/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #pragma once /** * temperature.h - temperature controller */ #include "thermistor/thermistors.h" #include "../inc/MarlinConfig.h" #if ENABLED(AUTO_POWER_CONTROL) #include "../feature/power.h" #endif #if ENABLED(AUTO_REPORT_TEMPERATURES) #include "../libs/autoreport.h" #endif #if HAS_FANCHECK #include "../feature/fancheck.h" #endif #ifndef SOFT_PWM_SCALE #define SOFT_PWM_SCALE 0 #endif #define HOTEND_INDEX TERN(HAS_MULTI_HOTEND, e, 0) #define E_NAME TERN_(HAS_MULTI_HOTEND, e) // Element identifiers. Positive values are hotends. Negative values are other heaters or coolers. typedef enum : int8_t { H_REDUNDANT = HID_REDUNDANT, H_COOLER = HID_COOLER, H_PROBE = HID_PROBE, H_BOARD = HID_BOARD, H_CHAMBER = HID_CHAMBER, H_BED = HID_BED, H_E0 = HID_E0, H_E1, H_E2, H_E3, H_E4, H_E5, H_E6, H_E7, H_NONE = -128 } heater_id_t; /** * States for ADC reading in the ISR */ enum ADCSensorState : char { StartSampling, #if HAS_TEMP_ADC_0 PrepareTemp_0, MeasureTemp_0, #endif #if HAS_TEMP_ADC_BED PrepareTemp_BED, MeasureTemp_BED, #endif #if HAS_TEMP_ADC_CHAMBER PrepareTemp_CHAMBER, MeasureTemp_CHAMBER, #endif #if HAS_TEMP_ADC_COOLER PrepareTemp_COOLER, MeasureTemp_COOLER, #endif #if HAS_TEMP_ADC_PROBE PrepareTemp_PROBE, MeasureTemp_PROBE, #endif #if HAS_TEMP_ADC_BOARD PrepareTemp_BOARD, MeasureTemp_BOARD, #endif #if HAS_TEMP_ADC_REDUNDANT PrepareTemp_REDUNDANT, MeasureTemp_REDUNDANT, #endif #if HAS_TEMP_ADC_1 PrepareTemp_1, MeasureTemp_1, #endif #if HAS_TEMP_ADC_2 PrepareTemp_2, MeasureTemp_2, #endif #if HAS_TEMP_ADC_3 PrepareTemp_3, MeasureTemp_3, #endif #if HAS_TEMP_ADC_4 PrepareTemp_4, MeasureTemp_4, #endif #if HAS_TEMP_ADC_5 PrepareTemp_5, MeasureTemp_5, #endif #if HAS_TEMP_ADC_6 PrepareTemp_6, MeasureTemp_6, #endif #if HAS_TEMP_ADC_7 PrepareTemp_7, MeasureTemp_7, #endif #if HAS_JOY_ADC_X PrepareJoy_X, MeasureJoy_X, #endif #if HAS_JOY_ADC_Y PrepareJoy_Y, MeasureJoy_Y, #endif #if HAS_JOY_ADC_Z PrepareJoy_Z, MeasureJoy_Z, #endif #if ENABLED(FILAMENT_WIDTH_SENSOR) Prepare_FILWIDTH, Measure_FILWIDTH, #endif #if ENABLED(POWER_MONITOR_CURRENT) Prepare_POWER_MONITOR_CURRENT, Measure_POWER_MONITOR_CURRENT, #endif #if ENABLED(POWER_MONITOR_VOLTAGE) Prepare_POWER_MONITOR_VOLTAGE, Measure_POWER_MONITOR_VOLTAGE, #endif #if HAS_ADC_BUTTONS Prepare_ADC_KEY, Measure_ADC_KEY, #endif SensorsReady, // Temperatures ready. Delay the next round of readings to let ADC pins settle. StartupDelay // Startup, delay initial temp reading a tiny bit so the hardware can settle }; // Minimum number of Temperature::ISR loops between sensor readings. // Multiplied by 16 (OVERSAMPLENR) to obtain the total time to // get all oversampled sensor readings #define MIN_ADC_ISR_LOOPS 10 #define ACTUAL_ADC_SAMPLES _MAX(int(MIN_ADC_ISR_LOOPS), int(SensorsReady)) // // PID // typedef struct { float p, i, d; } raw_pid_t; typedef struct { float p, i, d, c, f; } raw_pidcf_t; #if HAS_PID_HEATING #define PID_K2 (1-float(PID_K1)) #define PID_dT ((OVERSAMPLENR * float(ACTUAL_ADC_SAMPLES)) / (TEMP_TIMER_FREQUENCY)) // Apply the scale factors to the PID values #define scalePID_i(i) ( float(i) * PID_dT ) #define unscalePID_i(i) ( float(i) / PID_dT ) #define scalePID_d(d) ( float(d) / PID_dT ) #define unscalePID_d(d) ( float(d) * PID_dT ) typedef struct { float Kp, Ki, Kd; float p() const { return Kp; } float i() const { return unscalePID_i(Ki); } float d() const { return unscalePID_d(Kd); } float c() const { return 1; } float f() const { return 0; } void set_Kp(float p) { Kp = p; } void set_Ki(float i) { Ki = scalePID_i(i); } void set_Kd(float d) { Kd = scalePID_d(d); } void set_Kc(float) {} void set_Kf(float) {} void set(float p, float i, float d, float c=1, float f=0) { set_Kp(p); set_Ki(i); set_Kd(d); UNUSED(c); UNUSED(f); } void set(const raw_pid_t &raw) { set(raw.p, raw.i, raw.d); } void set(const raw_pidcf_t &raw) { set(raw.p, raw.i, raw.d); } } PID_t; #endif #if ENABLED(PIDTEMP) typedef struct { float Kp, Ki, Kd, Kc; float p() const { return Kp; } float i() const { return unscalePID_i(Ki); } float d() const { return unscalePID_d(Kd); } float c() const { return Kc; } float f() const { return 0; } void set_Kp(float p) { Kp = p; } void set_Ki(float i) { Ki = scalePID_i(i); } void set_Kd(float d) { Kd = scalePID_d(d); } void set_Kc(float c) { Kc = c; } void set_Kf(float) {} void set(float p, float i, float d, float c=1, float f=0) { set_Kp(p); set_Ki(i); set_Kd(d); set_Kc(c); set_Kf(f); } void set(const raw_pid_t &raw) { set(raw.p, raw.i, raw.d); } void set(const raw_pidcf_t &raw) { set(raw.p, raw.i, raw.d, raw.c); } } PIDC_t; typedef struct { float Kp, Ki, Kd, Kf; float p() const { return Kp; } float i() const { return unscalePID_i(Ki); } float d() const { return unscalePID_d(Kd); } float c() const { return 1; } float f() const { return Kf; } void set_Kp(float p) { Kp = p; } void set_Ki(float i) { Ki = scalePID_i(i); } void set_Kd(float d) { Kd = scalePID_d(d); } void set_Kc(float) {} void set_Kf(float f) { Kf = f; } void set(float p, float i, float d, float c=1, float f=0) { set_Kp(p); set_Ki(i); set_Kd(d); set_Kf(f); } void set(const raw_pid_t &raw) { set(raw.p, raw.i, raw.d); } void set(const raw_pidcf_t &raw) { set(raw.p, raw.i, raw.d, raw.f); } } PIDF_t; typedef struct { float Kp, Ki, Kd, Kc, Kf; float p() const { return Kp; } float i() const { return unscalePID_i(Ki); } float d() const { return unscalePID_d(Kd); } float c() const { return Kc; } float f() const { return Kf; } void set_Kp(float p) { Kp = p; } void set_Ki(float i) { Ki = scalePID_i(i); } void set_Kd(float d) { Kd = scalePID_d(d); } void set_Kc(float c) { Kc = c; } void set_Kf(float f) { Kf = f; } void set(float p, float i, float d, float c=1, float f=0) { set_Kp(p); set_Ki(i); set_Kd(d); set_Kc(c); set_Kf(f); } void set(const raw_pid_t &raw) { set(raw.p, raw.i, raw.d); } void set(const raw_pidcf_t &raw) { set(raw.p, raw.i, raw.d, raw.c, raw.f); } } PIDCF_t; typedef #if BOTH(PID_EXTRUSION_SCALING, PID_FAN_SCALING) PIDCF_t #elif ENABLED(PID_EXTRUSION_SCALING) PIDC_t #elif ENABLED(PID_FAN_SCALING) PIDF_t #else PID_t #endif hotend_pid_t; #if ENABLED(PID_EXTRUSION_SCALING) typedef IF<(LPQ_MAX_LEN > 255), uint16_t, uint8_t>::type lpq_ptr_t; #endif #if ENABLED(PID_PARAMS_PER_HOTEND) #define SET_HOTEND_PID(F,H,V) thermalManager.temp_hotend[H].pid.set_##F(V) #else #define SET_HOTEND_PID(F,_,V) do{ HOTEND_LOOP() thermalManager.temp_hotend[e].pid.set_##F(V); }while(0) #endif #elif ENABLED(MPCTEMP) typedef struct { float heater_power; // M306 P float block_heat_capacity; // M306 C float sensor_responsiveness; // M306 R float ambient_xfer_coeff_fan0; // M306 A #if ENABLED(MPC_INCLUDE_FAN) float fan255_adjustment; // M306 F #endif float filament_heat_capacity_permm; // M306 H } MPC_t; #define MPC_dT ((OVERSAMPLENR * float(ACTUAL_ADC_SAMPLES)) / (TEMP_TIMER_FREQUENCY)) #endif #if ENABLED(G26_MESH_VALIDATION) && EITHER(HAS_MARLINUI_MENU, EXTENSIBLE_UI) #define G26_CLICK_CAN_CANCEL 1 #endif // A temperature sensor typedef struct TempInfo { private: raw_adc_t acc; raw_adc_t raw; public: celsius_float_t celsius; inline void reset() { acc = 0; } inline void sample(const raw_adc_t s) { acc += s; } inline void update() { raw = acc; } void setraw(const raw_adc_t r) { raw = r; } raw_adc_t getraw() const { return raw; } } temp_info_t; #if HAS_TEMP_REDUNDANT // A redundant temperature sensor typedef struct RedundantTempInfo : public TempInfo { temp_info_t* target; } redundant_info_t; #endif // A PWM heater with temperature sensor typedef struct HeaterInfo : public TempInfo { celsius_t target; uint8_t soft_pwm_amount; bool is_below_target(const celsius_t offs=0) const { return (celsius < (target + offs)); } } heater_info_t; // A heater with PID stabilization template struct PIDHeaterInfo : public HeaterInfo { T pid; // Initialized by settings.load() }; #if ENABLED(MPCTEMP) struct MPCHeaterInfo : public HeaterInfo { MPC_t constants; float modeled_ambient_temp, modeled_block_temp, modeled_sensor_temp; }; #endif #if ENABLED(PIDTEMP) typedef struct PIDHeaterInfo hotend_info_t; #elif ENABLED(MPCTEMP) typedef struct MPCHeaterInfo hotend_info_t; #else typedef heater_info_t hotend_info_t; #endif #if HAS_HEATED_BED #if ENABLED(PIDTEMPBED) typedef struct PIDHeaterInfo bed_info_t; #else typedef heater_info_t bed_info_t; #endif #endif #if HAS_HEATED_CHAMBER #if ENABLED(PIDTEMPCHAMBER) typedef struct PIDHeaterInfo chamber_info_t; #else typedef heater_info_t chamber_info_t; #endif #elif HAS_TEMP_CHAMBER typedef temp_info_t chamber_info_t; #endif #if HAS_TEMP_PROBE typedef temp_info_t probe_info_t; #endif #if EITHER(HAS_COOLER, HAS_TEMP_COOLER) typedef heater_info_t cooler_info_t; #endif #if HAS_TEMP_BOARD typedef temp_info_t board_info_t; #endif // Heater watch handling template struct HeaterWatch { celsius_t target; millis_t next_ms; inline bool elapsed(const millis_t &ms) { return next_ms && ELAPSED(ms, next_ms); } inline bool elapsed() { return elapsed(millis()); } inline bool check(const celsius_t curr) { return curr >= target; } inline void restart(const celsius_t curr, const celsius_t tgt) { if (tgt) { const celsius_t newtarget = curr + INCREASE; if (newtarget < tgt - HYSTERESIS - 1) { target = newtarget; next_ms = millis() + SEC_TO_MS(PERIOD); return; } } next_ms = 0; } }; #if WATCH_HOTENDS typedef struct HeaterWatch hotend_watch_t; #endif #if WATCH_BED typedef struct HeaterWatch bed_watch_t; #endif #if WATCH_CHAMBER typedef struct HeaterWatch chamber_watch_t; #endif #if WATCH_COOLER typedef struct HeaterWatch cooler_watch_t; #endif // Temperature sensor read value ranges typedef struct { raw_adc_t raw_min, raw_max; celsius_t mintemp, maxtemp; } temp_range_t; #define THERMISTOR_ABS_ZERO_C -273.15f // bbbbrrrrr cold ! #define THERMISTOR_RESISTANCE_NOMINAL_C 25.0f // mmmmm comfortable #if HAS_USER_THERMISTORS enum CustomThermistorIndex : uint8_t { #if TEMP_SENSOR_0_IS_CUSTOM CTI_HOTEND_0, #endif #if TEMP_SENSOR_1_IS_CUSTOM CTI_HOTEND_1, #endif #if TEMP_SENSOR_2_IS_CUSTOM CTI_HOTEND_2, #endif #if TEMP_SENSOR_3_IS_CUSTOM CTI_HOTEND_3, #endif #if TEMP_SENSOR_4_IS_CUSTOM CTI_HOTEND_4, #endif #if TEMP_SENSOR_5_IS_CUSTOM CTI_HOTEND_5, #endif #if TEMP_SENSOR_BED_IS_CUSTOM CTI_BED, #endif #if TEMP_SENSOR_CHAMBER_IS_CUSTOM CTI_CHAMBER, #endif #if TEMP_SENSOR_PROBE_IS_CUSTOM CTI_PROBE, #endif #if TEMP_SENSOR_COOLER_IS_CUSTOM CTI_COOLER, #endif #if TEMP_SENSOR_BOARD_IS_CUSTOM CTI_BOARD, #endif #if TEMP_SENSOR_REDUNDANT_IS_CUSTOM CTI_REDUNDANT, #endif USER_THERMISTORS }; // User-defined thermistor typedef struct { bool pre_calc; // true if pre-calculations update needed float sh_c_coeff, // Steinhart-Hart C coefficient .. defaults to '0.0' sh_alpha, series_res, res_25, res_25_recip, res_25_log, beta, beta_recip; } user_thermistor_t; #endif #if HAS_AUTO_FAN || HAS_FANCHECK #define HAS_FAN_LOGIC 1 #endif class Temperature { public: #if HAS_HOTEND static hotend_info_t temp_hotend[HOTENDS]; static const celsius_t hotend_maxtemp[HOTENDS]; static celsius_t hotend_max_target(const uint8_t e) { return hotend_maxtemp[e] - (HOTEND_OVERSHOOT); } #endif #if HAS_HEATED_BED static bed_info_t temp_bed; #endif #if HAS_TEMP_PROBE static probe_info_t temp_probe; #endif #if HAS_TEMP_CHAMBER static chamber_info_t temp_chamber; #endif #if HAS_TEMP_COOLER static cooler_info_t temp_cooler; #endif #if HAS_TEMP_BOARD static board_info_t temp_board; #endif #if HAS_TEMP_REDUNDANT static redundant_info_t temp_redundant; #endif #if EITHER(AUTO_POWER_E_FANS, HAS_FANCHECK) static uint8_t autofan_speed[HOTENDS]; #endif #if ENABLED(AUTO_POWER_CHAMBER_FAN) static uint8_t chamberfan_speed; #endif #if ENABLED(AUTO_POWER_COOLER_FAN) static uint8_t coolerfan_speed; #endif #if ENABLED(FAN_SOFT_PWM) static uint8_t soft_pwm_amount_fan[FAN_COUNT], soft_pwm_count_fan[FAN_COUNT]; #endif #if BOTH(FAN_SOFT_PWM, USE_CONTROLLER_FAN) static uint8_t soft_pwm_controller_speed; #endif #if BOTH(HAS_MARLINUI_MENU, PREVENT_COLD_EXTRUSION) && E_MANUAL > 0 static bool allow_cold_extrude_override; static void set_menu_cold_override(const bool allow) { allow_cold_extrude_override = allow; } #else static constexpr bool allow_cold_extrude_override = false; static void set_menu_cold_override(const bool) {} #endif #if ENABLED(PREVENT_COLD_EXTRUSION) static bool allow_cold_extrude; static celsius_t extrude_min_temp; static bool tooCold(const celsius_t temp) { return !allow_cold_extrude && !allow_cold_extrude_override && temp < extrude_min_temp - (TEMP_WINDOW); } static bool tooColdToExtrude(const uint8_t E_NAME) { return tooCold(wholeDegHotend(HOTEND_INDEX)); } static bool targetTooColdToExtrude(const uint8_t E_NAME) { return tooCold(degTargetHotend(HOTEND_INDEX)); } #else static bool tooColdToExtrude(const uint8_t) { return false; } static bool targetTooColdToExtrude(const uint8_t) { return false; } #endif static bool hotEnoughToExtrude(const uint8_t e) { return !tooColdToExtrude(e); } static bool targetHotEnoughToExtrude(const uint8_t e) { return !targetTooColdToExtrude(e); } #if EITHER(SINGLENOZZLE_STANDBY_TEMP, SINGLENOZZLE_STANDBY_FAN) #if ENABLED(SINGLENOZZLE_STANDBY_TEMP) static celsius_t singlenozzle_temp[EXTRUDERS]; #endif #if ENABLED(SINGLENOZZLE_STANDBY_FAN) static uint8_t singlenozzle_fan_speed[EXTRUDERS]; #endif static void singlenozzle_change(const uint8_t old_tool, const uint8_t new_tool); #endif #if HEATER_IDLE_HANDLER // Heater idle handling. Marlin creates one per hotend and one for the heated bed. typedef struct { millis_t timeout_ms; bool timed_out; inline void update(const millis_t &ms) { if (!timed_out && timeout_ms && ELAPSED(ms, timeout_ms)) timed_out = true; } inline void start(const millis_t &ms) { timeout_ms = millis() + ms; timed_out = false; } inline void reset() { timeout_ms = 0; timed_out = false; } inline void expire() { start(0); } } heater_idle_t; // Indices and size for the heater_idle array enum IdleIndex : int8_t { _II = -1 #define _IDLE_INDEX_E(N) ,IDLE_INDEX_E##N REPEAT(HOTENDS, _IDLE_INDEX_E) #undef _IDLE_INDEX_E OPTARG(HAS_HEATED_BED, IDLE_INDEX_BED) , NR_HEATER_IDLE }; // Convert the given heater_id_t to idle array index static IdleIndex idle_index_for_id(const int8_t heater_id) { TERN_(HAS_HEATED_BED, if (heater_id == H_BED) return IDLE_INDEX_BED); return (IdleIndex)_MAX(heater_id, 0); } static heater_idle_t heater_idle[NR_HEATER_IDLE]; #endif // HEATER_IDLE_TIMER #if HAS_ADC_BUTTONS static uint32_t current_ADCKey_raw; static uint16_t ADCKey_count; #endif #if ENABLED(PID_EXTRUSION_SCALING) static int16_t lpq_len; #endif #if HAS_FAN_LOGIC static constexpr millis_t fan_update_interval_ms = TERN(HAS_PWMFANCHECK, 5000, TERN(HAS_FANCHECK, 1000, 2500)); #endif private: #if ENABLED(WATCH_HOTENDS) static hotend_watch_t watch_hotend[HOTENDS]; #endif #if ENABLED(PID_EXTRUSION_SCALING) static int32_t pes_e_position, lpq[LPQ_MAX_LEN]; static lpq_ptr_t lpq_ptr; #endif #if ENABLED(MPCTEMP) static int32_t mpc_e_position; #endif #if HAS_HOTEND static temp_range_t temp_range[HOTENDS]; #endif #if HAS_HEATED_BED #if ENABLED(WATCH_BED) static bed_watch_t watch_bed; #endif IF_DISABLED(PIDTEMPBED, static millis_t next_bed_check_ms); static raw_adc_t mintemp_raw_BED, maxtemp_raw_BED; #endif #if HAS_HEATED_CHAMBER #if ENABLED(WATCH_CHAMBER) static chamber_watch_t watch_chamber; #endif TERN(PIDTEMPCHAMBER,,static millis_t next_chamber_check_ms); static raw_adc_t mintemp_raw_CHAMBER, maxtemp_raw_CHAMBER; #endif #if HAS_COOLER #if ENABLED(WATCH_COOLER) static cooler_watch_t watch_cooler; #endif static millis_t next_cooler_check_ms, cooler_fan_flush_ms; static raw_adc_t mintemp_raw_COOLER, maxtemp_raw_COOLER; #endif #if HAS_TEMP_BOARD && ENABLED(THERMAL_PROTECTION_BOARD) static raw_adc_t mintemp_raw_BOARD, maxtemp_raw_BOARD; #endif #if MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED > 1 static uint8_t consecutive_low_temperature_error[HOTENDS]; #endif #if MILLISECONDS_PREHEAT_TIME > 0 static millis_t preheat_end_time[HOTENDS]; #endif #if HAS_FAN_LOGIC static millis_t fan_update_ms; static void manage_extruder_fans(millis_t ms) { if (ELAPSED(ms, fan_update_ms)) { // only need to check fan state very infrequently const millis_t next_ms = ms + fan_update_interval_ms; #if HAS_PWMFANCHECK #define FAN_CHECK_DURATION 100 if (fan_check.is_measuring()) { fan_check.compute_speed(ms + FAN_CHECK_DURATION - fan_update_ms); fan_update_ms = next_ms; } else fan_update_ms = ms + FAN_CHECK_DURATION; fan_check.toggle_measuring(); #else TERN_(HAS_FANCHECK, fan_check.compute_speed(next_ms - fan_update_ms)); fan_update_ms = next_ms; #endif TERN_(HAS_AUTO_FAN, update_autofans()); // Needed as last when HAS_PWMFANCHECK to properly force fan speed } } #endif #if ENABLED(PROBING_HEATERS_OFF) static bool paused_for_probing; #endif public: /** * Instance Methods */ void init(); /** * Static (class) methods */ #if HAS_USER_THERMISTORS static user_thermistor_t user_thermistor[USER_THERMISTORS]; static void M305_report(const uint8_t t_index, const bool forReplay=true); static void reset_user_thermistors(); static celsius_float_t user_thermistor_to_deg_c(const uint8_t t_index, const raw_adc_t raw); static bool set_pull_up_res(int8_t t_index, float value) { //if (!WITHIN(t_index, 0, USER_THERMISTORS - 1)) return false; if (!WITHIN(value, 1, 1000000)) return false; user_thermistor[t_index].series_res = value; return true; } static bool set_res25(int8_t t_index, float value) { if (!WITHIN(value, 1, 10000000)) return false; user_thermistor[t_index].res_25 = value; user_thermistor[t_index].pre_calc = true; return true; } static bool set_beta(int8_t t_index, float value) { if (!WITHIN(value, 1, 1000000)) return false; user_thermistor[t_index].beta = value; user_thermistor[t_index].pre_calc = true; return true; } static bool set_sh_coeff(int8_t t_index, float value) { if (!WITHIN(value, -0.01f, 0.01f)) return false; user_thermistor[t_index].sh_c_coeff = value; user_thermistor[t_index].pre_calc = true; return true; } #endif #if HAS_HOTEND static celsius_float_t analog_to_celsius_hotend(const raw_adc_t raw, const uint8_t e); #endif #if HAS_HEATED_BED static celsius_float_t analog_to_celsius_bed(const raw_adc_t raw); #endif #if HAS_TEMP_CHAMBER static celsius_float_t analog_to_celsius_chamber(const raw_adc_t raw); #endif #if HAS_TEMP_PROBE static celsius_float_t analog_to_celsius_probe(const raw_adc_t raw); #endif #if HAS_TEMP_COOLER static celsius_float_t analog_to_celsius_cooler(const raw_adc_t raw); #endif #if HAS_TEMP_BOARD static celsius_float_t analog_to_celsius_board(const raw_adc_t raw); #endif #if HAS_TEMP_REDUNDANT static celsius_float_t analog_to_celsius_redundant(const raw_adc_t raw); #endif #if HAS_FAN static uint8_t fan_speed[FAN_COUNT]; #define FANS_LOOP(I) LOOP_L_N(I, FAN_COUNT) static void set_fan_speed(const uint8_t fan, const uint16_t speed); #if ENABLED(REPORT_FAN_CHANGE) static void report_fan_speed(const uint8_t fan); #endif #if EITHER(PROBING_FANS_OFF, ADVANCED_PAUSE_FANS_PAUSE) static bool fans_paused; static uint8_t saved_fan_speed[FAN_COUNT]; #endif #if ENABLED(ADAPTIVE_FAN_SLOWING) static uint8_t fan_speed_scaler[FAN_COUNT]; #endif static uint8_t scaledFanSpeed(const uint8_t fan, const uint8_t fs) { UNUSED(fan); // Potentially unused! return (fs * uint16_t(TERN(ADAPTIVE_FAN_SLOWING, fan_speed_scaler[fan], 128))) >> 7; } static uint8_t scaledFanSpeed(const uint8_t fan) { return scaledFanSpeed(fan, fan_speed[fan]); } static constexpr inline uint8_t pwmToPercent(const uint8_t speed) { return ui8_to_percent(speed); } static uint8_t fanSpeedPercent(const uint8_t fan) { return ui8_to_percent(fan_speed[fan]); } static uint8_t scaledFanSpeedPercent(const uint8_t fan) { return ui8_to_percent(scaledFanSpeed(fan)); } #if ENABLED(EXTRA_FAN_SPEED) typedef struct { uint8_t saved, speed; } extra_fan_t; static extra_fan_t extra_fan_speed[FAN_COUNT]; static void set_temp_fan_speed(const uint8_t fan, const uint16_t command_or_speed); #endif #if EITHER(PROBING_FANS_OFF, ADVANCED_PAUSE_FANS_PAUSE) void set_fans_paused(const bool p); #endif #endif // HAS_FAN static void zero_fan_speeds() { #if HAS_FAN FANS_LOOP(i) set_fan_speed(i, 0); #endif } /** * Called from the Temperature ISR */ static void isr(); static void readings_ready(); /** * Call periodically to manage heaters and keep the watchdog fed */ static void task(); /** * Preheating hotends */ #if MILLISECONDS_PREHEAT_TIME > 0 static bool is_preheating(const uint8_t E_NAME) { return preheat_end_time[HOTEND_INDEX] && PENDING(millis(), preheat_end_time[HOTEND_INDEX]); } static void start_preheat_time(const uint8_t E_NAME) { preheat_end_time[HOTEND_INDEX] = millis() + MILLISECONDS_PREHEAT_TIME; } static void reset_preheat_time(const uint8_t E_NAME) { preheat_end_time[HOTEND_INDEX] = 0; } #else #define is_preheating(n) (false) #endif //high level conversion routines, for use outside of temperature.cpp //inline so that there is no performance decrease. //deg=degreeCelsius static celsius_float_t degHotend(const uint8_t E_NAME) { return TERN0(HAS_HOTEND, temp_hotend[HOTEND_INDEX].celsius); } static celsius_t wholeDegHotend(const uint8_t E_NAME) { return TERN0(HAS_HOTEND, static_cast(temp_hotend[HOTEND_INDEX].celsius + 0.5f)); } #if ENABLED(SHOW_TEMP_ADC_VALUES) static raw_adc_t rawHotendTemp(const uint8_t E_NAME) { return TERN0(HAS_HOTEND, temp_hotend[HOTEND_INDEX].getraw()); } #endif static celsius_t degTargetHotend(const uint8_t E_NAME) { return TERN0(HAS_HOTEND, temp_hotend[HOTEND_INDEX].target); } #if HAS_HOTEND static void setTargetHotend(const celsius_t celsius, const uint8_t E_NAME) { const uint8_t ee = HOTEND_INDEX; #if MILLISECONDS_PREHEAT_TIME > 0 if (celsius == 0) reset_preheat_time(ee); else if (temp_hotend[ee].target == 0) start_preheat_time(ee); #endif TERN_(AUTO_POWER_CONTROL, if (celsius) powerManager.power_on()); temp_hotend[ee].target = _MIN(celsius, hotend_max_target(ee)); start_watching_hotend(ee); } static bool isHeatingHotend(const uint8_t E_NAME) { return temp_hotend[HOTEND_INDEX].target > temp_hotend[HOTEND_INDEX].celsius; } static bool isCoolingHotend(const uint8_t E_NAME) { return temp_hotend[HOTEND_INDEX].target < temp_hotend[HOTEND_INDEX].celsius; } #if HAS_TEMP_HOTEND static bool wait_for_hotend(const uint8_t target_extruder, const bool no_wait_for_cooling=true OPTARG(G26_CLICK_CAN_CANCEL, const bool click_to_cancel=false) ); #if ENABLED(WAIT_FOR_HOTEND) static void wait_for_hotend_heating(const uint8_t target_extruder); #endif #endif static bool still_heating(const uint8_t e) { return degTargetHotend(e) > TEMP_HYSTERESIS && ABS(wholeDegHotend(e) - degTargetHotend(e)) > TEMP_HYSTERESIS; } static bool degHotendNear(const uint8_t e, const celsius_t temp) { return ABS(wholeDegHotend(e) - temp) < (TEMP_HYSTERESIS); } // Start watching a Hotend to make sure it's really heating up static void start_watching_hotend(const uint8_t E_NAME) { UNUSED(HOTEND_INDEX); #if WATCH_HOTENDS watch_hotend[HOTEND_INDEX].restart(degHotend(HOTEND_INDEX), degTargetHotend(HOTEND_INDEX)); #endif } static void manage_hotends(const millis_t &ms); #endif // HAS_HOTEND #if HAS_HEATED_BED #if ENABLED(SHOW_TEMP_ADC_VALUES) static raw_adc_t rawBedTemp() { return temp_bed.getraw(); } #endif static celsius_float_t degBed() { return temp_bed.celsius; } static celsius_t wholeDegBed() { return static_cast(degBed() + 0.5f); } static celsius_t degTargetBed() { return temp_bed.target; } static bool isHeatingBed() { return temp_bed.target > temp_bed.celsius; } static bool isCoolingBed() { return temp_bed.target < temp_bed.celsius; } static bool degBedNear(const celsius_t temp) { return ABS(wholeDegBed() - temp) < (TEMP_BED_HYSTERESIS); } // Start watching the Bed to make sure it's really heating up static void start_watching_bed() { TERN_(WATCH_BED, watch_bed.restart(degBed(), degTargetBed())); } static void setTargetBed(const celsius_t celsius) { TERN_(AUTO_POWER_CONTROL, if (celsius) powerManager.power_on()); temp_bed.target = _MIN(celsius, BED_MAX_TARGET); start_watching_bed(); } static bool wait_for_bed(const bool no_wait_for_cooling=true OPTARG(G26_CLICK_CAN_CANCEL, const bool click_to_cancel=false) ); static void wait_for_bed_heating(); static void manage_heated_bed(const millis_t &ms); #endif // HAS_HEATED_BED #if HAS_TEMP_PROBE #if ENABLED(SHOW_TEMP_ADC_VALUES) static raw_adc_t rawProbeTemp() { return temp_probe.getraw(); } #endif static celsius_float_t degProbe() { return temp_probe.celsius; } static celsius_t wholeDegProbe() { return static_cast(degProbe() + 0.5f); } static bool isProbeBelowTemp(const celsius_t target_temp) { return wholeDegProbe() < target_temp; } static bool isProbeAboveTemp(const celsius_t target_temp) { return wholeDegProbe() > target_temp; } static bool wait_for_probe(const celsius_t target_temp, bool no_wait_for_cooling=true); #endif #if HAS_TEMP_CHAMBER #if ENABLED(SHOW_TEMP_ADC_VALUES) static raw_adc_t rawChamberTemp() { return temp_chamber.getraw(); } #endif static celsius_float_t degChamber() { return temp_chamber.celsius; } static celsius_t wholeDegChamber() { return static_cast(degChamber() + 0.5f); } #if HAS_HEATED_CHAMBER static celsius_t degTargetChamber() { return temp_chamber.target; } static bool isHeatingChamber() { return temp_chamber.target > temp_chamber.celsius; } static bool isCoolingChamber() { return temp_chamber.target < temp_chamber.celsius; } static bool wait_for_chamber(const bool no_wait_for_cooling=true); static void manage_heated_chamber(const millis_t &ms); #endif #endif #if HAS_HEATED_CHAMBER static void setTargetChamber(const celsius_t celsius) { temp_chamber.target = _MIN(celsius, CHAMBER_MAX_TARGET); start_watching_chamber(); } // Start watching the Chamber to make sure it's really heating up static void start_watching_chamber() { TERN_(WATCH_CHAMBER, watch_chamber.restart(degChamber(), degTargetChamber())); } #endif #if HAS_TEMP_COOLER #if ENABLED(SHOW_TEMP_ADC_VALUES) static raw_adc_t rawCoolerTemp() { return temp_cooler.getraw(); } #endif static celsius_float_t degCooler() { return temp_cooler.celsius; } static celsius_t wholeDegCooler() { return static_cast(temp_cooler.celsius + 0.5f); } #if HAS_COOLER static celsius_t degTargetCooler() { return temp_cooler.target; } static bool isLaserHeating() { return temp_cooler.target > temp_cooler.celsius; } static bool isLaserCooling() { return temp_cooler.target < temp_cooler.celsius; } static bool wait_for_cooler(const bool no_wait_for_cooling=true); static void manage_cooler(const millis_t &ms); #endif #endif #if HAS_TEMP_BOARD #if ENABLED(SHOW_TEMP_ADC_VALUES) static raw_adc_t rawBoardTemp() { return temp_board.getraw(); } #endif static celsius_float_t degBoard() { return temp_board.celsius; } static celsius_t wholeDegBoard() { return static_cast(temp_board.celsius + 0.5f); } #endif #if HAS_TEMP_REDUNDANT #if ENABLED(SHOW_TEMP_ADC_VALUES) static raw_adc_t rawRedundantTemp() { return temp_redundant.getraw(); } #endif static celsius_float_t degRedundant() { return temp_redundant.celsius; } static celsius_float_t degRedundantTarget() { return (*temp_redundant.target).celsius; } static celsius_t wholeDegRedundant() { return static_cast(temp_redundant.celsius + 0.5f); } static celsius_t wholeDegRedundantTarget() { return static_cast((*temp_redundant.target).celsius + 0.5f); } #endif #if HAS_COOLER static void setTargetCooler(const celsius_t celsius) { temp_cooler.target = constrain(celsius, COOLER_MIN_TARGET, COOLER_MAX_TARGET); start_watching_cooler(); } // Start watching the Cooler to make sure it's really cooling down static void start_watching_cooler() { TERN_(WATCH_COOLER, watch_cooler.restart(degCooler(), degTargetCooler())); } #endif /** * The software PWM power for a heater */ static int16_t getHeaterPower(const heater_id_t heater_id); /** * Switch off all heaters, set all target temperatures to 0 */ static void disable_all_heaters(); /** * Cooldown, as from the LCD. Disables all heaters and fans. */ static void cooldown() { zero_fan_speeds(); disable_all_heaters(); } #if ENABLED(PRINTJOB_TIMER_AUTOSTART) /** * Methods to check if heaters are enabled, indicating an active job */ static bool auto_job_over_threshold(); static void auto_job_check_timer(const bool can_start, const bool can_stop); #endif /** * Perform auto-tuning for hotend or bed in response to M303 */ #if HAS_PID_HEATING #if HAS_PID_DEBUG static bool pid_debug_flag; #endif static void PID_autotune(const celsius_t target, const heater_id_t heater_id, const int8_t ncycles, const bool set_result=false); #if ENABLED(NO_FAN_SLOWING_IN_PID_TUNING) static bool adaptive_fan_slowing; #elif ENABLED(ADAPTIVE_FAN_SLOWING) static constexpr bool adaptive_fan_slowing = true; #endif // Update the temp manager when PID values change #if ENABLED(PIDTEMP) static void updatePID() { TERN_(PID_EXTRUSION_SCALING, pes_e_position = 0); } static void setPID(const uint8_t hotend, const_float_t p, const_float_t i, const_float_t d) { #if ENABLED(PID_PARAMS_PER_HOTEND) temp_hotend[hotend].pid.set(p, i, d); #else HOTEND_LOOP() temp_hotend[e].pid.set(p, i, d); #endif updatePID(); } #endif #endif #if ENABLED(MPCTEMP) void MPC_autotune(); #endif #if ENABLED(PROBING_HEATERS_OFF) static void pause_heaters(const bool p); #endif #if HEATER_IDLE_HANDLER static void reset_hotend_idle_timer(const uint8_t E_NAME) { heater_idle[HOTEND_INDEX].reset(); start_watching_hotend(HOTEND_INDEX); } #if HAS_HEATED_BED static void reset_bed_idle_timer() { heater_idle[IDLE_INDEX_BED].reset(); start_watching_bed(); } #endif #endif // HEATER_IDLE_HANDLER #if HAS_TEMP_SENSOR static void print_heater_states(const int8_t target_extruder OPTARG(HAS_TEMP_REDUNDANT, const bool include_r=false) ); #if ENABLED(AUTO_REPORT_TEMPERATURES) struct AutoReportTemp { static void report(); }; static AutoReporter auto_reporter; #endif #endif #if HAS_HOTEND && HAS_STATUS_MESSAGE static void set_heating_message(const uint8_t e, const bool isM104=false); #else static void set_heating_message(const uint8_t, const bool=false) {} #endif #if HAS_MARLINUI_MENU && HAS_TEMPERATURE && HAS_PREHEAT static void lcd_preheat(const uint8_t e, const int8_t indh, const int8_t indb); #endif private: // Reading raw temperatures and converting to Celsius when ready static volatile bool raw_temps_ready; static void update_raw_temperatures(); static void updateTemperaturesFromRawValues(); static bool updateTemperaturesIfReady() { if (!raw_temps_ready) return false; updateTemperaturesFromRawValues(); raw_temps_ready = false; return true; } // MAX Thermocouples #if HAS_MAX_TC #define MAX_TC_COUNT TEMP_SENSOR_IS_MAX_TC(0) + TEMP_SENSOR_IS_MAX_TC(1) + TEMP_SENSOR_IS_MAX_TC(REDUNDANT) #if MAX_TC_COUNT > 1 #define HAS_MULTI_MAX_TC 1 #define READ_MAX_TC(N) read_max_tc(N) #else #define READ_MAX_TC(N) read_max_tc() #endif static raw_adc_t read_max_tc(TERN_(HAS_MULTI_MAX_TC, const uint8_t hindex=0)); #endif #if HAS_AUTO_FAN #if ENABLED(POWER_OFF_WAIT_FOR_COOLDOWN) static bool autofans_on; #endif static void update_autofans(); #endif #if HAS_HOTEND static float get_pid_output_hotend(const uint8_t e); #endif #if ENABLED(PIDTEMPBED) static float get_pid_output_bed(); #endif #if ENABLED(PIDTEMPCHAMBER) static float get_pid_output_chamber(); #endif static void _temp_error(const heater_id_t e, FSTR_P const serial_msg, FSTR_P const lcd_msg); static void min_temp_error(const heater_id_t e); static void max_temp_error(const heater_id_t e); #define HAS_THERMAL_PROTECTION ANY(THERMAL_PROTECTION_HOTENDS, THERMAL_PROTECTION_CHAMBER, THERMAL_PROTECTION_BED, THERMAL_PROTECTION_COOLER) #if HAS_THERMAL_PROTECTION // Indices and size for the tr_state_machine array. One for each protected heater. enum RunawayIndex : int8_t { _RI = -1 #if ENABLED(THERMAL_PROTECTION_HOTENDS) #define _RUNAWAY_IND_E(N) ,RUNAWAY_IND_E##N REPEAT(HOTENDS, _RUNAWAY_IND_E) #undef _RUNAWAY_IND_E #endif OPTARG(THERMAL_PROTECTION_BED, RUNAWAY_IND_BED) OPTARG(THERMAL_PROTECTION_CHAMBER, RUNAWAY_IND_CHAMBER) OPTARG(THERMAL_PROTECTION_COOLER, RUNAWAY_IND_COOLER) , NR_HEATER_RUNAWAY }; // Convert the given heater_id_t to runaway state array index static RunawayIndex runaway_index_for_id(const int8_t heater_id) { TERN_(THERMAL_PROTECTION_CHAMBER, if (heater_id == H_CHAMBER) return RUNAWAY_IND_CHAMBER); TERN_(THERMAL_PROTECTION_COOLER, if (heater_id == H_COOLER) return RUNAWAY_IND_COOLER); TERN_(THERMAL_PROTECTION_BED, if (heater_id == H_BED) return RUNAWAY_IND_BED); return (RunawayIndex)_MAX(heater_id, 0); } enum TRState : char { TRInactive, TRFirstHeating, TRStable, TRRunaway OPTARG(THERMAL_PROTECTION_VARIANCE_MONITOR, TRMalfunction) }; typedef struct { millis_t timer = 0; TRState state = TRInactive; float running_temp; #if ENABLED(THERMAL_PROTECTION_VARIANCE_MONITOR) millis_t variance_timer = 0; celsius_float_t last_temp = 0.0, variance = 0.0; #endif void run(const_celsius_float_t current, const_celsius_float_t target, const heater_id_t heater_id, const uint16_t period_seconds, const celsius_t hysteresis_degc); } tr_state_machine_t; static tr_state_machine_t tr_state_machine[NR_HEATER_RUNAWAY]; #endif // HAS_THERMAL_PROTECTION }; extern Temperature thermalManager;