/** * Marlin 3D Printer Firmware * Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #pragma once /** * stepper_indirection.h * * Stepper motor driver indirection to allow some stepper functions to * be done via SPI/I2c instead of direct pin manipulation. * * Copyright (c) 2015 Dominik Wenger */ #include "../inc/MarlinConfig.h" // TMC26X drivers have STEP/DIR on normal pins, but ENABLE via SPI #if HAS_DRIVER(TMC26X) #include #if defined(STM32GENERIC) && defined(STM32F7) #include "../HAL/HAL_STM32_F4_F7/STM32F7/TMC2660.h" #else #include #endif void tmc26x_init_to_defaults(); #endif #if HAS_TRINAMIC #include #include "../feature/tmc_util.h" #if TMCSTEPPER_VERSION < 0x000405 #error "Update TMCStepper library to 0.4.5 or newer." #endif #define ____TMC_CLASS(MODEL, A, I, E) TMCMarlin #define ___TMC_CLASS(MODEL, A, I, E) ____TMC_CLASS(MODEL, A, I, E) #define __TMC_CLASS(MODEL, A, I, E) ___TMC_CLASS(_##MODEL, A, I, E) #define _TMC_CLASS(MODEL, L, E) __TMC_CLASS(MODEL, L, E) #define TMC_CLASS(ST, A) _TMC_CLASS(ST##_DRIVER_TYPE, TMC_##ST##_LABEL, A##_AXIS) #if ENABLED(DISTINCT_E_FACTORS) #define TMC_CLASS_E(I) TMC_CLASS(E##I, E##I) #else #define TMC_CLASS_E(I) TMC_CLASS(E##I, E) #endif typedef struct { uint8_t toff; int8_t hend; uint8_t hstrt; } chopper_timing_t; static constexpr chopper_timing_t chopper_timing = CHOPPER_TIMING; #if HAS_TMC220x void tmc_serial_begin(); #endif #endif // L6470 has STEP on normal pins, but DIR/ENABLE via SPI #if HAS_DRIVER(L6470) #include "L6470/L6470_Marlin.h" #define L6470_WRITE_DIR_COMMAND(STATE,Q) do{ L6470_dir_commands[Q] = (STATE ? dSPIN_STEP_CLOCK_REV : dSPIN_STEP_CLOCK_FWD); }while(0) #endif void restore_stepper_drivers(); // Called by PSU_ON void reset_stepper_drivers(); // Called by settings.load / settings.reset #define AXIS_HAS_SQUARE_WAVE(A) (AXIS_IS_TMC(A) && ENABLED(SQUARE_WAVE_STEPPING)) // X Stepper #if AXIS_DRIVER_TYPE_X(L6470) extern L6470 stepperX; #define X_ENABLE_INIT NOOP #define X_ENABLE_WRITE(STATE) NOOP #define X_ENABLE_READ (stepperX.getStatus() & STATUS_HIZ) #define X_DIR_INIT NOOP #define X_DIR_WRITE(STATE) L6470_WRITE_DIR_COMMAND(STATE,X) #define X_DIR_READ (stepperX.getStatus() & STATUS_DIR) #else #if AXIS_IS_TMC(X) extern TMC_CLASS(X, X) stepperX; #endif #if AXIS_DRIVER_TYPE_X(TMC26X) extern TMC26XStepper stepperX; #define X_ENABLE_INIT NOOP #define X_ENABLE_WRITE(STATE) stepperX.setEnabled(STATE) #define X_ENABLE_READ stepperX.isEnabled() #elif ENABLED(SOFTWARE_DRIVER_ENABLE) && AXIS_IS_TMC(X) #define X_ENABLE_INIT NOOP #define X_ENABLE_WRITE(STATE) stepperX.toff((STATE)==X_ENABLE_ON ? chopper_timing.toff : 0) #define X_ENABLE_READ stepperX.isEnabled() #else #define X_ENABLE_INIT SET_OUTPUT(X_ENABLE_PIN) #define X_ENABLE_WRITE(STATE) WRITE(X_ENABLE_PIN,STATE) #define X_ENABLE_READ READ(X_ENABLE_PIN) #endif #define X_DIR_INIT SET_OUTPUT(X_DIR_PIN) #define X_DIR_WRITE(STATE) WRITE(X_DIR_PIN,STATE) #define X_DIR_READ READ(X_DIR_PIN) #endif #define X_STEP_INIT SET_OUTPUT(X_STEP_PIN) #if AXIS_HAS_SQUARE_WAVE(X) #define X_STEP_WRITE(STATE) do { if(STATE) TOGGLE(X_STEP_PIN); } while(0) #else #define X_STEP_WRITE(STATE) WRITE(X_STEP_PIN,STATE) #endif #define X_STEP_READ READ(X_STEP_PIN) // Y Stepper #if AXIS_DRIVER_TYPE_Y(L6470) extern L6470 stepperY; #define Y_ENABLE_INIT NOOP #define Y_ENABLE_WRITE(STATE) NOOP #define Y_ENABLE_READ (stepperY.getStatus() & STATUS_HIZ) #define Y_DIR_INIT NOOP #define Y_DIR_WRITE(STATE) L6470_WRITE_DIR_COMMAND(STATE,Y) #define Y_DIR_READ (stepperY.getStatus() & STATUS_DIR) #else #if AXIS_IS_TMC(Y) extern TMC_CLASS(Y, Y) stepperY; #endif #if AXIS_DRIVER_TYPE_Y(TMC26X) extern TMC26XStepper stepperY; #define Y_ENABLE_INIT NOOP #define Y_ENABLE_WRITE(STATE) stepperY.setEnabled(STATE) #define Y_ENABLE_READ stepperY.isEnabled() #elif ENABLED(SOFTWARE_DRIVER_ENABLE) && AXIS_IS_TMC(Y) #define Y_ENABLE_INIT NOOP #define Y_ENABLE_WRITE(STATE) stepperY.toff((STATE)==Y_ENABLE_ON ? chopper_timing.toff : 0) #define Y_ENABLE_READ stepperY.isEnabled() #else #define Y_ENABLE_INIT SET_OUTPUT(Y_ENABLE_PIN) #define Y_ENABLE_WRITE(STATE) WRITE(Y_ENABLE_PIN,STATE) #define Y_ENABLE_READ READ(Y_ENABLE_PIN) #endif #define Y_DIR_INIT SET_OUTPUT(Y_DIR_PIN) #define Y_DIR_WRITE(STATE) WRITE(Y_DIR_PIN,STATE) #define Y_DIR_READ READ(Y_DIR_PIN) #endif #define Y_STEP_INIT SET_OUTPUT(Y_STEP_PIN) #if AXIS_HAS_SQUARE_WAVE(Y) #define Y_STEP_WRITE(STATE) do { if (STATE) TOGGLE(Y_STEP_PIN); } while(0) #else #define Y_STEP_WRITE(STATE) WRITE(Y_STEP_PIN,STATE) #endif #define Y_STEP_READ READ(Y_STEP_PIN) // Z Stepper #if AXIS_DRIVER_TYPE_Z(L6470) extern L6470 stepperZ; #define Z_ENABLE_INIT NOOP #define Z_ENABLE_WRITE(STATE) NOOP #define Z_ENABLE_READ (stepperZ.getStatus() & STATUS_HIZ) #define Z_DIR_INIT NOOP #define Z_DIR_WRITE(STATE) L6470_WRITE_DIR_COMMAND(STATE,Z) #define Z_DIR_READ (stepperZ.getStatus() & STATUS_DIR) #else #if AXIS_IS_TMC(Z) extern TMC_CLASS(Z, Z) stepperZ; #endif #if AXIS_DRIVER_TYPE_Z(TMC26X) extern TMC26XStepper stepperZ; #define Z_ENABLE_INIT NOOP #define Z_ENABLE_WRITE(STATE) stepperZ.setEnabled(STATE) #define Z_ENABLE_READ stepperZ.isEnabled() #elif ENABLED(SOFTWARE_DRIVER_ENABLE) && AXIS_IS_TMC(Z) #define Z_ENABLE_INIT NOOP #define Z_ENABLE_WRITE(STATE) stepperZ.toff((STATE)==Z_ENABLE_ON ? chopper_timing.toff : 0) #define Z_ENABLE_READ stepperZ.isEnabled() #else #define Z_ENABLE_INIT SET_OUTPUT(Z_ENABLE_PIN) #define Z_ENABLE_WRITE(STATE) WRITE(Z_ENABLE_PIN,STATE) #define Z_ENABLE_READ READ(Z_ENABLE_PIN) #endif #define Z_DIR_INIT SET_OUTPUT(Z_DIR_PIN) #define Z_DIR_WRITE(STATE) WRITE(Z_DIR_PIN,STATE) #define Z_DIR_READ READ(Z_DIR_PIN) #endif #define Z_STEP_INIT SET_OUTPUT(Z_STEP_PIN) #if AXIS_HAS_SQUARE_WAVE(Z) #define Z_STEP_WRITE(STATE) do { if(STATE) TOGGLE(Z_STEP_PIN); } while(0) #else #define Z_STEP_WRITE(STATE) WRITE(Z_STEP_PIN,STATE) #endif #define Z_STEP_READ READ(Z_STEP_PIN) // X2 Stepper #if HAS_X2_ENABLE #if AXIS_DRIVER_TYPE_X2(L6470) extern L6470 stepperX2; #define X2_ENABLE_INIT NOOP #define X2_ENABLE_WRITE(STATE) NOOP #define X2_ENABLE_READ (stepperX2.getStatus() & STATUS_HIZ) #define X2_DIR_INIT NOOP #define X2_DIR_WRITE(STATE) L6470_WRITE_DIR_COMMAND(STATE,X2) #define X2_DIR_READ (stepperX2.getStatus() & STATUS_DIR) #else #if AXIS_IS_TMC(X2) extern TMC_CLASS(X2, X) stepperX2; #endif #if AXIS_DRIVER_TYPE_X2(TMC26X) extern TMC26XStepper stepperX2; #define X2_ENABLE_INIT NOOP #define X2_ENABLE_WRITE(STATE) stepperX2.setEnabled(STATE) #define X2_ENABLE_READ stepperX2.isEnabled() #elif ENABLED(SOFTWARE_DRIVER_ENABLE) && AXIS_IS_TMC(X2) #define X2_ENABLE_INIT NOOP #define X2_ENABLE_WRITE(STATE) stepperX2.toff((STATE)==X_ENABLE_ON ? chopper_timing.toff : 0) #define X2_ENABLE_READ stepperX2.isEnabled() #else #define X2_ENABLE_INIT SET_OUTPUT(X2_ENABLE_PIN) #define X2_ENABLE_WRITE(STATE) WRITE(X2_ENABLE_PIN,STATE) #define X2_ENABLE_READ READ(X2_ENABLE_PIN) #endif #define X2_DIR_INIT SET_OUTPUT(X2_DIR_PIN) #define X2_DIR_WRITE(STATE) WRITE(X2_DIR_PIN,STATE) #define X2_DIR_READ READ(X2_DIR_PIN) #endif #define X2_STEP_INIT SET_OUTPUT(X2_STEP_PIN) #if AXIS_HAS_SQUARE_WAVE(X2) #define X2_STEP_WRITE(STATE) do { if(STATE) TOGGLE(X2_STEP_PIN); } while(0) #else #define X2_STEP_WRITE(STATE) WRITE(X2_STEP_PIN,STATE) #endif #define X2_STEP_READ READ(X2_STEP_PIN) #endif // Y2 Stepper #if HAS_Y2_ENABLE #if AXIS_DRIVER_TYPE_Y2(L6470) extern L6470 stepperY2; #define Y2_ENABLE_INIT NOOP #define Y2_ENABLE_WRITE(STATE) NOOP #define Y2_ENABLE_READ (stepperY2.getStatus() & STATUS_HIZ) #define Y2_DIR_INIT NOOP #define Y2_DIR_WRITE(STATE) L6470_WRITE_DIR_COMMAND(STATE,Y2) #define Y2_DIR_READ (stepperY2.getStatus() & STATUS_DIR) #else #if AXIS_IS_TMC(Y2) extern TMC_CLASS(Y2, Y) stepperY2; #endif #if AXIS_DRIVER_TYPE_Y2(TMC26X) extern TMC26XStepper stepperY2; #define Y2_ENABLE_INIT NOOP #define Y2_ENABLE_WRITE(STATE) stepperY2.setEnabled(STATE) #define Y2_ENABLE_READ stepperY2.isEnabled() #elif ENABLED(SOFTWARE_DRIVER_ENABLE) && AXIS_IS_TMC(Y2) #define Y2_ENABLE_INIT NOOP #define Y2_ENABLE_WRITE(STATE) stepperY2.toff((STATE)==Y_ENABLE_ON ? chopper_timing.toff : 0) #define Y2_ENABLE_READ stepperY2.isEnabled() #else #define Y2_ENABLE_INIT SET_OUTPUT(Y2_ENABLE_PIN) #define Y2_ENABLE_WRITE(STATE) WRITE(Y2_ENABLE_PIN,STATE) #define Y2_ENABLE_READ READ(Y2_ENABLE_PIN) #endif #define Y2_DIR_INIT SET_OUTPUT(Y2_DIR_PIN) #define Y2_DIR_WRITE(STATE) WRITE(Y2_DIR_PIN,STATE) #define Y2_DIR_READ READ(Y2_DIR_PIN) #endif #define Y2_STEP_INIT SET_OUTPUT(Y2_STEP_PIN) #if AXIS_HAS_SQUARE_WAVE(Y2) #define Y2_STEP_WRITE(STATE) do { if(STATE) TOGGLE(Y2_STEP_PIN); } while(0) #else #define Y2_STEP_WRITE(STATE) WRITE(Y2_STEP_PIN,STATE) #endif #define Y2_STEP_READ READ(Y2_STEP_PIN) #else #define Y2_DIR_WRITE(STATE) NOOP #endif // Z2 Stepper #if HAS_Z2_ENABLE #if AXIS_DRIVER_TYPE_Z2(L6470) extern L6470 stepperZ2; #define Z2_ENABLE_INIT NOOP #define Z2_ENABLE_WRITE(STATE) NOOP #define Z2_ENABLE_READ (stepperZ2.getStatus() & STATUS_HIZ) #define Z2_DIR_INIT NOOP #define Z2_DIR_WRITE(STATE) L6470_WRITE_DIR_COMMAND(STATE,Z2) #define Z2_DIR_READ (stepperZ2.getStatus() & STATUS_DIR) #else #if AXIS_IS_TMC(Z2) extern TMC_CLASS(Z2, Z) stepperZ2; #endif #if AXIS_DRIVER_TYPE_Z2(TMC26X) extern TMC26XStepper stepperZ2; #define Z2_ENABLE_INIT NOOP #define Z2_ENABLE_WRITE(STATE) stepperZ2.setEnabled(STATE) #define Z2_ENABLE_READ stepperZ2.isEnabled() #elif ENABLED(SOFTWARE_DRIVER_ENABLE) && AXIS_IS_TMC(Z2) #define Z2_ENABLE_INIT NOOP #define Z2_ENABLE_WRITE(STATE) stepperZ2.toff((STATE)==Z_ENABLE_ON ? chopper_timing.toff : 0) #define Z2_ENABLE_READ stepperZ2.isEnabled() #else #define Z2_ENABLE_INIT SET_OUTPUT(Z2_ENABLE_PIN) #define Z2_ENABLE_WRITE(STATE) WRITE(Z2_ENABLE_PIN,STATE) #define Z2_ENABLE_READ READ(Z2_ENABLE_PIN) #endif #define Z2_DIR_INIT SET_OUTPUT(Z2_DIR_PIN) #define Z2_DIR_WRITE(STATE) WRITE(Z2_DIR_PIN,STATE) #define Z2_DIR_READ READ(Z2_DIR_PIN) #endif #define Z2_STEP_INIT SET_OUTPUT(Z2_STEP_PIN) #if AXIS_HAS_SQUARE_WAVE(Z2) #define Z2_STEP_WRITE(STATE) do { if(STATE) TOGGLE(Z2_STEP_PIN); } while(0) #else #define Z2_STEP_WRITE(STATE) WRITE(Z2_STEP_PIN,STATE) #endif #define Z2_STEP_READ READ(Z2_STEP_PIN) #else #define Z2_DIR_WRITE(STATE) NOOP #endif // Z3 Stepper #if HAS_Z3_ENABLE #if AXIS_DRIVER_TYPE_Z3(L6470) extern L6470 stepperZ3; #define Z3_ENABLE_INIT NOOP #define Z3_ENABLE_WRITE(STATE) NOOP #define Z3_ENABLE_READ (stepperZ3.getStatus() & STATUS_HIZ) #define Z3_DIR_INIT NOOP #define Z3_DIR_WRITE(STATE) L6470_WRITE_DIR_COMMAND(STATE,Z3) #define Z3_DIR_READ (stepperZ3.getStatus() & STATUS_DIR) #else #if AXIS_IS_TMC(Z3) extern TMC_CLASS(Z3, Z) stepperZ3; #endif #if ENABLED(Z3_IS_TMC26X) extern TMC26XStepper stepperZ3; #define Z3_ENABLE_INIT NOOP #define Z3_ENABLE_WRITE(STATE) stepperZ3.setEnabled(STATE) #define Z3_ENABLE_READ stepperZ3.isEnabled() #elif ENABLED(SOFTWARE_DRIVER_ENABLE) && AXIS_IS_TMC(Z3) #define Z3_ENABLE_INIT NOOP #define Z3_ENABLE_WRITE(STATE) stepperZ3.toff((STATE)==Z_ENABLE_ON ? chopper_timing.toff : 0) #define Z3_ENABLE_READ stepperZ3.isEnabled() #else #define Z3_ENABLE_INIT SET_OUTPUT(Z3_ENABLE_PIN) #define Z3_ENABLE_WRITE(STATE) WRITE(Z3_ENABLE_PIN,STATE) #define Z3_ENABLE_READ READ(Z3_ENABLE_PIN) #endif #define Z3_DIR_INIT SET_OUTPUT(Z3_DIR_PIN) #define Z3_DIR_WRITE(STATE) WRITE(Z3_DIR_PIN,STATE) #define Z3_DIR_READ READ(Z3_DIR_PIN) #endif #define Z3_STEP_INIT SET_OUTPUT(Z3_STEP_PIN) #if AXIS_HAS_SQUARE_WAVE(Z3) #define Z3_STEP_WRITE(STATE) do { if(STATE) TOGGLE(Z3_STEP_PIN); } while(0) #else #define Z3_STEP_WRITE(STATE) WRITE(Z3_STEP_PIN,STATE) #endif #define Z3_STEP_READ READ(Z3_STEP_PIN) #else #define Z3_DIR_WRITE(STATE) NOOP #endif // E0 Stepper #if AXIS_DRIVER_TYPE_E0(L6470) extern L6470 stepperE0; #define E0_ENABLE_INIT NOOP #define E0_ENABLE_WRITE(STATE) NOOP #define E0_ENABLE_READ (stepperE0.getStatus() & STATUS_HIZ) #define E0_DIR_INIT NOOP #define E0_DIR_WRITE(STATE) L6470_WRITE_DIR_COMMAND(STATE,E0) #define E0_DIR_READ (stepperE0.getStatus() & STATUS_DIR) #else #if AXIS_IS_TMC(E0) extern TMC_CLASS_E(0) stepperE0; #endif #if AXIS_DRIVER_TYPE_E0(TMC26X) extern TMC26XStepper stepperE0; #define E0_ENABLE_INIT NOOP #define E0_ENABLE_WRITE(STATE) stepperE0.setEnabled(STATE) #define E0_ENABLE_READ stepperE0.isEnabled() #elif ENABLED(SOFTWARE_DRIVER_ENABLE) && AXIS_IS_TMC(E0) #define E0_ENABLE_INIT NOOP #define E0_ENABLE_WRITE(STATE) stepperE0.toff((STATE)==E_ENABLE_ON ? chopper_timing.toff : 0) #define E0_ENABLE_READ stepperE0.isEnabled() #else #define E0_ENABLE_INIT SET_OUTPUT(E0_ENABLE_PIN) #define E0_ENABLE_WRITE(STATE) WRITE(E0_ENABLE_PIN,STATE) #define E0_ENABLE_READ READ(E0_ENABLE_PIN) #endif #define E0_DIR_INIT SET_OUTPUT(E0_DIR_PIN) #define E0_DIR_WRITE(STATE) WRITE(E0_DIR_PIN,STATE) #define E0_DIR_READ READ(E0_DIR_PIN) #endif #define E0_STEP_INIT SET_OUTPUT(E0_STEP_PIN) #if AXIS_HAS_SQUARE_WAVE(E0) #define E0_STEP_WRITE(STATE) do { if(STATE) TOGGLE(E0_STEP_PIN); } while(0) #else #define E0_STEP_WRITE(STATE) WRITE(E0_STEP_PIN,STATE) #endif #define E0_STEP_READ READ(E0_STEP_PIN) // E1 Stepper #if AXIS_DRIVER_TYPE_E1(L6470) extern L6470 stepperE1; #define E1_ENABLE_INIT NOOP #define E1_ENABLE_WRITE(STATE) NOOP #define E1_ENABLE_READ (stepperE1.getStatus() & STATUS_HIZ) #define E1_DIR_INIT NOOP #define E1_DIR_WRITE(STATE) L6470_WRITE_DIR_COMMAND(STATE,E1) #define E1_DIR_READ (stepperE1.getStatus() & STATUS_DIR) #else #if AXIS_IS_TMC(E1) extern TMC_CLASS_E(1) stepperE1; #endif #if AXIS_DRIVER_TYPE_E1(TMC26X) extern TMC26XStepper stepperE1; #define E1_ENABLE_INIT NOOP #define E1_ENABLE_WRITE(STATE) stepperE1.setEnabled(STATE) #define E1_ENABLE_READ stepperE1.isEnabled() #elif ENABLED(SOFTWARE_DRIVER_ENABLE) && AXIS_IS_TMC(E1) #define E1_ENABLE_INIT NOOP #define E1_ENABLE_WRITE(STATE) stepperE1.toff((STATE)==E_ENABLE_ON ? chopper_timing.toff : 0) #define E1_ENABLE_READ stepperE1.isEnabled() #else #define E1_ENABLE_INIT SET_OUTPUT(E1_ENABLE_PIN) #define E1_ENABLE_WRITE(STATE) WRITE(E1_ENABLE_PIN,STATE) #define E1_ENABLE_READ READ(E1_ENABLE_PIN) #endif #define E1_DIR_INIT SET_OUTPUT(E1_DIR_PIN) #define E1_DIR_WRITE(STATE) WRITE(E1_DIR_PIN,STATE) #define E1_DIR_READ READ(E1_DIR_PIN) #endif #define E1_STEP_INIT SET_OUTPUT(E1_STEP_PIN) #if AXIS_HAS_SQUARE_WAVE(E1) #define E1_STEP_WRITE(STATE) do { if(STATE) TOGGLE(E1_STEP_PIN); } while(0) #else #define E1_STEP_WRITE(STATE) WRITE(E1_STEP_PIN,STATE) #endif #define E1_STEP_READ READ(E1_STEP_PIN) // E2 Stepper #if AXIS_DRIVER_TYPE_E2(L6470) extern L6470 stepperE2; #define E2_ENABLE_INIT NOOP #define E2_ENABLE_WRITE(STATE) NOOP #define E2_ENABLE_READ (stepperE2.getStatus() & STATUS_HIZ) #define E2_DIR_INIT NOOP #define E2_DIR_WRITE(STATE) L6470_WRITE_DIR_COMMAND(STATE,E2) #define E2_DIR_READ (stepperE2.getStatus() & STATUS_DIR) #else #if AXIS_IS_TMC(E2) extern TMC_CLASS_E(2) stepperE2; #endif #if AXIS_DRIVER_TYPE_E2(TMC26X) extern TMC26XStepper stepperE2; #define E2_ENABLE_INIT NOOP #define E2_ENABLE_WRITE(STATE) stepperE2.setEnabled(STATE) #define E2_ENABLE_READ stepperE2.isEnabled() #elif ENABLED(SOFTWARE_DRIVER_ENABLE) && AXIS_IS_TMC(E2) #define E2_ENABLE_INIT NOOP #define E2_ENABLE_WRITE(STATE) stepperE2.toff((STATE)==E_ENABLE_ON ? chopper_timing.toff : 0) #define E2_ENABLE_READ stepperE2.isEnabled() #else #define E2_ENABLE_INIT SET_OUTPUT(E2_ENABLE_PIN) #define E2_ENABLE_WRITE(STATE) WRITE(E2_ENABLE_PIN,STATE) #define E2_ENABLE_READ READ(E2_ENABLE_PIN) #endif #define E2_DIR_INIT SET_OUTPUT(E2_DIR_PIN) #define E2_DIR_WRITE(STATE) WRITE(E2_DIR_PIN,STATE) #define E2_DIR_READ READ(E2_DIR_PIN) #endif #define E2_STEP_INIT SET_OUTPUT(E2_STEP_PIN) #if AXIS_HAS_SQUARE_WAVE(E2) #define E2_STEP_WRITE(STATE) do { if(STATE) TOGGLE(E2_STEP_PIN); } while(0) #else #define E2_STEP_WRITE(STATE) WRITE(E2_STEP_PIN,STATE) #endif #define E2_STEP_READ READ(E2_STEP_PIN) // E3 Stepper #if AXIS_DRIVER_TYPE_E3(L6470) extern L6470 stepperE3; #define E3_ENABLE_INIT NOOP #define E3_ENABLE_WRITE(STATE) NOOP #define E3_ENABLE_READ (stepperE3.getStatus() & STATUS_HIZ) #define E3_DIR_INIT NOOP #define E3_DIR_WRITE(STATE) L6470_WRITE_DIR_COMMAND(STATE,E3) #define E3_DIR_READ (stepperE3.getStatus() & STATUS_DIR) #else #if AXIS_IS_TMC(E3) extern TMC_CLASS_E(3) stepperE3; #endif #if AXIS_DRIVER_TYPE_E3(TMC26X) extern TMC26XStepper stepperE3; #define E3_ENABLE_INIT NOOP #define E3_ENABLE_WRITE(STATE) stepperE3.setEnabled(STATE) #define E3_ENABLE_READ stepperE3.isEnabled() #elif ENABLED(SOFTWARE_DRIVER_ENABLE) && AXIS_IS_TMC(E3) #define E3_ENABLE_INIT NOOP #define E3_ENABLE_WRITE(STATE) stepperE3.toff((STATE)==E_ENABLE_ON ? chopper_timing.toff : 0) #define E3_ENABLE_READ stepperE3.isEnabled() #else #define E3_ENABLE_INIT SET_OUTPUT(E3_ENABLE_PIN) #define E3_ENABLE_WRITE(STATE) WRITE(E3_ENABLE_PIN,STATE) #define E3_ENABLE_READ READ(E3_ENABLE_PIN) #endif #define E3_DIR_INIT SET_OUTPUT(E3_DIR_PIN) #define E3_DIR_WRITE(STATE) WRITE(E3_DIR_PIN,STATE) #define E3_DIR_READ READ(E3_DIR_PIN) #endif #define E3_STEP_INIT SET_OUTPUT(E3_STEP_PIN) #if AXIS_HAS_SQUARE_WAVE(E3) #define E3_STEP_WRITE(STATE) do { if(STATE) TOGGLE(E3_STEP_PIN); } while(0) #else #define E3_STEP_WRITE(STATE) WRITE(E3_STEP_PIN,STATE) #endif #define E3_STEP_READ READ(E3_STEP_PIN) // E4 Stepper #if AXIS_DRIVER_TYPE_E4(L6470) extern L6470 stepperE4; #define E4_ENABLE_INIT NOOP #define E4_ENABLE_WRITE(STATE) NOOP #define E4_ENABLE_READ (stepperE4.getStatus() & STATUS_HIZ) #define E4_DIR_INIT NOOP #define E4_DIR_WRITE(STATE) L6470_WRITE_DIR_COMMAND(STATE,E4) #define E4_DIR_READ (stepperE4.getStatus() & STATUS_DIR) #else #if AXIS_IS_TMC(E4) extern TMC_CLASS_E(4) stepperE4; #endif #if AXIS_DRIVER_TYPE_E4(TMC26X) extern TMC26XStepper stepperE4; #define E4_ENABLE_INIT NOOP #define E4_ENABLE_WRITE(STATE) stepperE4.setEnabled(STATE) #define E4_ENABLE_READ stepperE4.isEnabled() #elif ENABLED(SOFTWARE_DRIVER_ENABLE) && AXIS_IS_TMC(E4) #define E4_ENABLE_INIT NOOP #define E4_ENABLE_WRITE(STATE) stepperE4.toff((STATE)==E_ENABLE_ON ? chopper_timing.toff : 0) #define E4_ENABLE_READ stepperE4.isEnabled() #else #define E4_ENABLE_INIT SET_OUTPUT(E4_ENABLE_PIN) #define E4_ENABLE_WRITE(STATE) WRITE(E4_ENABLE_PIN,STATE) #define E4_ENABLE_READ READ(E4_ENABLE_PIN) #endif #define E4_DIR_INIT SET_OUTPUT(E4_DIR_PIN) #define E4_DIR_WRITE(STATE) WRITE(E4_DIR_PIN,STATE) #define E4_DIR_READ READ(E4_DIR_PIN) #endif #define E4_STEP_INIT SET_OUTPUT(E4_STEP_PIN) #if AXIS_HAS_SQUARE_WAVE(E4) #define E4_STEP_WRITE(STATE) do { if(STATE) TOGGLE(E4_STEP_PIN); } while(0) #else #define E4_STEP_WRITE(STATE) WRITE(E4_STEP_PIN,STATE) #endif #define E4_STEP_READ READ(E4_STEP_PIN) // E5 Stepper #if AXIS_DRIVER_TYPE_E5(L6470) extern L6470 stepperE5; #define E5_ENABLE_INIT NOOP #define E5_ENABLE_WRITE(STATE) NOOP #define E5_ENABLE_READ (stepperE5.getStatus() & STATUS_HIZ) #define E5_DIR_INIT NOOP #define E5_DIR_WRITE(STATE) L6470_WRITE_DIR_COMMAND(STATE,E5) #define E5_DIR_READ (stepperE5.getStatus() & STATUS_DIR) #else #if AXIS_IS_TMC(E5) extern TMC_CLASS_E(5) stepperE5; #endif #if AXIS_DRIVER_TYPE_E5(TMC26X) extern TMC26XStepper stepperE5; #define E5_ENABLE_INIT NOOP #define E5_ENABLE_WRITE(STATE) stepperE5.setEnabled(STATE) #define E5_ENABLE_READ stepperE5.isEnabled() #elif ENABLED(SOFTWARE_DRIVER_ENABLE) && AXIS_IS_TMC(E5) #define E5_ENABLE_INIT NOOP #define E5_ENABLE_WRITE(STATE) stepperE5.toff((STATE)==E_ENABLE_ON ? chopper_timing.toff : 0) #define E5_ENABLE_READ stepperE5.isEnabled() #else #define E5_ENABLE_INIT SET_OUTPUT(E5_ENABLE_PIN) #define E5_ENABLE_WRITE(STATE) WRITE(E5_ENABLE_PIN,STATE) #define E5_ENABLE_READ READ(E5_ENABLE_PIN) #endif #define E5_DIR_INIT SET_OUTPUT(E5_DIR_PIN) #define E5_DIR_WRITE(STATE) WRITE(E5_DIR_PIN,STATE) #define E5_DIR_READ READ(E5_DIR_PIN) #endif #define E5_STEP_INIT SET_OUTPUT(E5_STEP_PIN) #if AXIS_HAS_SQUARE_WAVE(E5) #define E5_STEP_WRITE(STATE) do { if(STATE) TOGGLE(E5_STEP_PIN); } while(0) #else #define E5_STEP_WRITE(STATE) WRITE(E5_STEP_PIN,STATE) #endif #define E5_STEP_READ READ(E5_STEP_PIN) /** * Extruder indirection for the single E axis */ #if ENABLED(SWITCHING_EXTRUDER) // One stepper driver per two extruders, reversed on odd index #if EXTRUDERS > 5 #define E_STEP_WRITE(E,V) do{ if (E < 2) { E0_STEP_WRITE(V); } else if (E < 4) { E1_STEP_WRITE(V); } else { E2_STEP_WRITE(V); } }while(0) #define NORM_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 1: E0_DIR_WRITE( INVERT_E0_DIR); break; case 2: E1_DIR_WRITE(!INVERT_E1_DIR); break; case 3: E1_DIR_WRITE( INVERT_E1_DIR); break; case 4: E2_DIR_WRITE(!INVERT_E2_DIR); case 5: E2_DIR_WRITE( INVERT_E2_DIR); } }while(0) #define REV_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE( INVERT_E0_DIR); break; case 1: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 2: E1_DIR_WRITE( INVERT_E1_DIR); break; case 3: E1_DIR_WRITE(!INVERT_E1_DIR); break; case 4: E2_DIR_WRITE( INVERT_E2_DIR); case 5: E2_DIR_WRITE(!INVERT_E2_DIR); } }while(0) #elif EXTRUDERS > 4 #define E_STEP_WRITE(E,V) do{ if (E < 2) { E0_STEP_WRITE(V); } else if (E < 4) { E1_STEP_WRITE(V); } else { E2_STEP_WRITE(V); } }while(0) #define NORM_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 1: E0_DIR_WRITE( INVERT_E0_DIR); break; case 2: E1_DIR_WRITE(!INVERT_E1_DIR); break; case 3: E1_DIR_WRITE( INVERT_E1_DIR); break; case 4: E2_DIR_WRITE(!INVERT_E2_DIR); } }while(0) #define REV_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE( INVERT_E0_DIR); break; case 1: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 2: E1_DIR_WRITE( INVERT_E1_DIR); break; case 3: E1_DIR_WRITE(!INVERT_E1_DIR); break; case 4: E2_DIR_WRITE( INVERT_E2_DIR); } }while(0) #elif EXTRUDERS > 3 #define E_STEP_WRITE(E,V) do{ if (E < 2) { E0_STEP_WRITE(V); } else { E1_STEP_WRITE(V); } }while(0) #define NORM_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 1: E0_DIR_WRITE( INVERT_E0_DIR); break; case 2: E1_DIR_WRITE(!INVERT_E1_DIR); break; case 3: E1_DIR_WRITE( INVERT_E1_DIR); } }while(0) #define REV_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE( INVERT_E0_DIR); break; case 1: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 2: E1_DIR_WRITE( INVERT_E1_DIR); break; case 3: E1_DIR_WRITE(!INVERT_E1_DIR); } }while(0) #elif EXTRUDERS > 2 #define E_STEP_WRITE(E,V) do{ if (E < 2) { E0_STEP_WRITE(V); } else { E1_STEP_WRITE(V); } }while(0) #define NORM_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 1: E0_DIR_WRITE( INVERT_E0_DIR); break; case 2: E1_DIR_WRITE(!INVERT_E1_DIR); } }while(0) #define REV_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE( INVERT_E0_DIR); break; case 1: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 2: E1_DIR_WRITE( INVERT_E1_DIR); } }while(0) #else #define E_STEP_WRITE(E,V) E0_STEP_WRITE(V) #define NORM_E_DIR(E) do{ E0_DIR_WRITE(E ? INVERT_E0_DIR : !INVERT_E0_DIR); }while(0) #define REV_E_DIR(E) do{ E0_DIR_WRITE(E ? !INVERT_E0_DIR : INVERT_E0_DIR); }while(0) #endif #elif ENABLED(PRUSA_MMU2) #define E_STEP_WRITE(E,V) E0_STEP_WRITE(V) #define NORM_E_DIR(E) E0_DIR_WRITE(!INVERT_E0_DIR) #define REV_E_DIR(E) E0_DIR_WRITE( INVERT_E0_DIR) #elif ENABLED(MK2_MULTIPLEXER) // One multiplexed stepper driver, reversed on odd index #define E_STEP_WRITE(E,V) E0_STEP_WRITE(V) #define NORM_E_DIR(E) do{ E0_DIR_WRITE(TEST(E, 0) ? !INVERT_E0_DIR: INVERT_E0_DIR); }while(0) #define REV_E_DIR(E) do{ E0_DIR_WRITE(TEST(E, 0) ? INVERT_E0_DIR: !INVERT_E0_DIR); }while(0) #elif E_STEPPERS > 1 #if E_STEPPERS > 5 #define _E_STEP_WRITE(E,V) do{ switch (E) { case 0: E0_STEP_WRITE(V); break; case 1: E1_STEP_WRITE(V); break; case 2: E2_STEP_WRITE(V); break; case 3: E3_STEP_WRITE(V); break; case 4: E4_STEP_WRITE(V); case 5: E5_STEP_WRITE(V); } }while(0) #define _NORM_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 1: E1_DIR_WRITE(!INVERT_E1_DIR); break; case 2: E2_DIR_WRITE(!INVERT_E2_DIR); break; case 3: E3_DIR_WRITE(!INVERT_E3_DIR); break; case 4: E4_DIR_WRITE(!INVERT_E4_DIR); case 5: E5_DIR_WRITE(!INVERT_E5_DIR); } }while(0) #define _REV_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE( INVERT_E0_DIR); break; case 1: E1_DIR_WRITE( INVERT_E1_DIR); break; case 2: E2_DIR_WRITE( INVERT_E2_DIR); break; case 3: E3_DIR_WRITE( INVERT_E3_DIR); break; case 4: E4_DIR_WRITE( INVERT_E4_DIR); case 5: E5_DIR_WRITE( INVERT_E5_DIR); } }while(0) #elif E_STEPPERS > 4 #define _E_STEP_WRITE(E,V) do{ switch (E) { case 0: E0_STEP_WRITE(V); break; case 1: E1_STEP_WRITE(V); break; case 2: E2_STEP_WRITE(V); break; case 3: E3_STEP_WRITE(V); break; case 4: E4_STEP_WRITE(V); } }while(0) #define _NORM_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 1: E1_DIR_WRITE(!INVERT_E1_DIR); break; case 2: E2_DIR_WRITE(!INVERT_E2_DIR); break; case 3: E3_DIR_WRITE(!INVERT_E3_DIR); break; case 4: E4_DIR_WRITE(!INVERT_E4_DIR); } }while(0) #define _REV_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE( INVERT_E0_DIR); break; case 1: E1_DIR_WRITE( INVERT_E1_DIR); break; case 2: E2_DIR_WRITE( INVERT_E2_DIR); break; case 3: E3_DIR_WRITE( INVERT_E3_DIR); break; case 4: E4_DIR_WRITE( INVERT_E4_DIR); } }while(0) #elif E_STEPPERS > 3 #define _E_STEP_WRITE(E,V) do{ switch (E) { case 0: E0_STEP_WRITE(V); break; case 1: E1_STEP_WRITE(V); break; case 2: E2_STEP_WRITE(V); break; case 3: E3_STEP_WRITE(V); } }while(0) #define _NORM_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 1: E1_DIR_WRITE(!INVERT_E1_DIR); break; case 2: E2_DIR_WRITE(!INVERT_E2_DIR); break; case 3: E3_DIR_WRITE(!INVERT_E3_DIR); } }while(0) #define _REV_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE( INVERT_E0_DIR); break; case 1: E1_DIR_WRITE( INVERT_E1_DIR); break; case 2: E2_DIR_WRITE( INVERT_E2_DIR); break; case 3: E3_DIR_WRITE( INVERT_E3_DIR); } }while(0) #elif E_STEPPERS > 2 #define _E_STEP_WRITE(E,V) do{ switch (E) { case 0: E0_STEP_WRITE(V); break; case 1: E1_STEP_WRITE(V); break; case 2: E2_STEP_WRITE(V); } }while(0) #define _NORM_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 1: E1_DIR_WRITE(!INVERT_E1_DIR); break; case 2: E2_DIR_WRITE(!INVERT_E2_DIR); } }while(0) #define _REV_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE( INVERT_E0_DIR); break; case 1: E1_DIR_WRITE( INVERT_E1_DIR); break; case 2: E2_DIR_WRITE( INVERT_E2_DIR); } }while(0) #else #define _E_STEP_WRITE(E,V) do{ if (E == 0) { E0_STEP_WRITE(V); } else { E1_STEP_WRITE(V); } }while(0) #define _NORM_E_DIR(E) do{ if (E == 0) { E0_DIR_WRITE(!INVERT_E0_DIR); } else { E1_DIR_WRITE(!INVERT_E1_DIR); } }while(0) #define _REV_E_DIR(E) do{ if (E == 0) { E0_DIR_WRITE( INVERT_E0_DIR); } else { E1_DIR_WRITE( INVERT_E1_DIR); } }while(0) #endif #if HAS_DUPLICATION_MODE #if ENABLED(MULTI_NOZZLE_DUPLICATION) #define _DUPE(N,T,V) do{ if (TEST(duplication_e_mask, N)) E##N##_##T##_WRITE(V); }while(0) #else #define _DUPE(N,T,V) E##N##_##T##_WRITE(V) #endif #define NDIR(N) _DUPE(N,DIR,!INVERT_E##N##_DIR) #define RDIR(N) _DUPE(N,DIR, INVERT_E##N##_DIR) #define E_STEP_WRITE(E,V) do{ if (extruder_duplication_enabled) { DUPE(STEP,V); } else _E_STEP_WRITE(E,V); }while(0) #if E_STEPPERS > 2 #if E_STEPPERS > 5 #define DUPE(T,V) do{ _DUPE(0,T,V); _DUPE(1,T,V); _DUPE(2,T,V); _DUPE(3,T,V); _DUPE(4,T,V); _DUPE(5,T,V); }while(0) #define NORM_E_DIR(E) do{ if (extruder_duplication_enabled) { NDIR(0); NDIR(1); NDIR(2); NDIR(3); NDIR(4); NDIR(5); } else _NORM_E_DIR(E); }while(0) #define REV_E_DIR(E) do{ if (extruder_duplication_enabled) { RDIR(0); RDIR(1); RDIR(2); RDIR(3); RDIR(4); RDIR(5); } else _REV_E_DIR(E); }while(0) #elif E_STEPPERS > 4 #define DUPE(T,V) do{ _DUPE(0,T,V); _DUPE(1,T,V); _DUPE(2,T,V); _DUPE(3,T,V); _DUPE(4,T,V); }while(0) #define NORM_E_DIR(E) do{ if (extruder_duplication_enabled) { NDIR(0); NDIR(1); NDIR(2); NDIR(3); NDIR(4); } else _NORM_E_DIR(E); }while(0) #define REV_E_DIR(E) do{ if (extruder_duplication_enabled) { RDIR(0); RDIR(1); RDIR(2); RDIR(3); RDIR(4); } else _REV_E_DIR(E); }while(0) #elif E_STEPPERS > 3 #define DUPE(T,V) do{ _DUPE(0,T,V); _DUPE(1,T,V); _DUPE(2,T,V); _DUPE(3,T,V); }while(0) #define NORM_E_DIR(E) do{ if (extruder_duplication_enabled) { NDIR(0); NDIR(1); NDIR(2); NDIR(3); } else _NORM_E_DIR(E); }while(0) #define REV_E_DIR(E) do{ if (extruder_duplication_enabled) { RDIR(0); RDIR(1); RDIR(2); RDIR(3); } else _REV_E_DIR(E); }while(0) #else #define DUPE(T,V) do{ _DUPE(0,T,V); _DUPE(1,T,V); _DUPE(2,T,V); }while(0) #define NORM_E_DIR(E) do{ if (extruder_duplication_enabled) { NDIR(0); NDIR(1); NDIR(2); } else _NORM_E_DIR(E); }while(0) #define REV_E_DIR(E) do{ if (extruder_duplication_enabled) { RDIR(0); RDIR(1); RDIR(2); } else _REV_E_DIR(E); }while(0) #endif #else #define DUPE(T,V) do{ _DUPE(0,T,V); _DUPE(1,T,V); } while(0) #define NORM_E_DIR(E) do{ if (extruder_duplication_enabled) { NDIR(0); NDIR(1); } else _NORM_E_DIR(E); }while(0) #define REV_E_DIR(E) do{ if (extruder_duplication_enabled) { RDIR(0); RDIR(1); } else _REV_E_DIR(E); }while(0) #endif #else #define E_STEP_WRITE(E,V) _E_STEP_WRITE(E,V) #define NORM_E_DIR(E) _NORM_E_DIR(E) #define REV_E_DIR(E) _REV_E_DIR(E) #endif #elif E_STEPPERS #define E_STEP_WRITE(E,V) E0_STEP_WRITE(V) #define NORM_E_DIR(E) E0_DIR_WRITE(!INVERT_E0_DIR) #define REV_E_DIR(E) E0_DIR_WRITE( INVERT_E0_DIR) #else #define E_STEP_WRITE(E,V) NOOP #define NORM_E_DIR(E) NOOP #define REV_E_DIR(E) NOOP #endif