/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * */ /** * Arduino Sd2Card Library * Copyright (C) 2009 by William Greiman * * This file is part of the Arduino Sd2Card Library */ #include "Marlin.h" #if ENABLED(SDSUPPORT) #include "Sd2Card.h" //------------------------------------------------------------------------------ #if DISABLED(SOFTWARE_SPI) // functions for hardware SPI //------------------------------------------------------------------------------ // make sure SPCR rate is in expected bits #if (SPR0 != 0 || SPR1 != 1) #error "unexpected SPCR bits" #endif /** * Initialize hardware SPI * Set SCK rate to F_CPU/pow(2, 1 + spiRate) for spiRate [0,6] */ static void spiInit(uint8_t spiRate) { // See avr processor documentation SPCR = _BV(SPE) | _BV(MSTR) | (spiRate >> 1); SPSR = spiRate & 1 || spiRate == 6 ? 0 : _BV(SPI2X); } //------------------------------------------------------------------------------ /** SPI receive a byte */ static uint8_t spiRec() { SPDR = 0XFF; while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ } return SPDR; } //------------------------------------------------------------------------------ /** SPI read data - only one call so force inline */ static inline __attribute__((always_inline)) void spiRead(uint8_t* buf, uint16_t nbyte) { if (nbyte-- == 0) return; SPDR = 0XFF; for (uint16_t i = 0; i < nbyte; i++) { while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ } buf[i] = SPDR; SPDR = 0XFF; } while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ } buf[nbyte] = SPDR; } //------------------------------------------------------------------------------ /** SPI send a byte */ static void spiSend(uint8_t b) { SPDR = b; while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ } } //------------------------------------------------------------------------------ /** SPI send block - only one call so force inline */ static inline __attribute__((always_inline)) void spiSendBlock(uint8_t token, const uint8_t* buf) { SPDR = token; for (uint16_t i = 0; i < 512; i += 2) { while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ } SPDR = buf[i]; while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ } SPDR = buf[i + 1]; } while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ } } //------------------------------------------------------------------------------ #else // SOFTWARE_SPI //------------------------------------------------------------------------------ /** nop to tune soft SPI timing */ #define nop asm volatile ("nop\n\t") //------------------------------------------------------------------------------ /** Soft SPI receive byte */ static uint8_t spiRec() { uint8_t data = 0; // no interrupts during byte receive - about 8 us cli(); // output pin high - like sending 0XFF WRITE(SPI_MOSI_PIN, HIGH); for (uint8_t i = 0; i < 8; i++) { WRITE(SPI_SCK_PIN, HIGH); // adjust so SCK is nice nop; nop; data <<= 1; if (READ(SPI_MISO_PIN)) data |= 1; WRITE(SPI_SCK_PIN, LOW); } // enable interrupts sei(); return data; } //------------------------------------------------------------------------------ /** Soft SPI read data */ static void spiRead(uint8_t* buf, uint16_t nbyte) { for (uint16_t i = 0; i < nbyte; i++) buf[i] = spiRec(); } //------------------------------------------------------------------------------ /** Soft SPI send byte */ static void spiSend(uint8_t data) { // no interrupts during byte send - about 8 us cli(); for (uint8_t i = 0; i < 8; i++) { WRITE(SPI_SCK_PIN, LOW); WRITE(SPI_MOSI_PIN, data & 0X80); data <<= 1; WRITE(SPI_SCK_PIN, HIGH); } // hold SCK high for a few ns nop; nop; nop; nop; WRITE(SPI_SCK_PIN, LOW); // enable interrupts sei(); } //------------------------------------------------------------------------------ /** Soft SPI send block */ void spiSendBlock(uint8_t token, const uint8_t* buf) { spiSend(token); for (uint16_t i = 0; i < 512; i++) spiSend(buf[i]); } #endif // SOFTWARE_SPI //------------------------------------------------------------------------------ // send command and return error code. Return zero for OK uint8_t Sd2Card::cardCommand(uint8_t cmd, uint32_t arg) { // select card chipSelectLow(); // wait up to 300 ms if busy waitNotBusy(300); // send command spiSend(cmd | 0x40); // send argument for (int8_t s = 24; s >= 0; s -= 8) spiSend(arg >> s); // send CRC uint8_t crc = 0XFF; if (cmd == CMD0) crc = 0X95; // correct crc for CMD0 with arg 0 if (cmd == CMD8) crc = 0X87; // correct crc for CMD8 with arg 0X1AA spiSend(crc); // skip stuff byte for stop read if (cmd == CMD12) spiRec(); // wait for response for (uint8_t i = 0; ((status_ = spiRec()) & 0X80) && i != 0XFF; i++) { /* Intentionally left empty */ } return status_; } //------------------------------------------------------------------------------ /** * Determine the size of an SD flash memory card. * * \return The number of 512 byte data blocks in the card * or zero if an error occurs. */ uint32_t Sd2Card::cardSize() { csd_t csd; if (!readCSD(&csd)) return 0; if (csd.v1.csd_ver == 0) { uint8_t read_bl_len = csd.v1.read_bl_len; uint16_t c_size = (csd.v1.c_size_high << 10) | (csd.v1.c_size_mid << 2) | csd.v1.c_size_low; uint8_t c_size_mult = (csd.v1.c_size_mult_high << 1) | csd.v1.c_size_mult_low; return (uint32_t)(c_size + 1) << (c_size_mult + read_bl_len - 7); } else if (csd.v2.csd_ver == 1) { uint32_t c_size = ((uint32_t)csd.v2.c_size_high << 16) | (csd.v2.c_size_mid << 8) | csd.v2.c_size_low; return (c_size + 1) << 10; } else { error(SD_CARD_ERROR_BAD_CSD); return 0; } } //------------------------------------------------------------------------------ void Sd2Card::chipSelectHigh() { digitalWrite(chipSelectPin_, HIGH); } //------------------------------------------------------------------------------ void Sd2Card::chipSelectLow() { #if DISABLED(SOFTWARE_SPI) spiInit(spiRate_); #endif // SOFTWARE_SPI digitalWrite(chipSelectPin_, LOW); } //------------------------------------------------------------------------------ /** Erase a range of blocks. * * \param[in] firstBlock The address of the first block in the range. * \param[in] lastBlock The address of the last block in the range. * * \note This function requests the SD card to do a flash erase for a * range of blocks. The data on the card after an erase operation is * either 0 or 1, depends on the card vendor. The card must support * single block erase. * * \return The value one, true, is returned for success and * the value zero, false, is returned for failure. */ bool Sd2Card::erase(uint32_t firstBlock, uint32_t lastBlock) { csd_t csd; if (!readCSD(&csd)) goto fail; // check for single block erase if (!csd.v1.erase_blk_en) { // erase size mask uint8_t m = (csd.v1.sector_size_high << 1) | csd.v1.sector_size_low; if ((firstBlock & m) != 0 || ((lastBlock + 1) & m) != 0) { // error card can't erase specified area error(SD_CARD_ERROR_ERASE_SINGLE_BLOCK); goto fail; } } if (type_ != SD_CARD_TYPE_SDHC) { firstBlock <<= 9; lastBlock <<= 9; } if (cardCommand(CMD32, firstBlock) || cardCommand(CMD33, lastBlock) || cardCommand(CMD38, 0)) { error(SD_CARD_ERROR_ERASE); goto fail; } if (!waitNotBusy(SD_ERASE_TIMEOUT)) { error(SD_CARD_ERROR_ERASE_TIMEOUT); goto fail; } chipSelectHigh(); return true; fail: chipSelectHigh(); return false; } //------------------------------------------------------------------------------ /** Determine if card supports single block erase. * * \return The value one, true, is returned if single block erase is supported. * The value zero, false, is returned if single block erase is not supported. */ bool Sd2Card::eraseSingleBlockEnable() { csd_t csd; return readCSD(&csd) ? csd.v1.erase_blk_en : false; } //------------------------------------------------------------------------------ /** * Initialize an SD flash memory card. * * \param[in] sckRateID SPI clock rate selector. See setSckRate(). * \param[in] chipSelectPin SD chip select pin number. * * \return The value one, true, is returned for success and * the value zero, false, is returned for failure. The reason for failure * can be determined by calling errorCode() and errorData(). */ bool Sd2Card::init(uint8_t sckRateID, uint8_t chipSelectPin) { errorCode_ = type_ = 0; chipSelectPin_ = chipSelectPin; // 16-bit init start time allows over a minute uint16_t t0 = (uint16_t)millis(); uint32_t arg; // set pin modes pinMode(chipSelectPin_, OUTPUT); chipSelectHigh(); pinMode(SPI_MISO_PIN, INPUT); pinMode(SPI_MOSI_PIN, OUTPUT); pinMode(SPI_SCK_PIN, OUTPUT); #if DISABLED(SOFTWARE_SPI) // SS must be in output mode even it is not chip select pinMode(SS_PIN, OUTPUT); // set SS high - may be chip select for another SPI device #if SET_SPI_SS_HIGH digitalWrite(SS_PIN, HIGH); #endif // SET_SPI_SS_HIGH // set SCK rate for initialization commands spiRate_ = SPI_SD_INIT_RATE; spiInit(spiRate_); #endif // SOFTWARE_SPI // must supply min of 74 clock cycles with CS high. for (uint8_t i = 0; i < 10; i++) spiSend(0XFF); // command to go idle in SPI mode while ((status_ = cardCommand(CMD0, 0)) != R1_IDLE_STATE) { if (((uint16_t)millis() - t0) > SD_INIT_TIMEOUT) { error(SD_CARD_ERROR_CMD0); goto fail; } } // check SD version if ((cardCommand(CMD8, 0x1AA) & R1_ILLEGAL_COMMAND)) { type(SD_CARD_TYPE_SD1); } else { // only need last byte of r7 response for (uint8_t i = 0; i < 4; i++) status_ = spiRec(); if (status_ != 0XAA) { error(SD_CARD_ERROR_CMD8); goto fail; } type(SD_CARD_TYPE_SD2); } // initialize card and send host supports SDHC if SD2 arg = type() == SD_CARD_TYPE_SD2 ? 0X40000000 : 0; while ((status_ = cardAcmd(ACMD41, arg)) != R1_READY_STATE) { // check for timeout if (((uint16_t)millis() - t0) > SD_INIT_TIMEOUT) { error(SD_CARD_ERROR_ACMD41); goto fail; } } // if SD2 read OCR register to check for SDHC card if (type() == SD_CARD_TYPE_SD2) { if (cardCommand(CMD58, 0)) { error(SD_CARD_ERROR_CMD58); goto fail; } if ((spiRec() & 0XC0) == 0XC0) type(SD_CARD_TYPE_SDHC); // discard rest of ocr - contains allowed voltage range for (uint8_t i = 0; i < 3; i++) spiRec(); } chipSelectHigh(); #if DISABLED(SOFTWARE_SPI) return setSckRate(sckRateID); #else // SOFTWARE_SPI UNUSED(sckRateID); return true; #endif // SOFTWARE_SPI fail: chipSelectHigh(); return false; } //------------------------------------------------------------------------------ /** * Read a 512 byte block from an SD card. * * \param[in] blockNumber Logical block to be read. * \param[out] dst Pointer to the location that will receive the data. * \return The value one, true, is returned for success and * the value zero, false, is returned for failure. */ bool Sd2Card::readBlock(uint32_t blockNumber, uint8_t* dst) { // use address if not SDHC card if (type() != SD_CARD_TYPE_SDHC) blockNumber <<= 9; #if ENABLED(SD_CHECK_AND_RETRY) uint8_t retryCnt = 3; do { if (!cardCommand(CMD17, blockNumber)) { if (readData(dst, 512)) return true; } else error(SD_CARD_ERROR_CMD17); if (--retryCnt) break; chipSelectHigh(); cardCommand(CMD12, 0); // Try sending a stop command, ignore the result. errorCode_ = 0; } while (true); #else if (cardCommand(CMD17, blockNumber)) error(SD_CARD_ERROR_CMD17); else return readData(dst, 512); #endif chipSelectHigh(); return false; } //------------------------------------------------------------------------------ /** Read one data block in a multiple block read sequence * * \param[in] dst Pointer to the location for the data to be read. * * \return The value one, true, is returned for success and * the value zero, false, is returned for failure. */ bool Sd2Card::readData(uint8_t* dst) { chipSelectLow(); return readData(dst, 512); } #if ENABLED(SD_CHECK_AND_RETRY) static const uint16_t crctab[] PROGMEM = { 0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50A5, 0x60C6, 0x70E7, 0x8108, 0x9129, 0xA14A, 0xB16B, 0xC18C, 0xD1AD, 0xE1CE, 0xF1EF, 0x1231, 0x0210, 0x3273, 0x2252, 0x52B5, 0x4294, 0x72F7, 0x62D6, 0x9339, 0x8318, 0xB37B, 0xA35A, 0xD3BD, 0xC39C, 0xF3FF, 0xE3DE, 0x2462, 0x3443, 0x0420, 0x1401, 0x64E6, 0x74C7, 0x44A4, 0x5485, 0xA56A, 0xB54B, 0x8528, 0x9509, 0xE5EE, 0xF5CF, 0xC5AC, 0xD58D, 0x3653, 0x2672, 0x1611, 0x0630, 0x76D7, 0x66F6, 0x5695, 0x46B4, 0xB75B, 0xA77A, 0x9719, 0x8738, 0xF7DF, 0xE7FE, 0xD79D, 0xC7BC, 0x48C4, 0x58E5, 0x6886, 0x78A7, 0x0840, 0x1861, 0x2802, 0x3823, 0xC9CC, 0xD9ED, 0xE98E, 0xF9AF, 0x8948, 0x9969, 0xA90A, 0xB92B, 0x5AF5, 0x4AD4, 0x7AB7, 0x6A96, 0x1A71, 0x0A50, 0x3A33, 0x2A12, 0xDBFD, 0xCBDC, 0xFBBF, 0xEB9E, 0x9B79, 0x8B58, 0xBB3B, 0xAB1A, 0x6CA6, 0x7C87, 0x4CE4, 0x5CC5, 0x2C22, 0x3C03, 0x0C60, 0x1C41, 0xEDAE, 0xFD8F, 0xCDEC, 0xDDCD, 0xAD2A, 0xBD0B, 0x8D68, 0x9D49, 0x7E97, 0x6EB6, 0x5ED5, 0x4EF4, 0x3E13, 0x2E32, 0x1E51, 0x0E70, 0xFF9F, 0xEFBE, 0xDFDD, 0xCFFC, 0xBF1B, 0xAF3A, 0x9F59, 0x8F78, 0x9188, 0x81A9, 0xB1CA, 0xA1EB, 0xD10C, 0xC12D, 0xF14E, 0xE16F, 0x1080, 0x00A1, 0x30C2, 0x20E3, 0x5004, 0x4025, 0x7046, 0x6067, 0x83B9, 0x9398, 0xA3FB, 0xB3DA, 0xC33D, 0xD31C, 0xE37F, 0xF35E, 0x02B1, 0x1290, 0x22F3, 0x32D2, 0x4235, 0x5214, 0x6277, 0x7256, 0xB5EA, 0xA5CB, 0x95A8, 0x8589, 0xF56E, 0xE54F, 0xD52C, 0xC50D, 0x34E2, 0x24C3, 0x14A0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405, 0xA7DB, 0xB7FA, 0x8799, 0x97B8, 0xE75F, 0xF77E, 0xC71D, 0xD73C, 0x26D3, 0x36F2, 0x0691, 0x16B0, 0x6657, 0x7676, 0x4615, 0x5634, 0xD94C, 0xC96D, 0xF90E, 0xE92F, 0x99C8, 0x89E9, 0xB98A, 0xA9AB, 0x5844, 0x4865, 0x7806, 0x6827, 0x18C0, 0x08E1, 0x3882, 0x28A3, 0xCB7D, 0xDB5C, 0xEB3F, 0xFB1E, 0x8BF9, 0x9BD8, 0xABBB, 0xBB9A, 0x4A75, 0x5A54, 0x6A37, 0x7A16, 0x0AF1, 0x1AD0, 0x2AB3, 0x3A92, 0xFD2E, 0xED0F, 0xDD6C, 0xCD4D, 0xBDAA, 0xAD8B, 0x9DE8, 0x8DC9, 0x7C26, 0x6C07, 0x5C64, 0x4C45, 0x3CA2, 0x2C83, 0x1CE0, 0x0CC1, 0xEF1F, 0xFF3E, 0xCF5D, 0xDF7C, 0xAF9B, 0xBFBA, 0x8FD9, 0x9FF8, 0x6E17, 0x7E36, 0x4E55, 0x5E74, 0x2E93, 0x3EB2, 0x0ED1, 0x1EF0 }; static uint16_t CRC_CCITT(const uint8_t* data, size_t n) { uint16_t crc = 0; for (size_t i = 0; i < n; i++) { crc = pgm_read_word(&crctab[(crc >> 8 ^ data[i]) & 0XFF]) ^ (crc << 8); } return crc; } #endif //------------------------------------------------------------------------------ bool Sd2Card::readData(uint8_t* dst, uint16_t count) { // wait for start block token uint16_t t0 = millis(); while ((status_ = spiRec()) == 0XFF) { if (((uint16_t)millis() - t0) > SD_READ_TIMEOUT) { error(SD_CARD_ERROR_READ_TIMEOUT); goto fail; } } if (status_ != DATA_START_BLOCK) { error(SD_CARD_ERROR_READ); goto fail; } // transfer data spiRead(dst, count); #if ENABLED(SD_CHECK_AND_RETRY) { uint16_t calcCrc = CRC_CCITT(dst, count); uint16_t recvCrc = spiRec() << 8; recvCrc |= spiRec(); if (calcCrc != recvCrc) { error(SD_CARD_ERROR_CRC); goto fail; } } #else // discard CRC spiRec(); spiRec(); #endif chipSelectHigh(); // Send an additional dummy byte, required by Toshiba Flash Air SD Card spiSend(0XFF); return true; fail: chipSelectHigh(); // Send an additional dummy byte, required by Toshiba Flash Air SD Card spiSend(0XFF); return false; } //------------------------------------------------------------------------------ /** read CID or CSR register */ bool Sd2Card::readRegister(uint8_t cmd, void* buf) { uint8_t* dst = reinterpret_cast<uint8_t*>(buf); if (cardCommand(cmd, 0)) { error(SD_CARD_ERROR_READ_REG); goto fail; } return readData(dst, 16); fail: chipSelectHigh(); return false; } //------------------------------------------------------------------------------ /** Start a read multiple blocks sequence. * * \param[in] blockNumber Address of first block in sequence. * * \note This function is used with readData() and readStop() for optimized * multiple block reads. SPI chipSelect must be low for the entire sequence. * * \return The value one, true, is returned for success and * the value zero, false, is returned for failure. */ bool Sd2Card::readStart(uint32_t blockNumber) { if (type() != SD_CARD_TYPE_SDHC) blockNumber <<= 9; if (cardCommand(CMD18, blockNumber)) { error(SD_CARD_ERROR_CMD18); goto fail; } chipSelectHigh(); return true; fail: chipSelectHigh(); return false; } //------------------------------------------------------------------------------ /** End a read multiple blocks sequence. * * \return The value one, true, is returned for success and * the value zero, false, is returned for failure. */ bool Sd2Card::readStop() { chipSelectLow(); if (cardCommand(CMD12, 0)) { error(SD_CARD_ERROR_CMD12); goto fail; } chipSelectHigh(); return true; fail: chipSelectHigh(); return false; } //------------------------------------------------------------------------------ /** * Set the SPI clock rate. * * \param[in] sckRateID A value in the range [0, 6]. * * The SPI clock will be set to F_CPU/pow(2, 1 + sckRateID). The maximum * SPI rate is F_CPU/2 for \a sckRateID = 0 and the minimum rate is F_CPU/128 * for \a scsRateID = 6. * * \return The value one, true, is returned for success and the value zero, * false, is returned for an invalid value of \a sckRateID. */ bool Sd2Card::setSckRate(uint8_t sckRateID) { if (sckRateID > 6) { error(SD_CARD_ERROR_SCK_RATE); return false; } spiRate_ = sckRateID; return true; } //------------------------------------------------------------------------------ // wait for card to go not busy bool Sd2Card::waitNotBusy(uint16_t timeoutMillis) { uint16_t t0 = millis(); while (spiRec() != 0XFF) { if (((uint16_t)millis() - t0) >= timeoutMillis) goto fail; } return true; fail: return false; } //------------------------------------------------------------------------------ /** * Writes a 512 byte block to an SD card. * * \param[in] blockNumber Logical block to be written. * \param[in] src Pointer to the location of the data to be written. * \return The value one, true, is returned for success and * the value zero, false, is returned for failure. */ bool Sd2Card::writeBlock(uint32_t blockNumber, const uint8_t* src) { // use address if not SDHC card if (type() != SD_CARD_TYPE_SDHC) blockNumber <<= 9; if (cardCommand(CMD24, blockNumber)) { error(SD_CARD_ERROR_CMD24); goto fail; } if (!writeData(DATA_START_BLOCK, src)) goto fail; // wait for flash programming to complete if (!waitNotBusy(SD_WRITE_TIMEOUT)) { error(SD_CARD_ERROR_WRITE_TIMEOUT); goto fail; } // response is r2 so get and check two bytes for nonzero if (cardCommand(CMD13, 0) || spiRec()) { error(SD_CARD_ERROR_WRITE_PROGRAMMING); goto fail; } chipSelectHigh(); return true; fail: chipSelectHigh(); return false; } //------------------------------------------------------------------------------ /** Write one data block in a multiple block write sequence * \param[in] src Pointer to the location of the data to be written. * \return The value one, true, is returned for success and * the value zero, false, is returned for failure. */ bool Sd2Card::writeData(const uint8_t* src) { chipSelectLow(); // wait for previous write to finish if (!waitNotBusy(SD_WRITE_TIMEOUT)) goto fail; if (!writeData(WRITE_MULTIPLE_TOKEN, src)) goto fail; chipSelectHigh(); return true; fail: error(SD_CARD_ERROR_WRITE_MULTIPLE); chipSelectHigh(); return false; } //------------------------------------------------------------------------------ // send one block of data for write block or write multiple blocks bool Sd2Card::writeData(uint8_t token, const uint8_t* src) { spiSendBlock(token, src); spiSend(0xff); // dummy crc spiSend(0xff); // dummy crc status_ = spiRec(); if ((status_ & DATA_RES_MASK) != DATA_RES_ACCEPTED) { error(SD_CARD_ERROR_WRITE); goto fail; } return true; fail: chipSelectHigh(); return false; } //------------------------------------------------------------------------------ /** Start a write multiple blocks sequence. * * \param[in] blockNumber Address of first block in sequence. * \param[in] eraseCount The number of blocks to be pre-erased. * * \note This function is used with writeData() and writeStop() * for optimized multiple block writes. * * \return The value one, true, is returned for success and * the value zero, false, is returned for failure. */ bool Sd2Card::writeStart(uint32_t blockNumber, uint32_t eraseCount) { // send pre-erase count if (cardAcmd(ACMD23, eraseCount)) { error(SD_CARD_ERROR_ACMD23); goto fail; } // use address if not SDHC card if (type() != SD_CARD_TYPE_SDHC) blockNumber <<= 9; if (cardCommand(CMD25, blockNumber)) { error(SD_CARD_ERROR_CMD25); goto fail; } chipSelectHigh(); return true; fail: chipSelectHigh(); return false; } //------------------------------------------------------------------------------ /** End a write multiple blocks sequence. * * \return The value one, true, is returned for success and * the value zero, false, is returned for failure. */ bool Sd2Card::writeStop() { chipSelectLow(); if (!waitNotBusy(SD_WRITE_TIMEOUT)) goto fail; spiSend(STOP_TRAN_TOKEN); if (!waitNotBusy(SD_WRITE_TIMEOUT)) goto fail; chipSelectHigh(); return true; fail: error(SD_CARD_ERROR_STOP_TRAN); chipSelectHigh(); return false; } #endif