else
if (axis_was_homed(X_AXIS)) {
#if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MIN_SOFTWARE_ENDSTOP_X)
NOLESS(target.x, soft_endstop.min.x);
#endif
#if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MAX_SOFTWARE_ENDSTOP_X)
NOMORE(target.x, soft_endstop.max.x);
#endif
}
#if HAS_Y_AXIS
if (axis_was_homed(Y_AXIS)) {
#if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MIN_SOFTWARE_ENDSTOP_Y)
NOLESS(target.y, soft_endstop.min.y);
#endif
#if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MAX_SOFTWARE_ENDSTOP_Y)
NOMORE(target.y, soft_endstop.max.y);
#endif
}
#endif
#endif
#if HAS_Z_AXIS
if (axis_was_homed(Z_AXIS)) {
#if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MIN_SOFTWARE_ENDSTOP_Z)
NOLESS(target.z, soft_endstop.min.z);
#endif
#if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MAX_SOFTWARE_ENDSTOP_Z)
NOMORE(target.z, soft_endstop.max.z);
#endif
}
#endif
#if LINEAR_AXES >= 4
if (axis_was_homed(I_AXIS)) {
#if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MIN_SOFTWARE_ENDSTOP_I)
NOLESS(target.i, soft_endstop.min.i);
#endif
#if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MAX_SOFTWARE_ENDSTOP_I)
NOMORE(target.i, soft_endstop.max.i);
#endif
}
#endif
#if LINEAR_AXES >= 5
if (axis_was_homed(J_AXIS)) {
#if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MIN_SOFTWARE_ENDSTOP_J)
NOLESS(target.j, soft_endstop.min.j);
#endif
#if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MAX_SOFTWARE_ENDSTOP_J)
NOMORE(target.j, soft_endstop.max.j);
#endif
}
#endif
#if LINEAR_AXES >= 6
if (axis_was_homed(K_AXIS)) {
#if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MIN_SOFTWARE_ENDSTOP_K)
NOLESS(target.k, soft_endstop.min.k);
#endif
#if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MAX_SOFTWARE_ENDSTOP_K)
NOMORE(target.k, soft_endstop.max.k);
#endif
}
#endif
}
#else // !HAS_SOFTWARE_ENDSTOPS
soft_endstops_t soft_endstop;
#endif // !HAS_SOFTWARE_ENDSTOPS
#if !UBL_SEGMENTED
FORCE_INLINE void segment_idle(millis_t &next_idle_ms) {
const millis_t ms = millis();
if (ELAPSED(ms, next_idle_ms)) {
next_idle_ms = ms + 200UL;
return idle();
}
thermalManager.manage_heater(); // Returns immediately on most calls
}
#if IS_KINEMATIC
#if IS_SCARA
/**
* Before raising this value, use M665 S[seg_per_sec] to decrease
* the number of segments-per-second. Default is 200. Some deltas
* do better with 160 or lower. It would be good to know how many
* segments-per-second are actually possible for SCARA on AVR.
*
* Longer segments result in less kinematic overhead
* but may produce jagged lines. Try 0.5mm, 1.0mm, and 2.0mm
* and compare the difference.
*/
#define SCARA_MIN_SEGMENT_LENGTH 0.5f
#endif
/**
* Prepare a linear move in a DELTA or SCARA setup.
*
* Called from prepare_line_to_destination as the
* default Delta/SCARA segmenter.
*
* This calls planner.buffer_line several times, adding
* small incremental moves for DELTA or SCARA.
*
* For Unified Bed Leveling (Delta or Segmented Cartesian)
* the ubl.line_to_destination_segmented method replaces this.
*
* For Auto Bed Leveling (Bilinear) with SEGMENT_LEVELED_MOVES
* this is replaced by segmented_line_to_destination below.
*/
inline bool line_to_destination_kinematic() {
// Get the top feedrate of the move in the XY plane
const float scaled_fr_mm_s = MMS_SCALED(feedrate_mm_s);
const xyze_float_t diff = destination - current_position;
// If the move is only in Z/E don't split up the move
if (!diff.x && !diff.y) {
planner.buffer_line(destination, scaled_fr_mm_s);
return false; // caller will update current_position
}
// Fail if attempting move outside printable radius
if (!position_is_reachable(destination)) return true;
// Get the linear distance in XYZ
float cartesian_mm = diff.magnitude();
// If the move is very short, check the E move distance
if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = ABS(diff.e);
// No E move either? Game over.
if (UNEAR_ZERO(cartesian_mm)) return true;
// Minimum number of seconds to move the given distance
const float seconds = cartesian_mm / scaled_fr_mm_s;
// The number of segments-per-second times the duration
// gives the number of segments
uint16_t segments = segments_per_second * seconds;
// For SCARA enforce a minimum segment size
#if IS_SCARA
NOMORE(segments, cartesian_mm * RECIPROCAL(SCARA_MIN_SEGMENT_LENGTH));
#endif
// At least one segment is required
NOLESS(segments, 1U);
// The approximate length of each segment
const float inv_segments = 1.0f / float(segments),
cartesian_segment_mm = cartesian_mm * inv_segments;
const xyze_float_t segment_distance = diff * inv_segments;
#if ENABLED(SCARA_FEEDRATE_SCALING)
const float inv_duration = scaled_fr_mm_s / cartesian_segment_mm;
#endif
/*
SERIAL_ECHOPAIR("mm=", cartesian_mm);
SERIAL_ECHOPAIR(" seconds=", seconds);
SERIAL_ECHOPAIR(" segments=", segments);
SERIAL_ECHOPAIR(" segment_mm=", cartesian_segment_mm);
SERIAL_EOL();
//*/
// Get the current position as starting point
xyze_pos_t raw = current_position;
// Calculate and execute the segments
millis_t next_idle_ms = millis() + 200UL;
while (--segments) {
segment_idle(next_idle_ms);
raw += segment_distance;
if (!planner.buffer_line(raw, scaled_fr_mm_s, active_extruder, cartesian_segment_mm OPTARG(SCARA_FEEDRATE_SCALING, inv_duration))) break;
}
// Ensure last segment arrives at target location.
planner.buffer_line(destination, scaled_fr_mm_s, active_extruder, cartesian_segment_mm OPTARG(SCARA_FEEDRATE_SCALING, inv_duration));
return false; // caller will update current_position
}
#else // !IS_KINEMATIC
#if ENABLED(SEGMENT_LEVELED_MOVES)
/**
* Prepare a segmented move on a CARTESIAN setup.
*
* This calls planner.buffer_line several times, adding
* small incremental moves. This allows the planner to
* apply more detailed bed leveling to the full move.
*/
inline void segmented_line_to_destination(const_feedRate_t fr_mm_s, const float segment_size=LEVELED_SEGMENT_LENGTH) {
const xyze_float_t diff = destination - current_position;
// If the move is only in Z/E don't split up the move
if (!diff.x && !diff.y) {
planner.buffer_line(destination, fr_mm_s);
return;
}
// Get the linear distance in XYZ
// If the move is very short, check the E move distance
// No E move either? Game over.
float cartesian_mm = diff.magnitude();
if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = ABS(diff.e);
if (UNEAR_ZERO(cartesian_mm)) return;
// The length divided by the segment size
// At least one segment is required
uint16_t segments = cartesian_mm / segment_size;
NOLESS(segments, 1U);
// The approximate length of each segment
const float inv_segments = 1.0f / float(segments),
cartesian_segment_mm = cartesian_mm * inv_segments;
const xyze_float_t segment_distance = diff * inv_segments;
#if ENABLED(SCARA_FEEDRATE_SCALING)
const float inv_duration = scaled_fr_mm_s / cartesian_segment_mm;
#endif
// SERIAL_ECHOPAIR("mm=", cartesian_mm);
// SERIAL_ECHOLNPAIR(" segments=", segments);
// SERIAL_ECHOLNPAIR(" segment_mm=", cartesian_segment_mm);
// Get the raw current position as starting point
xyze_pos_t raw = current_position;
// Calculate and execute the segments
millis_t next_idle_ms = millis() + 200UL;
while (--segments) {
segment_idle(next_idle_ms);
raw += segment_distance;
if (!planner.buffer_line(raw, fr_mm_s, active_extruder, cartesian_segment_mm OPTARG(SCARA_FEEDRATE_SCALING, inv_duration))) break;
}
// Since segment_distance is only approximate,
// the final move must be to the exact destination.
planner.buffer_line(destination, fr_mm_s, active_extruder, cartesian_segment_mm OPTARG(SCARA_FEEDRATE_SCALING, inv_duration));
}
#endif // SEGMENT_LEVELED_MOVES
/**
* Prepare a linear move in a Cartesian setup.
*
* When a mesh-based leveling system is active, moves are segmented
* according to the configuration of the leveling system.
*
* Return true if 'current_position' was set to 'destination'
*/
inline bool line_to_destination_cartesian() {
const float scaled_fr_mm_s = MMS_SCALED(feedrate_mm_s);
#if HAS_MESH
if (planner.leveling_active && planner.leveling_active_at_z(destination.z)) {
#if ENABLED(AUTO_BED_LEVELING_UBL)
ubl.line_to_destination_cartesian(scaled_fr_mm_s, active_extruder); // UBL's motion routine needs to know about
return true; // all moves, including Z-only moves.
#elif ENABLED(SEGMENT_LEVELED_MOVES)
segmented_line_to_destination(scaled_fr_mm_s);
return false; // caller will update current_position
#else
/**
* For MBL and ABL-BILINEAR only segment moves when X or Y are involved.
* Otherwise fall through to do a direct single move.
*/
if (xy_pos_t(current_position) != xy_pos_t(destination)) {
#if ENABLED(MESH_BED_LEVELING)
mbl.line_to_destination(scaled_fr_mm_s);
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
bilinear_line_to_destination(scaled_fr_mm_s);
#endif
return true;
}
#endif
}
#endif // HAS_MESH
planner.buffer_line(destination, scaled_fr_mm_s);
return false; // caller will update current_position
}
#endif // !IS_KINEMATIC
#endif // !UBL_SEGMENTED
#if HAS_DUPLICATION_MODE
bool extruder_duplication_enabled;
#if ENABLED(MULTI_NOZZLE_DUPLICATION)
uint8_t duplication_e_mask; // = 0
#endif
#endif
#if ENABLED(DUAL_X_CARRIAGE)
DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
float inactive_extruder_x = X2_MAX_POS, // Used in mode 0 & 1
duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // Used in mode 2 & 3
xyz_pos_t raised_parked_position; // Used in mode 1
bool active_extruder_parked = false; // Used in mode 1, 2 & 3
millis_t delayed_move_time = 0; // Used in mode 1
celsius_t duplicate_extruder_temp_offset = 0; // Used in mode 2 & 3
bool idex_mirrored_mode = false; // Used in mode 3
float x_home_pos(const uint8_t extruder) {
if (extruder == 0)
return X_HOME_POS;
else
/**
* In dual carriage mode the extruder offset provides an override of the
* second X-carriage position when homed - otherwise X2_HOME_POS is used.
* This allows soft recalibration of the second extruder home position
* without firmware reflash (through the M218 command).
*/
return hotend_offset[1].x > 0 ? hotend_offset[1].x : X2_HOME_POS;
}
void idex_set_mirrored_mode(const bool mirr) {
idex_mirrored_mode = mirr;
stepper.set_directions();
}
void set_duplication_enabled(const bool dupe, const int8_t tool_index/*=-1*/) {
extruder_duplication_enabled = dupe;
if (tool_index >= 0) active_extruder = tool_index;
stepper.set_directions();
}
void idex_set_parked(const bool park/*=true*/) {
delayed_move_time = 0;
active_extruder_parked = park;
if (park) raised_parked_position = current_position; // Remember current raised toolhead position for use by unpark
}
/**
* Prepare a linear move in a dual X axis setup
*
* Return true if current_position[] was set to destination[]
*/
inline bool dual_x_carriage_unpark() {
if (active_extruder_parked) {
switch (dual_x_carriage_mode) {
case DXC_FULL_CONTROL_MODE: break;
case DXC_AUTO_PARK_MODE: {
if (current_position.e == destination.e) {
// This is a travel move (with no extrusion)
// Skip it, but keep track of the current position
// (so it can be used as the start of the next non-travel move)
if (delayed_move_time != 0xFFFFFFFFUL) {
current_position = destination;
NOLESS(raised_parked_position.z, destination.z);
delayed_move_time = millis() + 1000UL;
return true;
}
}
//
// Un-park the active extruder
//
const feedRate_t fr_zfast = planner.settings.max_feedrate_mm_s[Z_AXIS];
// 1. Move to the raised parked XYZ. Presumably the tool is already at XY.
xyze_pos_t raised = raised_parked_position; raised.e = current_position.e;
if (planner.buffer_line(raised, fr_zfast)) {
// 2. Move to the current native XY and raised Z. Presumably this is a null move.
xyze_pos_t curpos = current_position; curpos.z = raised_parked_position.z;
if (planner.buffer_line(curpos, PLANNER_XY_FEEDRATE())) {
// 3. Lower Z back down
line_to_current_position(fr_zfast);
}
}
stepper.set_directions();
idex_set_parked(false);
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("idex_set_parked(false)");
} break;
case DXC_MIRRORED_MODE:
case DXC_DUPLICATION_MODE:
if (active_extruder == 0) {
// Restore planner to parked head (T1) X position
xyze_pos_t pos_now = current_position;
pos_now.x = inactive_extruder_x;
planner.set_position_mm(pos_now);
// Keep the same X or add the duplication X offset
xyze_pos_t new_pos = pos_now;
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
new_pos.x += duplicate_extruder_x_offset;
// Move duplicate extruder into the correct position
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Set planner X", inactive_extruder_x, " ... Line to X", new_pos.x);
if (!planner.buffer_line(new_pos, planner.settings.max_feedrate_mm_s[X_AXIS], 1)) break;
planner.synchronize();
sync_plan_position(); // Extra sync for good measure
set_duplication_enabled(true); // Enable Duplication
idex_set_parked(false); // No longer parked
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("set_duplication_enabled(true)\nidex_set_parked(false)");
}
else if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Active extruder not 0");
break;
}
}
return false;
}
#endif // DUAL_X_CARRIAGE
/**
* Prepare a single move and get ready for the next one
*
* This may result in several calls to planner.buffer_line to
* do smaller moves for DELTA, SCARA, mesh moves, etc.
*
* Make sure current_position.e and destination.e are good
* before calling or cold/lengthy extrusion may get missed.
*
* Before exit, current_position is set to destination.
*/
void prepare_line_to_destination() {
apply_motion_limits(destination);
#if EITHER(PREVENT_COLD_EXTRUSION, PREVENT_LENGTHY_EXTRUDE)
if (!DEBUGGING(DRYRUN) && destination.e != current_position.e) {
bool ignore_e = false;
#if ENABLED(PREVENT_COLD_EXTRUSION)
ignore_e = thermalManager.tooColdToExtrude(active_extruder);
if (ignore_e) SERIAL_ECHO_MSG(STR_ERR_COLD_EXTRUDE_STOP);
#endif
#if ENABLED(PREVENT_LENGTHY_EXTRUDE)
const float e_delta = ABS(destination.e - current_position.e) * planner.e_factor[active_extruder];
if (e_delta > (EXTRUDE_MAXLENGTH)) {
#if ENABLED(MIXING_EXTRUDER)
float collector[MIXING_STEPPERS];
mixer.refresh_collector(1.0, mixer.get_current_vtool(), collector);
MIXER_STEPPER_LOOP(e) {
if (e_delta * collector[e] > (EXTRUDE_MAXLENGTH)) {
ignore_e = true;
SERIAL_ECHO_MSG(STR_ERR_LONG_EXTRUDE_STOP);
break;
}
}
#else
ignore_e = true;
SERIAL_ECHO_MSG(STR_ERR_LONG_EXTRUDE_STOP);
#endif
}
#endif
if (ignore_e) {
current_position.e = destination.e; // Behave as if the E move really took place
planner.set_e_position_mm(destination.e); // Prevent the planner from complaining too
}
}
#endif // PREVENT_COLD_EXTRUSION || PREVENT_LENGTHY_EXTRUDE
if (TERN0(DUAL_X_CARRIAGE, dual_x_carriage_unpark())) return;
if (
#if UBL_SEGMENTED
#if IS_KINEMATIC // UBL using Kinematic / Cartesian cases as a workaround for now.
ubl.line_to_destination_segmented(MMS_SCALED(feedrate_mm_s))
#else
line_to_destination_cartesian()
#endif
#elif IS_KINEMATIC
line_to_destination_kinematic()
#else
line_to_destination_cartesian()
#endif
) return;
current_position = destination;
}
#if HAS_ENDSTOPS
linear_axis_bits_t axis_homed, axis_trusted; // = 0
linear_axis_bits_t axes_should_home(linear_axis_bits_t axis_bits/*=linear_bits*/) {
auto set_should = [](linear_axis_bits_t &b, AxisEnum a) {
if (TEST(b, a) && TERN(HOME_AFTER_DEACTIVATE, axis_is_trusted, axis_was_homed)(a))
CBI(b, a);
};
// Clear test bits that are trusted
LINEAR_AXIS_CODE(
set_should(axis_bits, X_AXIS), set_should(axis_bits, Y_AXIS), set_should(axis_bits, Z_AXIS),
set_should(axis_bits, I_AXIS), set_should(axis_bits, J_AXIS), set_should(axis_bits, K_AXIS)
);
return axis_bits;
}
bool homing_needed_error(linear_axis_bits_t axis_bits/*=linear_bits*/) {
if ((axis_bits = axes_should_home(axis_bits))) {
PGM_P home_first = GET_TEXT(MSG_HOME_FIRST);
char msg[strlen_P(home_first)+1];
sprintf_P(msg, home_first,
LINEAR_AXIS_LIST(
TEST(axis_bits, X_AXIS) ? "X" : "",
TEST(axis_bits, Y_AXIS) ? "Y" : "",
TEST(axis_bits, Z_AXIS) ? "Z" : "",
TEST(axis_bits, I_AXIS) ? AXIS4_STR : "",
TEST(axis_bits, J_AXIS) ? AXIS5_STR : "",
TEST(axis_bits, K_AXIS) ? AXIS6_STR : ""
)
);
SERIAL_ECHO_START();
SERIAL_ECHOLN(msg);
TERN_(HAS_STATUS_MESSAGE, ui.set_status(msg));
return true;
}
return false;
}
/**
* Homing bump feedrate (mm/s)
*/
feedRate_t get_homing_bump_feedrate(const AxisEnum axis) {
#if HOMING_Z_WITH_PROBE
if (axis == Z_AXIS) return MMM_TO_MMS(Z_PROBE_FEEDRATE_SLOW);
#endif
static const uint8_t homing_bump_divisor[] PROGMEM = HOMING_BUMP_DIVISOR;
uint8_t hbd = pgm_read_byte(&homing_bump_divisor[axis]);
if (hbd < 1) {
hbd = 10;
SERIAL_ECHO_MSG("Warning: Homing Bump Divisor < 1");
}
return homing_feedrate(axis) / float(hbd);
}
#if ENABLED(SENSORLESS_HOMING)
/**
* Set sensorless homing if the axis has it, accounting for Core Kinematics.
*/
sensorless_t start_sensorless_homing_per_axis(const AxisEnum axis) {
sensorless_t stealth_states { false };
switch (axis) {
default: break;
#if X_SENSORLESS
case X_AXIS:
stealth_states.x = tmc_enable_stallguard(stepperX);
#if AXIS_HAS_STALLGUARD(X2)
stealth_states.x2 = tmc_enable_stallguard(stepperX2);
#endif
#if EITHER(CORE_IS_XY, MARKFORGED_XY) && Y_SENSORLESS
stealth_states.y = tmc_enable_stallguard(stepperY);
#elif CORE_IS_XZ && Z_SENSORLESS
stealth_states.z = tmc_enable_stallguard(stepperZ);
#endif
break;
#endif
#if Y_SENSORLESS
case Y_AXIS:
stealth_states.y = tmc_enable_stallguard(stepperY);
#if AXIS_HAS_STALLGUARD(Y2)
stealth_states.y2 = tmc_enable_stallguard(stepperY2);
#endif
#if EITHER(CORE_IS_XY, MARKFORGED_XY) && X_SENSORLESS
stealth_states.x = tmc_enable_stallguard(stepperX);
#elif CORE_IS_YZ && Z_SENSORLESS
stealth_states.z = tmc_enable_stallguard(stepperZ);
#endif
break;
#endif
#if Z_SENSORLESS
case Z_AXIS:
stealth_states.z = tmc_enable_stallguard(stepperZ);
#if AXIS_HAS_STALLGUARD(Z2)
stealth_states.z2 = tmc_enable_stallguard(stepperZ2);
#endif
#if AXIS_HAS_STALLGUARD(Z3)
stealth_states.z3 = tmc_enable_stallguard(stepperZ3);
#endif
#if AXIS_HAS_STALLGUARD(Z4)
stealth_states.z4 = tmc_enable_stallguard(stepperZ4);
#endif
#if CORE_IS_XZ && X_SENSORLESS
stealth_states.x = tmc_enable_stallguard(stepperX);
#elif CORE_IS_YZ && Y_SENSORLESS
stealth_states.y = tmc_enable_stallguard(stepperY);
#endif
break;
#endif
}
#if ENABLED(SPI_ENDSTOPS)
switch (axis) {
case X_AXIS: if (ENABLED(X_SPI_SENSORLESS)) endstops.tmc_spi_homing.x = true; break;
#if HAS_Y_AXIS
case Y_AXIS: if (ENABLED(Y_SPI_SENSORLESS)) endstops.tmc_spi_homing.y = true; break;
#endif
#if HAS_Z_AXIS
case Z_AXIS: if (ENABLED(Z_SPI_SENSORLESS)) endstops.tmc_spi_homing.z = true; break;
#endif
#if LINEAR_AXES >= 4
case I_AXIS: if (ENABLED(I_SPI_SENSORLESS)) endstops.tmc_spi_homing.i = true; break;
#endif
#if LINEAR_AXES >= 5
case J_AXIS: if (ENABLED(J_SPI_SENSORLESS)) endstops.tmc_spi_homing.j = true; break;
#endif
#if LINEAR_AXES >= 6
case K_AXIS: if (ENABLED(K_SPI_SENSORLESS)) endstops.tmc_spi_homing.k = true; break;
#endif
default: break;
}
#endif
TERN_(IMPROVE_HOMING_RELIABILITY, sg_guard_period = millis() + default_sg_guard_duration);
return stealth_states;
}
void end_sensorless_homing_per_axis(const AxisEnum axis, sensorless_t enable_stealth) {
switch (axis) {
default: break;
#if X_SENSORLESS
case X_AXIS:
tmc_disable_stallguard(stepperX, enable_stealth.x);
#if AXIS_HAS_STALLGUARD(X2)
tmc_disable_stallguard(stepperX2, enable_stealth.x2);
#endif
#if EITHER(CORE_IS_XY, MARKFORGED_XY) && Y_SENSORLESS
tmc_disable_stallguard(stepperY, enable_stealth.y);
#elif CORE_IS_XZ && Z_SENSORLESS
tmc_disable_stallguard(stepperZ, enable_stealth.z);
#endif
break;
#endif
#if Y_SENSORLESS
case Y_AXIS:
tmc_disable_stallguard(stepperY, enable_stealth.y);
#if AXIS_HAS_STALLGUARD(Y2)
tmc_disable_stallguard(stepperY2, enable_stealth.y2);
#endif
#if EITHER(CORE_IS_XY, MARKFORGED_XY) && X_SENSORLESS
tmc_disable_stallguard(stepperX, enable_stealth.x);
#elif CORE_IS_YZ && Z_SENSORLESS
tmc_disable_stallguard(stepperZ, enable_stealth.z);
#endif
break;
#endif
#if Z_SENSORLESS
case Z_AXIS:
tmc_disable_stallguard(stepperZ, enable_stealth.z);
#if AXIS_HAS_STALLGUARD(Z2)
tmc_disable_stallguard(stepperZ2, enable_stealth.z2);
#endif
#if AXIS_HAS_STALLGUARD(Z3)
tmc_disable_stallguard(stepperZ3, enable_stealth.z3);
#endif
#if AXIS_HAS_STALLGUARD(Z4)
tmc_disable_stallguard(stepperZ4, enable_stealth.z4);
#endif
#if CORE_IS_XZ && X_SENSORLESS
tmc_disable_stallguard(stepperX, enable_stealth.x);
#elif CORE_IS_YZ && Y_SENSORLESS
tmc_disable_stallguard(stepperY, enable_stealth.y);
#endif
break;
#endif
}
#if ENABLED(SPI_ENDSTOPS)
switch (axis) {
case X_AXIS: if (ENABLED(X_SPI_SENSORLESS)) endstops.tmc_spi_homing.x = false; break;
#if HAS_Y_AXIS
case Y_AXIS: if (ENABLED(Y_SPI_SENSORLESS)) endstops.tmc_spi_homing.y = false; break;
#endif
#if HAS_Z_AXIS
case Z_AXIS: if (ENABLED(Z_SPI_SENSORLESS)) endstops.tmc_spi_homing.z = false; break;
#endif
#if LINEAR_AXES >= 4
case I_AXIS: if (ENABLED(I_SPI_SENSORLESS)) endstops.tmc_spi_homing.i = false; break;
#endif
#if LINEAR_AXES >= 5
case J_AXIS: if (ENABLED(J_SPI_SENSORLESS)) endstops.tmc_spi_homing.j = false; break;
#endif
#if LINEAR_AXES >= 6
case K_AXIS: if (ENABLED(K_SPI_SENSORLESS)) endstops.tmc_spi_homing.k = false; break;
#endif
default: break;
}
#endif
}
#endif // SENSORLESS_HOMING
/**
* Home an individual linear axis
*/
void do_homing_move(const AxisEnum axis, const float distance, const feedRate_t fr_mm_s=0.0, const bool final_approach=true) {
DEBUG_SECTION(log_move, "do_homing_move", DEBUGGING(LEVELING));
const feedRate_t home_fr_mm_s = fr_mm_s ?: homing_feedrate(axis);
if (DEBUGGING(LEVELING)) {
DEBUG_ECHOPAIR("...(", AS_CHAR(AXIS_CHAR(axis)), ", ", distance, ", ");
if (fr_mm_s)
DEBUG_ECHO(fr_mm_s);
else
DEBUG_ECHOPAIR("[", home_fr_mm_s, "]");
DEBUG_ECHOLNPGM(")");
}
// Only do some things when moving towards an endstop
const int8_t axis_home_dir = TERN0(DUAL_X_CARRIAGE, axis == X_AXIS)
? TOOL_X_HOME_DIR(active_extruder) : home_dir(axis);
const bool is_home_dir = (axis_home_dir > 0) == (distance > 0);
#if ENABLED(SENSORLESS_HOMING)
sensorless_t stealth_states;
#endif
if (is_home_dir) {
if (TERN0(HOMING_Z_WITH_PROBE, axis == Z_AXIS)) {
#if BOTH(HAS_HEATED_BED, WAIT_FOR_BED_HEATER)
// Wait for bed to heat back up between probing points
thermalManager.wait_for_bed_heating();
#endif
#if BOTH(HAS_HOTEND, WAIT_FOR_HOTEND)
// Wait for the hotend to heat back up between probing points
thermalManager.wait_for_hotend_heating(active_extruder);
#endif
TERN_(HAS_QUIET_PROBING, if (final_approach) probe.set_probing_paused(true));
}
// Disable stealthChop if used. Enable diag1 pin on driver.
TERN_(SENSORLESS_HOMING, stealth_states = start_sensorless_homing_per_axis(axis));
}
#if EITHER(MORGAN_SCARA, MP_SCARA)
// Tell the planner the axis is at 0
current_position[axis] = 0;
sync_plan_position();
current_position[axis] = distance;
line_to_current_position(home_fr_mm_s);
#else
// Get the ABC or XYZ positions in mm
abce_pos_t target = planner.get_axis_positions_mm();
target[axis] = 0; // Set the single homing axis to 0
planner.set_machine_position_mm(target); // Update the machine position
#if HAS_DIST_MM_ARG
const xyze_float_t cart_dist_mm{0};
#endif
// Set delta/cartesian axes directly
target[axis] = distance; // The move will be towards the endstop
planner.buffer_segment(target OPTARG(HAS_DIST_MM_ARG, cart_dist_mm), home_fr_mm_s, active_extruder);
#endif
planner.synchronize();
if (is_home_dir) {
#if HOMING_Z_WITH_PROBE && HAS_QUIET_PROBING
if (axis == Z_AXIS && final_approach) probe.set_probing_paused(false);
#endif
endstops.validate_homing_move();
// Re-enable stealthChop if used. Disable diag1 pin on driver.
TERN_(SENSORLESS_HOMING, end_sensorless_homing_per_axis(axis, stealth_states));
}
}
/**
* Set an axis to be unhomed. (Unless we are on a machine - e.g. a cheap Chinese CNC machine -
* that has no endstops. Such machines should always be considered to be in a "known" and
* "trusted" position).
*/
void set_axis_never_homed(const AxisEnum axis) {
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR(">>> set_axis_never_homed(", AS_CHAR(AXIS_CHAR(axis)), ")");
set_axis_untrusted(axis);
set_axis_unhomed(axis);
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("<<< set_axis_never_homed(", AS_CHAR(AXIS_CHAR(axis)), ")");
TERN_(I2C_POSITION_ENCODERS, I2CPEM.unhomed(axis));
}
#ifdef TMC_HOME_PHASE
/**
* Move the axis back to its home_phase if set and driver is capable (TMC)
*
* Improves homing repeatability by homing to stepper coil's nearest absolute
* phase position. Trinamic drivers use a stepper phase table with 1024 values
* spanning 4 full steps with 256 positions each (ergo, 1024 positions).
*/
void backout_to_tmc_homing_phase(const AxisEnum axis) {
const xyz_long_t home_phase = TMC_HOME_PHASE;
// check if home phase is disabled for this axis.
if (home_phase[axis] < 0) return;
int16_t phasePerUStep, // TMC µsteps(phase) per Marlin µsteps
phaseCurrent, // The TMC µsteps(phase) count of the current position
effectorBackoutDir, // Direction in which the effector mm coordinates move away from endstop.
stepperBackoutDir; // Direction in which the TMC µstep count(phase) move away from endstop.
#define PHASE_PER_MICROSTEP(N) (256 / _MAX(1, N##_MICROSTEPS))
switch (axis) {
#ifdef X_MICROSTEPS
case X_AXIS:
phasePerUStep = PHASE_PER_MICROSTEP(X);
phaseCurrent = stepperX.get_microstep_counter();
effectorBackoutDir = -X_HOME_DIR;
stepperBackoutDir = INVERT_X_DIR ? effectorBackoutDir : -effectorBackoutDir;
break;
#endif
#ifdef Y_MICROSTEPS
case Y_AXIS:
phasePerUStep = PHASE_PER_MICROSTEP(Y);
phaseCurrent = stepperY.get_microstep_counter();
effectorBackoutDir = -Y_HOME_DIR;
stepperBackoutDir = INVERT_Y_DIR ? effectorBackoutDir : -effectorBackoutDir;
break;
#endif
#ifdef Z_MICROSTEPS
case Z_AXIS:
phasePerUStep = PHASE_PER_MICROSTEP(Z);
phaseCurrent = stepperZ.get_microstep_counter();
effectorBackoutDir = -Z_HOME_DIR;
stepperBackoutDir = INVERT_Z_DIR ? effectorBackoutDir : -effectorBackoutDir;
break;
#endif
#ifdef I_MICROSTEPS
case I_AXIS:
phasePerUStep = PHASE_PER_MICROSTEP(I);
phaseCurrent = stepperI.get_microstep_counter();
effectorBackoutDir = -I_HOME_DIR;
stepperBackoutDir = INVERT_I_DIR ? effectorBackoutDir : -effectorBackoutDir;
break;
#endif
#ifdef J_MICROSTEPS
case J_AXIS:
phasePerUStep = PHASE_PER_MICROSTEP(J);
phaseCurrent = stepperJ.get_microstep_counter();
effectorBackoutDir = -J_HOME_DIR;
stepperBackoutDir = INVERT_J_DIR ? effectorBackoutDir : -effectorBackoutDir;
break;
#endif
#ifdef K_MICROSTEPS
case K_AXIS:
phasePerUStep = PHASE_PER_MICROSTEP(K);
phaseCurrent = stepperK.get_microstep_counter();
effectorBackoutDir = -K_HOME_DIR;
stepperBackoutDir = INVERT_K_DIR ? effectorBackoutDir : -effectorBackoutDir;
break;
#endif
default: return;
}
// Phase distance to nearest home phase position when moving in the backout direction from endstop(may be negative).
int16_t phaseDelta = (home_phase[axis] - phaseCurrent) * stepperBackoutDir;
// Check if home distance within endstop assumed repeatability noise of .05mm and warn.
if (ABS(phaseDelta) * planner.steps_to_mm[axis] / phasePerUStep < 0.05f)
SERIAL_ECHOLNPAIR("Selected home phase ", home_phase[axis],
" too close to endstop trigger phase ", phaseCurrent,
". Pick a different phase for ", AS_CHAR(AXIS_CHAR(axis)));
// Skip to next if target position is behind current. So it only moves away from endstop.
if (phaseDelta < 0) phaseDelta += 1024;
// Convert TMC µsteps(phase) to whole Marlin µsteps to effector backout direction to mm
const float mmDelta = int16_t(phaseDelta / phasePerUStep) * effectorBackoutDir * planner.steps_to_mm[axis];
// Optional debug messages
if (DEBUGGING(LEVELING)) {
DEBUG_ECHOLNPAIR(
"Endstop ", AS_CHAR(AXIS_CHAR(axis)), " hit at Phase:", phaseCurrent,
" Delta:", phaseDelta, " Distance:", mmDelta
);
}
if (mmDelta != 0) {
// Retrace by the amount computed in mmDelta.
do_homing_move(axis, mmDelta, get_homing_bump_feedrate(axis));
}
}
#endif
/**
* Home an individual "raw axis" to its endstop.
* This applies to XYZ on Cartesian and Core robots, and
* to the individual ABC steppers on DELTA and SCARA.
*
* At the end of the procedure the axis is marked as
* homed and the current position of that axis is updated.
* Kinematic robots should wait till all axes are homed
* before updating the current position.
*/
void homeaxis(const AxisEnum axis) {
#if EITHER(MORGAN_SCARA, MP_SCARA)
// Only Z homing (with probe) is permitted
if (axis != Z_AXIS) { BUZZ(100, 880); return; }
#else
#define _CAN_HOME(A) (axis == _AXIS(A) && ( \
ENABLED(A##_SPI_SENSORLESS) \
|| TERN0(HAS_Z_AXIS, TERN0(HOMING_Z_WITH_PROBE, _AXIS(A) == Z_AXIS)) \
|| TERN0(A##_HOME_TO_MIN, A##_MIN_PIN > -1) \
|| TERN0(A##_HOME_TO_MAX, A##_MAX_PIN > -1) \
))
if (LINEAR_AXIS_GANG(
!_CAN_HOME(X),
&& !_CAN_HOME(Y),
&& !_CAN_HOME(Z),
&& !_CAN_HOME(I),
&& !_CAN_HOME(J),
&& !_CAN_HOME(K))
) return;
#endif
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR(">>> homeaxis(", AS_CHAR(AXIS_CHAR(axis)), ")");
const int axis_home_dir = TERN0(DUAL_X_CARRIAGE, axis == X_AXIS)
? TOOL_X_HOME_DIR(active_extruder) : home_dir(axis);
//
// Homing Z with a probe? Raise Z (maybe) and deploy the Z probe.
//
if (TERN0(HOMING_Z_WITH_PROBE, axis == Z_AXIS && probe.deploy()))
return;
// Set flags for X, Y, Z motor locking
#if HAS_EXTRA_ENDSTOPS
switch (axis) {
TERN_(X_DUAL_ENDSTOPS, case X_AXIS:)
TERN_(Y_DUAL_ENDSTOPS, case Y_AXIS:)
TERN_(Z_MULTI_ENDSTOPS, case Z_AXIS:)
stepper.set_separate_multi_axis(true);
default: break;
}
#endif
//
// Deploy BLTouch or tare the probe just before probing
//
#if HOMING_Z_WITH_PROBE
if (axis == Z_AXIS) {
if (TERN0(BLTOUCH, bltouch.deploy())) return; // BLTouch was deployed above, but get the alarm state.
if (TERN0(PROBE_TARE, probe.tare())) return;
}
#endif
//
// Back away to prevent an early sensorless trigger
//
#if DISABLED(DELTA) && defined(SENSORLESS_BACKOFF_MM)
const xyz_float_t backoff = SENSORLESS_BACKOFF_MM;
if ((TERN0(X_SENSORLESS, axis == X_AXIS) || TERN0(Y_SENSORLESS, axis == Y_AXIS) || TERN0(Z_SENSORLESS, axis == Z_AXIS) || TERN0(I_SENSORLESS, axis == I_AXIS) || TERN0(J_SENSORLESS, axis == J_AXIS) || TERN0(K_SENSORLESS, axis == K_AXIS)) && backoff[axis]) {
const float backoff_length = -ABS(backoff[axis]) * axis_home_dir;
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Sensorless backoff: ", backoff_length, "mm");
do_homing_move(axis, backoff_length, homing_feedrate(axis));
}
#endif
// Determine if a homing bump will be done and the bumps distance
// When homing Z with probe respect probe clearance
const bool use_probe_bump = TERN0(HOMING_Z_WITH_PROBE, axis == Z_AXIS && home_bump_mm(axis));
const float bump = axis_home_dir * (
use_probe_bump ? _MAX(TERN0(HOMING_Z_WITH_PROBE, Z_CLEARANCE_BETWEEN_PROBES), home_bump_mm(axis)) : home_bump_mm(axis)
);
//
// Fast move towards endstop until triggered
//
const float move_length = 1.5f * max_length(TERN(DELTA, Z_AXIS, axis)) * axis_home_dir;
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Home Fast: ", move_length, "mm");
do_homing_move(axis, move_length, 0.0, !use_probe_bump);
#if BOTH(HOMING_Z_WITH_PROBE, BLTOUCH_SLOW_MODE)
if (axis == Z_AXIS) bltouch.stow(); // Intermediate STOW (in LOW SPEED MODE)
#endif
// If a second homing move is configured...
if (bump) {
// Move away from the endstop by the axis HOMING_BUMP_MM
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Move Away: ", -bump, "mm");
do_homing_move(axis, -bump, TERN(HOMING_Z_WITH_PROBE, (axis == Z_AXIS ? z_probe_fast_mm_s : 0), 0), false);
#if ENABLED(DETECT_BROKEN_ENDSTOP)
// Check for a broken endstop
EndstopEnum es;
switch (axis) {
default:
case X_AXIS: es = X_ENDSTOP; break;
case Y_AXIS: es = Y_ENDSTOP; break;
case Z_AXIS: es = Z_ENDSTOP; break;
#if LINEAR_AXES >= 4
case I_AXIS: es = I_ENDSTOP; break;
#endif
#if LINEAR_AXES >= 5
case J_AXIS: es = J_ENDSTOP; break;
#endif
#if LINEAR_AXES >= 6
case K_AXIS: es = K_ENDSTOP; break;
#endif
}
if (TEST(endstops.state(), es)) {
SERIAL_ECHO_MSG("Bad ", AS_CHAR(AXIS_CHAR(axis)), " Endstop?");
kill(GET_TEXT(MSG_KILL_HOMING_FAILED));
}
#endif
#if BOTH(HOMING_Z_WITH_PROBE, BLTOUCH_SLOW_MODE)
if (axis == Z_AXIS && bltouch.deploy()) return; // Intermediate DEPLOY (in LOW SPEED MODE)
#endif
// Slow move towards endstop until triggered
const float rebump = bump * 2;
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Re-bump: ", rebump, "mm");
do_homing_move(axis, rebump, get_homing_bump_feedrate(axis), true);
#if BOTH(HOMING_Z_WITH_PROBE, BLTOUCH)
if (axis == Z_AXIS) bltouch.stow(); // The final STOW
#endif
}
#if HAS_EXTRA_ENDSTOPS
const bool pos_dir = axis_home_dir > 0;
#if ENABLED(X_DUAL_ENDSTOPS)
if (axis == X_AXIS) {
const float adj = ABS(endstops.x2_endstop_adj);
if (adj) {
if (pos_dir ? (endstops.x2_endstop_adj > 0) : (endstops.x2_endstop_adj < 0)) stepper.set_x_lock(true); else stepper.set_x2_lock(true);
do_homing_move(axis, pos_dir ? -adj : adj);
stepper.set_x_lock(false);
stepper.set_x2_lock(false);
}
}
#endif
#if ENABLED(Y_DUAL_ENDSTOPS)
if (axis == Y_AXIS) {
const float adj = ABS(endstops.y2_endstop_adj);
if (adj) {
if (pos_dir ? (endstops.y2_endstop_adj > 0) : (endstops.y2_endstop_adj < 0)) stepper.set_y_lock(true); else stepper.set_y2_lock(true);
do_homing_move(axis, pos_dir ? -adj : adj);
stepper.set_y_lock(false);
stepper.set_y2_lock(false);
}
}
#endif
#if ENABLED(Z_MULTI_ENDSTOPS)
if (axis == Z_AXIS) {
#if NUM_Z_STEPPER_DRIVERS == 2
const float adj = ABS(endstops.z2_endstop_adj);
if (adj) {
if (pos_dir ? (endstops.z2_endstop_adj > 0) : (endstops.z2_endstop_adj < 0)) stepper.set_z1_lock(true); else stepper.set_z2_lock(true);
do_homing_move(axis, pos_dir ? -adj : adj);
stepper.set_z1_lock(false);
stepper.set_z2_lock(false);
}
#else
// Handy arrays of stepper lock function pointers
typedef void (*adjustFunc_t)(const bool);
adjustFunc_t lock[] = {
stepper.set_z1_lock, stepper.set_z2_lock, stepper.set_z3_lock
#if NUM_Z_STEPPER_DRIVERS >= 4
, stepper.set_z4_lock
#endif
};
float adj[] = {
0, endstops.z2_endstop_adj, endstops.z3_endstop_adj
#if NUM_Z_STEPPER_DRIVERS >= 4
, endstops.z4_endstop_adj
#endif
};
adjustFunc_t tempLock;
float tempAdj;
// Manual bubble sort by adjust value
if (adj[1] < adj[0]) {
tempLock = lock[0], tempAdj = adj[0];
lock[0] = lock[1], adj[0] = adj[1];
lock[1] = tempLock, adj[1] = tempAdj;
}
if (adj[2] < adj[1]) {
tempLock = lock[1], tempAdj = adj[1];
lock[1] = lock[2], adj[1] = adj[2];
lock[2] = tempLock, adj[2] = tempAdj;
}
#if NUM_Z_STEPPER_DRIVERS >= 4
if (adj[3] < adj[2]) {
tempLock = lock[2], tempAdj = adj[2];
lock[2] = lock[3], adj[2] = adj[3];
lock[3] = tempLock, adj[3] = tempAdj;
}
if (adj[2] < adj[1]) {
tempLock = lock[1], tempAdj = adj[1];
lock[1] = lock[2], adj[1] = adj[2];
lock[2] = tempLock, adj[2] = tempAdj;
}
#endif
if (adj[1] < adj[0]) {
tempLock = lock[0], tempAdj = adj[0];
lock[0] = lock[1], adj[0] = adj[1];
lock[1] = tempLock, adj[1] = tempAdj;
}
if (pos_dir) {
// normalize adj to smallest value and do the first move
(*lock[0])(true);
do_homing_move(axis, adj[1] - adj[0]);
// lock the second stepper for the final correction
(*lock[1])(true);
do_homing_move(axis, adj[2] - adj[1]);
#if NUM_Z_STEPPER_DRIVERS >= 4
// lock the third stepper for the final correction
(*lock[2])(true);
do_homing_move(axis, adj[3] - adj[2]);
#endif
}
else {
#if NUM_Z_STEPPER_DRIVERS >= 4
(*lock[3])(true);
do_homing_move(axis, adj[2] - adj[3]);
#endif
(*lock[2])(true);
do_homing_move(axis, adj[1] - adj[2]);
(*lock[1])(true);
do_homing_move(axis, adj[0] - adj[1]);
}
stepper.set_z1_lock(false);
stepper.set_z2_lock(false);
stepper.set_z3_lock(false);
#if NUM_Z_STEPPER_DRIVERS >= 4
stepper.set_z4_lock(false);
#endif
#endif
}
#endif
// Reset flags for X, Y, Z motor locking
switch (axis) {
default: break;
TERN_(X_DUAL_ENDSTOPS, case X_AXIS:)
TERN_(Y_DUAL_ENDSTOPS, case Y_AXIS:)
TERN_(Z_MULTI_ENDSTOPS, case Z_AXIS:)
stepper.set_separate_multi_axis(false);
}
#endif // HAS_EXTRA_ENDSTOPS
#ifdef TMC_HOME_PHASE
// move back to homing phase if configured and capable
backout_to_tmc_homing_phase(axis);
#endif
#if IS_SCARA
set_axis_is_at_home(axis);
sync_plan_position();
#elif ENABLED(DELTA)
// Delta has already moved all three towers up in G28
// so here it re-homes each tower in turn.
// Delta homing treats the axes as normal linear axes.
const float adjDistance = delta_endstop_adj[axis],
minDistance = (MIN_STEPS_PER_SEGMENT) * planner.steps_to_mm[axis];
// Retrace by the amount specified in delta_endstop_adj if more than min steps.
if (adjDistance * (Z_HOME_DIR) < 0 && ABS(adjDistance) > minDistance) { // away from endstop, more than min distance
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("adjDistance:", adjDistance);
do_homing_move(axis, adjDistance, get_homing_bump_feedrate(axis));
}
#else // CARTESIAN / CORE / MARKFORGED_XY
set_axis_is_at_home(axis);
sync_plan_position();
destination[axis] = current_position[axis];
if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
#endif
// Put away the Z probe
#if HOMING_Z_WITH_PROBE
if (axis == Z_AXIS && probe.stow()) return;
#endif
#if DISABLED(DELTA) && defined(HOMING_BACKOFF_POST_MM)
const xyz_float_t endstop_backoff = HOMING_BACKOFF_POST_MM;
if (endstop_backoff[axis]) {
current_position[axis] -= ABS(endstop_backoff[axis]) * axis_home_dir;
line_to_current_position(
#if HOMING_Z_WITH_PROBE
(axis == Z_AXIS) ? z_probe_fast_mm_s :
#endif
homing_feedrate(axis)
);
#if ENABLED(SENSORLESS_HOMING)
planner.synchronize();
if (false
#if EITHER(IS_CORE, MARKFORGED_XY)
|| axis != NORMAL_AXIS
#endif
) safe_delay(200); // Short delay to allow belts to spring back
#endif
}
#endif
// Clear retracted status if homing the Z axis
#if ENABLED(FWRETRACT)
if (axis == Z_AXIS) fwretract.current_hop = 0.0;
#endif
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("<<< homeaxis(", AS_CHAR(AXIS_CHAR(axis)), ")");
} // homeaxis()
#endif // HAS_ENDSTOPS
/**
* Set an axis' current position to its home position (after homing).
*
* For Core and Cartesian robots this applies one-to-one when an
* individual axis has been homed.
*
* DELTA should wait until all homing is done before setting the XYZ
* current_position to home, because homing is a single operation.
* In the case where the axis positions are trusted and previously
* homed, DELTA could home to X or Y individually by moving either one
* to the center. However, homing Z always homes XY and Z.
*
* SCARA should wait until all XY homing is done before setting the XY
* current_position to home, because neither X nor Y is at home until
* both are at home. Z can however be homed individually.
*
* Callers must sync the planner position after calling this!
*/
void set_axis_is_at_home(const AxisEnum axis) {
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR(">>> set_axis_is_at_home(", AS_CHAR(AXIS_CHAR(axis)), ")");
set_axis_trusted(axis);
set_axis_homed(axis);
#if ENABLED(DUAL_X_CARRIAGE)
if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
current_position.x = x_home_pos(active_extruder);
return;
}
#endif
#if EITHER(MORGAN_SCARA, AXEL_TPARA)
scara_set_axis_is_at_home(axis);
#elif ENABLED(DELTA)
current_position[axis] = (axis == Z_AXIS) ? DIFF_TERN(HAS_BED_PROBE, delta_height, probe.offset.z) : base_home_pos(axis);
#else
current_position[axis] = base_home_pos(axis);
#endif
/**
* Z Probe Z Homing? Account for the probe's Z offset.
*/
#if HAS_BED_PROBE && Z_HOME_TO_MIN
if (axis == Z_AXIS) {
#if HOMING_Z_WITH_PROBE
current_position.z -= probe.offset.z;
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***\n> probe.offset.z = ", probe.offset.z);
#else
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("*** Z HOMED TO ENDSTOP ***");
#endif
}
#endif
TERN_(I2C_POSITION_ENCODERS, I2CPEM.homed(axis));
TERN_(BABYSTEP_DISPLAY_TOTAL, babystep.reset_total(axis));
#if HAS_POSITION_SHIFT
position_shift[axis] = 0;
update_workspace_offset(axis);
#endif
if (DEBUGGING(LEVELING)) {
#if HAS_HOME_OFFSET
DEBUG_ECHOLNPAIR("> home_offset[", AS_CHAR(AXIS_CHAR(axis)), "] = ", home_offset[axis]);
#endif
DEBUG_POS("", current_position);
DEBUG_ECHOLNPAIR("<<< set_axis_is_at_home(", AS_CHAR(AXIS_CHAR(axis)), ")");
}
}
#if HAS_WORKSPACE_OFFSET
void update_workspace_offset(const AxisEnum axis) {
workspace_offset[axis] = home_offset[axis] + position_shift[axis];
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Axis ", AS_CHAR(AXIS_CHAR(axis)), " home_offset = ", home_offset[axis], " position_shift = ", position_shift[axis]);
}
#endif
#if HAS_M206_COMMAND
/**
* Change the home offset for an axis.
* Also refreshes the workspace offset.
*/
void set_home_offset(const AxisEnum axis, const float v) {
home_offset[axis] = v;
update_workspace_offset(axis);
}
#endif