/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * MarlinSerial.cpp - Hardware serial library for Wiring * Copyright (c) 2006 Nicholas Zambetti. All right reserved. * * Modified 23 November 2006 by David A. Mellis * Modified 28 September 2010 by Mark Sproul * Modified 14 February 2016 by Andreas Hardtung (added tx buffer) * Modified 01 October 2017 by Eduardo José Tagle (added XON/XOFF) * Modified 10 June 2018 by Eduardo José Tagle (See #10991) * Templatized 01 October 2018 by Eduardo José Tagle to allow multiple instances */ #ifdef __AVR__ // Disable HardwareSerial.cpp to support chips without a UART (Attiny, etc.) #include "../../inc/MarlinConfig.h" #if !defined(USBCON) && (defined(UBRRH) || defined(UBRR0H) || defined(UBRR1H) || defined(UBRR2H) || defined(UBRR3H)) #include "MarlinSerial.h" #include "../../MarlinCore.h" #if ENABLED(DIRECT_STEPPING) #include "../../feature/direct_stepping.h" #endif template typename MarlinSerial::ring_buffer_r MarlinSerial::rx_buffer = { 0, 0, { 0 } }; template typename MarlinSerial::ring_buffer_t MarlinSerial::tx_buffer = { 0 }; template bool MarlinSerial::_written = false; template uint8_t MarlinSerial::xon_xoff_state = MarlinSerial::XON_XOFF_CHAR_SENT | MarlinSerial::XON_CHAR; template uint8_t MarlinSerial::rx_dropped_bytes = 0; template uint8_t MarlinSerial::rx_buffer_overruns = 0; template uint8_t MarlinSerial::rx_framing_errors = 0; template typename MarlinSerial::ring_buffer_pos_t MarlinSerial::rx_max_enqueued = 0; // A SW memory barrier, to ensure GCC does not overoptimize loops #define sw_barrier() asm volatile("": : :"memory"); #include "../../feature/e_parser.h" // "Atomically" read the RX head index value without disabling interrupts: // This MUST be called with RX interrupts enabled, and CAN'T be called // from the RX ISR itself! template FORCE_INLINE typename MarlinSerial::ring_buffer_pos_t MarlinSerial::atomic_read_rx_head() { if (Cfg::RX_SIZE > 256) { // Keep reading until 2 consecutive reads return the same value, // meaning there was no update in-between caused by an interrupt. // This works because serial RX interrupts happen at a slower rate // than successive reads of a variable, so 2 consecutive reads with // the same value means no interrupt updated it. ring_buffer_pos_t vold, vnew = rx_buffer.head; sw_barrier(); do { vold = vnew; vnew = rx_buffer.head; sw_barrier(); } while (vold != vnew); return vnew; } else { // With an 8bit index, reads are always atomic. No need for special handling return rx_buffer.head; } } template volatile bool MarlinSerial::rx_tail_value_not_stable = false; template volatile uint16_t MarlinSerial::rx_tail_value_backup = 0; // Set RX tail index, taking into account the RX ISR could interrupt // the write to this variable in the middle - So a backup strategy // is used to ensure reads of the correct values. // -Must NOT be called from the RX ISR - template FORCE_INLINE void MarlinSerial::atomic_set_rx_tail(typename MarlinSerial::ring_buffer_pos_t value) { if (Cfg::RX_SIZE > 256) { // Store the new value in the backup rx_tail_value_backup = value; sw_barrier(); // Flag we are about to change the true value rx_tail_value_not_stable = true; sw_barrier(); // Store the new value rx_buffer.tail = value; sw_barrier(); // Signal the new value is completely stored into the value rx_tail_value_not_stable = false; sw_barrier(); } else rx_buffer.tail = value; } // Get the RX tail index, taking into account the read could be // interrupting in the middle of the update of that index value // -Called from the RX ISR - template FORCE_INLINE typename MarlinSerial::ring_buffer_pos_t MarlinSerial::atomic_read_rx_tail() { if (Cfg::RX_SIZE > 256) { // If the true index is being modified, return the backup value if (rx_tail_value_not_stable) return rx_tail_value_backup; } // The true index is stable, return it return rx_buffer.tail; } // (called with RX interrupts disabled) template FORCE_INLINE void MarlinSerial::store_rxd_char() { static EmergencyParser::State emergency_state; // = EP_RESET // This must read the R_UCSRA register before reading the received byte to detect error causes if (Cfg::DROPPED_RX && B_DOR && !++rx_dropped_bytes) --rx_dropped_bytes; if (Cfg::RX_OVERRUNS && B_DOR && !++rx_buffer_overruns) --rx_buffer_overruns; if (Cfg::RX_FRAMING_ERRORS && B_FE && !++rx_framing_errors) --rx_framing_errors; // Read the character from the USART uint8_t c = R_UDR; #if ENABLED(DIRECT_STEPPING) if (page_manager.maybe_store_rxd_char(c)) return; #endif // Get the tail - Nothing can alter its value while this ISR is executing, but there's // a chance that this ISR interrupted the main process while it was updating the index. // The backup mechanism ensures the correct value is always returned. const ring_buffer_pos_t t = atomic_read_rx_tail(); // Get the head pointer - This ISR is the only one that modifies its value, so it's safe to read here ring_buffer_pos_t h = rx_buffer.head; // Get the next element ring_buffer_pos_t i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1); if (Cfg::EMERGENCYPARSER) emergency_parser.update(emergency_state, c); // If the character is to be stored at the index just before the tail // (such that the head would advance to the current tail), the RX FIFO is // full, so don't write the character or advance the head. if (i != t) { rx_buffer.buffer[h] = c; h = i; } else if (Cfg::DROPPED_RX && !++rx_dropped_bytes) --rx_dropped_bytes; if (Cfg::MAX_RX_QUEUED) { // Calculate count of bytes stored into the RX buffer const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1); // Keep track of the maximum count of enqueued bytes NOLESS(rx_max_enqueued, rx_count); } if (Cfg::XONOFF) { // If the last char that was sent was an XON if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XON_CHAR) { // Bytes stored into the RX buffer const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1); // If over 12.5% of RX buffer capacity, send XOFF before running out of // RX buffer space .. 325 bytes @ 250kbits/s needed to let the host react // and stop sending bytes. This translates to 13mS propagation time. if (rx_count >= (Cfg::RX_SIZE) / 8) { // At this point, definitely no TX interrupt was executing, since the TX ISR can't be preempted. // Don't enable the TX interrupt here as a means to trigger the XOFF char, because if it happens // to be in the middle of trying to disable the RX interrupt in the main program, eventually the // enabling of the TX interrupt could be undone. The ONLY reliable thing this can do to ensure // the sending of the XOFF char is to send it HERE AND NOW. // About to send the XOFF char xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT; // Wait until the TX register becomes empty and send it - Here there could be a problem // - While waiting for the TX register to empty, the RX register could receive a new // character. This must also handle that situation! while (!B_UDRE) { if (B_RXC) { // A char arrived while waiting for the TX buffer to be empty - Receive and process it! i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1); // Read the character from the USART c = R_UDR; if (Cfg::EMERGENCYPARSER) emergency_parser.update(emergency_state, c); // If the character is to be stored at the index just before the tail // (such that the head would advance to the current tail), the FIFO is // full, so don't write the character or advance the head. if (i != t) { rx_buffer.buffer[h] = c; h = i; } else if (Cfg::DROPPED_RX && !++rx_dropped_bytes) --rx_dropped_bytes; } sw_barrier(); } R_UDR = XOFF_CHAR; // Clear the TXC bit -- "can be cleared by writing a one to its bit // location". This makes sure flush() won't return until the bytes // actually got written B_TXC = 1; // At this point there could be a race condition between the write() function // and this sending of the XOFF char. This interrupt could happen between the // wait to be empty TX buffer loop and the actual write of the character. Since // the TX buffer is full because it's sending the XOFF char, the only way to be // sure the write() function will succeed is to wait for the XOFF char to be // completely sent. Since an extra character could be received during the wait // it must also be handled! while (!B_UDRE) { if (B_RXC) { // A char arrived while waiting for the TX buffer to be empty - Receive and process it! i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1); // Read the character from the USART c = R_UDR; if (Cfg::EMERGENCYPARSER) emergency_parser.update(emergency_state, c); // If the character is to be stored at the index just before the tail // (such that the head would advance to the current tail), the FIFO is // full, so don't write the character or advance the head. if (i != t) { rx_buffer.buffer[h] = c; h = i; } else if (Cfg::DROPPED_RX && !++rx_dropped_bytes) --rx_dropped_bytes; } sw_barrier(); } // At this point everything is ready. The write() function won't // have any issues writing to the UART TX register if it needs to! } } } // Store the new head value - The main loop will retry until the value is stable rx_buffer.head = h; } // (called with TX irqs disabled) template FORCE_INLINE void MarlinSerial::_tx_udr_empty_irq() { if (Cfg::TX_SIZE > 0) { // Read positions uint8_t t = tx_buffer.tail; const uint8_t h = tx_buffer.head; if (Cfg::XONOFF) { // If an XON char is pending to be sent, do it now if (xon_xoff_state == XON_CHAR) { // Send the character R_UDR = XON_CHAR; // clear the TXC bit -- "can be cleared by writing a one to its bit // location". This makes sure flush() won't return until the bytes // actually got written B_TXC = 1; // Remember we sent it. xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT; // If nothing else to transmit, just disable TX interrupts. if (h == t) B_UDRIE = 0; // (Non-atomic, could be reenabled by the main program, but eventually this will succeed) return; } } // If nothing to transmit, just disable TX interrupts. This could // happen as the result of the non atomicity of the disabling of RX // interrupts that could end reenabling TX interrupts as a side effect. if (h == t) { B_UDRIE = 0; // (Non-atomic, could be reenabled by the main program, but eventually this will succeed) return; } // There is something to TX, Send the next byte const uint8_t c = tx_buffer.buffer[t]; t = (t + 1) & (Cfg::TX_SIZE - 1); R_UDR = c; tx_buffer.tail = t; // Clear the TXC bit (by writing a one to its bit location). // Ensures flush() won't return until the bytes are actually written/ B_TXC = 1; // Disable interrupts if there is nothing to transmit following this byte if (h == t) B_UDRIE = 0; // (Non-atomic, could be reenabled by the main program, but eventually this will succeed) } } // Public Methods template void MarlinSerial::begin(const long baud) { uint16_t baud_setting; bool useU2X = true; #if F_CPU == 16000000UL && SERIAL_PORT == 0 // Hard-coded exception for compatibility with the bootloader shipped // with the Duemilanove and previous boards, and the firmware on the // 8U2 on the Uno and Mega 2560. if (baud == 57600) useU2X = false; #endif R_UCSRA = 0; if (useU2X) { B_U2X = 1; baud_setting = (F_CPU / 4 / baud - 1) / 2; } else baud_setting = (F_CPU / 8 / baud - 1) / 2; // assign the baud_setting, a.k.a. ubbr (USART Baud Rate Register) R_UBRRH = baud_setting >> 8; R_UBRRL = baud_setting; B_RXEN = 1; B_TXEN = 1; B_RXCIE = 1; if (Cfg::TX_SIZE > 0) B_UDRIE = 0; _written = false; } template void MarlinSerial::end() { B_RXEN = 0; B_TXEN = 0; B_RXCIE = 0; B_UDRIE = 0; } template int MarlinSerial::peek() { const ring_buffer_pos_t h = atomic_read_rx_head(), t = rx_buffer.tail; return h == t ? -1 : rx_buffer.buffer[t]; } template int MarlinSerial::read() { const ring_buffer_pos_t h = atomic_read_rx_head(); // Read the tail. Main thread owns it, so it is safe to directly read it ring_buffer_pos_t t = rx_buffer.tail; // If nothing to read, return now if (h == t) return -1; // Get the next char const int v = rx_buffer.buffer[t]; t = (ring_buffer_pos_t)(t + 1) & (Cfg::RX_SIZE - 1); // Advance tail - Making sure the RX ISR will always get an stable value, even // if it interrupts the writing of the value of that variable in the middle. atomic_set_rx_tail(t); if (Cfg::XONOFF) { // If the XOFF char was sent, or about to be sent... if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) { // Get count of bytes in the RX buffer const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1); if (rx_count < (Cfg::RX_SIZE) / 10) { if (Cfg::TX_SIZE > 0) { // Signal we want an XON character to be sent. xon_xoff_state = XON_CHAR; // Enable TX ISR. Non atomic, but it will eventually enable them B_UDRIE = 1; } else { // If not using TX interrupts, we must send the XON char now xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT; while (!B_UDRE) sw_barrier(); R_UDR = XON_CHAR; } } } } return v; } template typename MarlinSerial::ring_buffer_pos_t MarlinSerial::available() { const ring_buffer_pos_t h = atomic_read_rx_head(), t = rx_buffer.tail; return (ring_buffer_pos_t)(Cfg::RX_SIZE + h - t) & (Cfg::RX_SIZE - 1); } template void MarlinSerial::flush() { // Set the tail to the head: // - Read the RX head index in a safe way. (See atomic_read_rx_head.) // - Set the tail, making sure the RX ISR will always get a stable value, even // if it interrupts the writing of the value of that variable in the middle. atomic_set_rx_tail(atomic_read_rx_head()); if (Cfg::XONOFF) { // If the XOFF char was sent, or about to be sent... if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) { if (Cfg::TX_SIZE > 0) { // Signal we want an XON character to be sent. xon_xoff_state = XON_CHAR; // Enable TX ISR. Non atomic, but it will eventually enable it. B_UDRIE = 1; } else { // If not using TX interrupts, we must send the XON char now xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT; while (!B_UDRE) sw_barrier(); R_UDR = XON_CHAR; } } } } template void MarlinSerial::write(const uint8_t c) { if (Cfg::TX_SIZE == 0) { _written = true; while (!B_UDRE) sw_barrier(); R_UDR = c; } else { _written = true; // If the TX interrupts are disabled and the data register // is empty, just write the byte to the data register and // be done. This shortcut helps significantly improve the // effective datarate at high (>500kbit/s) bitrates, where // interrupt overhead becomes a slowdown. // Yes, there is a race condition between the sending of the // XOFF char at the RX ISR, but it is properly handled there if (!B_UDRIE && B_UDRE) { R_UDR = c; // clear the TXC bit -- "can be cleared by writing a one to its bit // location". This makes sure flush() won't return until the bytes // actually got written B_TXC = 1; return; } const uint8_t i = (tx_buffer.head + 1) & (Cfg::TX_SIZE - 1); // If global interrupts are disabled (as the result of being called from an ISR)... if (!ISRS_ENABLED()) { // Make room by polling if it is possible to transmit, and do so! while (i == tx_buffer.tail) { // If we can transmit another byte, do it. if (B_UDRE) _tx_udr_empty_irq(); // Make sure compiler rereads tx_buffer.tail sw_barrier(); } } else { // Interrupts are enabled, just wait until there is space while (i == tx_buffer.tail) sw_barrier(); } // Store new char. head is always safe to move tx_buffer.buffer[tx_buffer.head] = c; tx_buffer.head = i; // Enable TX ISR - Non atomic, but it will eventually enable TX ISR B_UDRIE = 1; } } template void MarlinSerial::flushTX() { if (Cfg::TX_SIZE == 0) { // No bytes written, no need to flush. This special case is needed since there's // no way to force the TXC (transmit complete) bit to 1 during initialization. if (!_written) return; // Wait until everything was transmitted while (!B_TXC) sw_barrier(); // At this point nothing is queued anymore (DRIE is disabled) and // the hardware finished transmission (TXC is set). } else { // No bytes written, no need to flush. This special case is needed since there's // no way to force the TXC (transmit complete) bit to 1 during initialization. if (!_written) return; // If global interrupts are disabled (as the result of being called from an ISR)... if (!ISRS_ENABLED()) { // Wait until everything was transmitted - We must do polling, as interrupts are disabled while (tx_buffer.head != tx_buffer.tail || !B_TXC) { // If there is more space, send an extra character if (B_UDRE) _tx_udr_empty_irq(); sw_barrier(); } } else { // Wait until everything was transmitted while (tx_buffer.head != tx_buffer.tail || !B_TXC) sw_barrier(); } // At this point nothing is queued anymore (DRIE is disabled) and // the hardware finished transmission (TXC is set). } } /** * Imports from print.h */ template void MarlinSerial::print(char c, int base) { print((long)c, base); } template void MarlinSerial::print(unsigned char b, int base) { print((unsigned long)b, base); } template void MarlinSerial::print(int n, int base) { print((long)n, base); } template void MarlinSerial::print(unsigned int n, int base) { print((unsigned long)n, base); } template void MarlinSerial::print(long n, int base) { if (base == 0) write(n); else if (base == 10) { if (n < 0) { print('-'); n = -n; } printNumber(n, 10); } else printNumber(n, base); } template void MarlinSerial::print(unsigned long n, int base) { if (base == 0) write(n); else printNumber(n, base); } template void MarlinSerial::print(double n, int digits) { printFloat(n, digits); } template void MarlinSerial::println() { print('\r'); print('\n'); } template void MarlinSerial::println(const String& s) { print(s); println(); } template void MarlinSerial::println(const char c[]) { print(c); println(); } template void MarlinSerial::println(char c, int base) { print(c, base); println(); } template void MarlinSerial::println(unsigned char b, int base) { print(b, base); println(); } template void MarlinSerial::println(int n, int base) { print(n, base); println(); } template void MarlinSerial::println(unsigned int n, int base) { print(n, base); println(); } template void MarlinSerial::println(long n, int base) { print(n, base); println(); } template void MarlinSerial::println(unsigned long n, int base) { print(n, base); println(); } template void MarlinSerial::println(double n, int digits) { print(n, digits); println(); } // Private Methods template void MarlinSerial::printNumber(unsigned long n, uint8_t base) { if (n) { unsigned char buf[8 * sizeof(long)]; // Enough space for base 2 int8_t i = 0; while (n) { buf[i++] = n % base; n /= base; } while (i--) print((char)(buf[i] + (buf[i] < 10 ? '0' : 'A' - 10))); } else print('0'); } template void MarlinSerial::printFloat(double number, uint8_t digits) { // Handle negative numbers if (number < 0.0) { print('-'); number = -number; } // Round correctly so that print(1.999, 2) prints as "2.00" double rounding = 0.5; LOOP_L_N(i, digits) rounding *= 0.1; number += rounding; // Extract the integer part of the number and print it unsigned long int_part = (unsigned long)number; double remainder = number - (double)int_part; print(int_part); // Print the decimal point, but only if there are digits beyond if (digits) { print('.'); // Extract digits from the remainder one at a time while (digits--) { remainder *= 10.0; int toPrint = int(remainder); print(toPrint); remainder -= toPrint; } } } // Hookup ISR handlers ISR(SERIAL_REGNAME(USART, SERIAL_PORT, _RX_vect)) { MarlinSerial>::store_rxd_char(); } ISR(SERIAL_REGNAME(USART, SERIAL_PORT, _UDRE_vect)) { MarlinSerial>::_tx_udr_empty_irq(); } // Preinstantiate template class MarlinSerial>; // Instantiate MarlinSerial> customizedSerial1; #ifdef SERIAL_PORT_2 // Hookup ISR handlers ISR(SERIAL_REGNAME(USART, SERIAL_PORT_2, _RX_vect)) { MarlinSerial>::store_rxd_char(); } ISR(SERIAL_REGNAME(USART, SERIAL_PORT_2, _UDRE_vect)) { MarlinSerial>::_tx_udr_empty_irq(); } // Preinstantiate template class MarlinSerial>; // Instantiate MarlinSerial> customizedSerial2; #endif #ifdef MMU2_SERIAL_PORT ISR(SERIAL_REGNAME(USART, MMU2_SERIAL_PORT, _RX_vect)) { MarlinSerial>::store_rxd_char(); } ISR(SERIAL_REGNAME(USART, MMU2_SERIAL_PORT, _UDRE_vect)) { MarlinSerial>::_tx_udr_empty_irq(); } // Preinstantiate template class MarlinSerial>; // Instantiate MarlinSerial> mmuSerial; #endif #ifdef LCD_SERIAL_PORT ISR(SERIAL_REGNAME(USART, LCD_SERIAL_PORT, _RX_vect)) { MarlinSerial>::store_rxd_char(); } ISR(SERIAL_REGNAME(USART, LCD_SERIAL_PORT, _UDRE_vect)) { MarlinSerial>::_tx_udr_empty_irq(); } // Preinstantiate template class MarlinSerial>; // Instantiate MarlinSerial> lcdSerial; #if HAS_DGUS_LCD template typename MarlinSerial::ring_buffer_pos_t MarlinSerial::get_tx_buffer_free() { const ring_buffer_pos_t t = tx_buffer.tail, // next byte to send. h = tx_buffer.head; // next pos for queue. int ret = t - h - 1; if (ret < 0) ret += Cfg::TX_SIZE + 1; return ret; } #endif #endif #endif // !USBCON && (UBRRH || UBRR0H || UBRR1H || UBRR2H || UBRR3H) // For AT90USB targets use the UART for BT interfacing #if defined(USBCON) && ENABLED(BLUETOOTH) HardwareSerial bluetoothSerial; #endif #endif // __AVR__