diff --git a/Marlin/Marlin.h b/Marlin/Marlin.h index 7eff6a1e68..be0f9606b3 100644 --- a/Marlin/Marlin.h +++ b/Marlin/Marlin.h @@ -33,6 +33,7 @@ #define BIT(b) (1<<(b)) #define TEST(n,b) (((n)&BIT(b))!=0) +#define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b)) #define RADIANS(d) ((d)*M_PI/180.0) #define DEGREES(r) ((d)*180.0/M_PI) #define NOLESS(v,n) do{ if (v < n) v = n; }while(0) @@ -198,7 +199,7 @@ void manage_inactivity(bool ignore_stepper_queue=false); */ enum AxisEnum {X_AXIS=0, Y_AXIS=1, A_AXIS=0, B_AXIS=1, Z_AXIS=2, E_AXIS=3, X_HEAD=4, Y_HEAD=5}; -enum EndstopEnum {X_MIN=0, Y_MIN=1, Z_MIN=2, Z_PROBE=3, X_MAX=4, Y_MAX=5, Z_MAX=6}; +enum EndstopEnum {X_MIN=0, Y_MIN=1, Z_MIN=2, Z_PROBE=3, X_MAX=4, Y_MAX=5, Z_MAX=6, Z2_MIN=7, Z2_MAX=8}; void enable_all_steppers(); void disable_all_steppers(); diff --git a/Marlin/stepper.cpp b/Marlin/stepper.cpp index e614f5a89a..cd98226421 100644 --- a/Marlin/stepper.cpp +++ b/Marlin/stepper.cpp @@ -76,6 +76,13 @@ volatile long endstops_trigsteps[3] = { 0 }; volatile long endstops_stepsTotal, endstops_stepsDone; static volatile char endstop_hit_bits = 0; // use X_MIN, Y_MIN, Z_MIN and Z_PROBE as BIT value +#ifndef Z_DUAL_ENDSTOPS + static byte +#else + static uint16_t +#endif + old_endstop_bits = 0; // use X_MIN, X_MAX... Z_MAX, Z_PROBE, Z2_MIN, Z2_MAX + #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED bool abort_on_endstop_hit = false; #endif @@ -84,31 +91,6 @@ static volatile char endstop_hit_bits = 0; // use X_MIN, Y_MIN, Z_MIN and Z_PROB int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT; #endif -#if HAS_X_MIN - static bool old_x_min_endstop = false; -#endif -#if HAS_X_MAX - static bool old_x_max_endstop = false; -#endif -#if HAS_Y_MIN - static bool old_y_min_endstop = false; -#endif -#if HAS_Y_MAX - static bool old_y_max_endstop = false; -#endif - -static bool old_z_min_endstop = false; -static bool old_z_max_endstop = false; - -#ifdef Z_DUAL_ENDSTOPS - static bool old_z2_min_endstop = false; - static bool old_z2_max_endstop = false; -#endif - -#ifdef Z_PROBE_ENDSTOP // No need to check for valid pin, SanityCheck.h already does this. - static bool old_z_probe_endstop = false; -#endif - static bool check_endstops = true; volatile long count_position[NUM_AXIS] = { 0 }; @@ -155,11 +137,11 @@ volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1 }; #define Z_APPLY_STEP(v,Q) \ if (performing_homing) { \ if (Z_HOME_DIR > 0) {\ - if (!(old_z_max_endstop && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \ - if (!(old_z2_max_endstop && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \ + if (!(TEST(old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \ + if (!(TEST(old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \ } else {\ - if (!(old_z_min_endstop && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \ - if (!(old_z2_min_endstop && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \ + if (!(TEST(old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \ + if (!(TEST(old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \ } \ } else { \ Z_STEP_WRITE(v); \ @@ -266,7 +248,7 @@ void endstops_hit_on_purpose() { } void checkHitEndstops() { - if (endstop_hit_bits) { // #ifdef || endstop_z_probe_hit to save space if needed. + if (endstop_hit_bits) { SERIAL_ECHO_START; SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT); if (endstop_hit_bits & BIT(X_MIN)) { @@ -447,7 +429,7 @@ FORCE_INLINE void trapezoid_generator_reset() { // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately. ISR(TIMER1_COMPA_vect) { - if(cleaning_buffer_counter) + if (cleaning_buffer_counter) { current_block = NULL; plan_discard_current_block(); @@ -492,22 +474,33 @@ ISR(TIMER1_COMPA_vect) { // Check endstops if (check_endstops) { - #define _ENDSTOP(axis, minmax) axis ##_## minmax ##_endstop + #ifdef Z_DUAL_ENDSTOPS + uint16_t + #else + byte + #endif + current_endstop_bits; + #define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN #define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING - #define _OLD_ENDSTOP(axis, minmax) old_## axis ##_## minmax ##_endstop #define _AXIS(AXIS) AXIS ##_AXIS - #define _HIT_BIT(AXIS) AXIS ##_MIN - #define _ENDSTOP_HIT(AXIS) endstop_hit_bits |= BIT(_HIT_BIT(AXIS)) - - #define UPDATE_ENDSTOP(axis,AXIS,minmax,MINMAX) \ - bool _ENDSTOP(axis, minmax) = (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX)); \ - if (_ENDSTOP(axis, minmax) && _OLD_ENDSTOP(axis, minmax) && (current_block->steps[_AXIS(AXIS)] > 0)) { \ + #define _ENDSTOP_HIT(AXIS) endstop_hit_bits |= BIT(_ENDSTOP(AXIS, MIN)) + #define _ENDSTOP(AXIS, MINMAX) AXIS ##_## MINMAX + + // SET_ENDSTOP_BIT: set the current endstop bits for an endstop to its status + #define SET_ENDSTOP_BIT(AXIS, MINMAX) SET_BIT(current_endstop_bits, _ENDSTOP(AXIS, MINMAX), (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX))) + // COPY_BIT: copy the value of COPY_BIT to BIT in bits + #define COPY_BIT(bits, COPY_BIT, BIT) SET_BIT(bits, BIT, TEST(bits, COPY_BIT)) + // TEST_ENDSTOP: test the old and the current status of an endstop + #define TEST_ENDSTOP(ENDSTOP) (TEST(current_endstop_bits, ENDSTOP) && TEST(old_endstop_bits, ENDSTOP)) + + #define UPDATE_ENDSTOP(AXIS,MINMAX) \ + SET_ENDSTOP_BIT(AXIS, MINMAX); \ + if (TEST_ENDSTOP(_ENDSTOP(AXIS, MINMAX)) && (current_block->steps[_AXIS(AXIS)] > 0)) { \ endstops_trigsteps[_AXIS(AXIS)] = count_position[_AXIS(AXIS)]; \ _ENDSTOP_HIT(AXIS); \ step_events_completed = current_block->step_event_count; \ - } \ - _OLD_ENDSTOP(axis, minmax) = _ENDSTOP(axis, minmax); + } #ifdef COREXY // Head direction in -X axis for CoreXY bots. @@ -524,7 +517,7 @@ ISR(TIMER1_COMPA_vect) { #endif { #if HAS_X_MIN - UPDATE_ENDSTOP(x, X, min, MIN); + UPDATE_ENDSTOP(X, MIN); #endif } } @@ -535,7 +528,7 @@ ISR(TIMER1_COMPA_vect) { #endif { #if HAS_X_MAX - UPDATE_ENDSTOP(x, X, max, MAX); + UPDATE_ENDSTOP(X, MAX); #endif } } @@ -550,12 +543,12 @@ ISR(TIMER1_COMPA_vect) { #endif { // -direction #if HAS_Y_MIN - UPDATE_ENDSTOP(y, Y, min, MIN); + UPDATE_ENDSTOP(Y, MIN); #endif } else { // +direction #if HAS_Y_MAX - UPDATE_ENDSTOP(y, Y, max, MAX); + UPDATE_ENDSTOP(Y, MAX); #endif } #ifdef COREXY @@ -565,45 +558,36 @@ ISR(TIMER1_COMPA_vect) { #if HAS_Z_MIN #ifdef Z_DUAL_ENDSTOPS + SET_ENDSTOP_BIT(Z, MIN); + #if HAS_Z2_MIN + SET_ENDSTOP_BIT(Z2, MIN); + #else + COPY_BIT(current_endstop_bits, Z_MIN, Z2_MIN) + #endif + + byte z_test = TEST_ENDSTOP(Z_MIN) << 0 + TEST_ENDSTOP(Z2_MIN) << 1; // bit 0 for Z, bit 1 for Z2 - bool z_min_endstop = READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING, - z2_min_endstop = - #if HAS_Z2_MIN - READ(Z2_MIN_PIN) != Z2_MIN_ENDSTOP_INVERTING - #else - z_min_endstop - #endif - ; - - bool z_min_both = z_min_endstop && old_z_min_endstop, - z2_min_both = z2_min_endstop && old_z2_min_endstop; - if ((z_min_both || z2_min_both) && current_block->steps[Z_AXIS] > 0) { + if (z_test && current_block->steps[Z_AXIS] > 0) { // z_test = Z_MIN || Z2_MIN endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; endstop_hit_bits |= BIT(Z_MIN); - if (!performing_homing || (performing_homing && z_min_both && z2_min_both)) //if not performing home or if both endstops were trigged during homing... - step_events_completed = current_block->step_event_count; + if (!performing_homing || (performing_homing && !((~z_test) & 0x3))) //if not performing home or if both endstops were trigged during homing... + step_events_completed = current_block->step_event_count; //!((~z_test) & 0x3) = Z_MIN && Z2_MIN } - old_z_min_endstop = z_min_endstop; - old_z2_min_endstop = z2_min_endstop; - #else // !Z_DUAL_ENDSTOPS - UPDATE_ENDSTOP(z, Z, min, MIN); - + UPDATE_ENDSTOP(Z, MIN); #endif // !Z_DUAL_ENDSTOPS - #endif // Z_MIN_PIN #ifdef Z_PROBE_ENDSTOP - UPDATE_ENDSTOP(z, Z, probe, PROBE); - z_probe_endstop=(READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING); - if(z_probe_endstop && old_z_probe_endstop) + UPDATE_ENDSTOP(Z, PROBE); + SET_ENDSTOP_BIT(Z, PROBE); + + if (TEST_ENDSTOP(Z_PROBE)) { endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; endstop_hit_bits |= BIT(Z_PROBE); - // if (z_probe_endstop && old_z_probe_endstop) SERIAL_ECHOLN("z_probe_endstop = true"); } - old_z_probe_endstop = z_probe_endstop; #endif } else { // z +direction @@ -611,55 +595,43 @@ ISR(TIMER1_COMPA_vect) { #ifdef Z_DUAL_ENDSTOPS - bool z_max_endstop = READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING, - z2_max_endstop = - #if HAS_Z2_MAX - READ(Z2_MAX_PIN) != Z2_MAX_ENDSTOP_INVERTING - #else - z_max_endstop - #endif - ; - - bool z_max_both = z_max_endstop && old_z_max_endstop, - z2_max_both = z2_max_endstop && old_z2_max_endstop; - if ((z_max_both || z2_max_both) && current_block->steps[Z_AXIS] > 0) { - endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; - endstop_hit_bits |= BIT(Z_MIN); + SET_ENDSTOP_BIT(Z, MAX); + #if HAS_Z2_MAX + SET_ENDSTOP_BIT(Z2, MAX); + #else + COPY_BIT(current_endstop_bits, Z_MAX, Z2_MAX) + #endif - // if (z_max_both) SERIAL_ECHOLN("z_max_endstop = true"); - // if (z2_max_both) SERIAL_ECHOLN("z2_max_endstop = true"); + byte z_test = TEST_ENDSTOP(Z_MAX) << 0 + TEST_ENDSTOP(Z2_MAX) << 1; // bit 0 for Z, bit 1 for Z2 - if (!performing_homing || (performing_homing && z_max_both && z2_max_both)) //if not performing home or if both endstops were trigged during homing... - step_events_completed = current_block->step_event_count; + if (z_test && current_block->steps[Z_AXIS] > 0) { // t_test = Z_MAX || Z2_MAX + endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; + endstop_hit_bits |= BIT(Z_MIN); + if (!performing_homing || (performing_homing && !((~z_test) & 0x3))) //if not performing home or if both endstops were trigged during homing... + step_events_completed = current_block->step_event_count; //!((~z_test) & 0x3) = Z_MAX && Z2_MAX } - old_z_max_endstop = z_max_endstop; - old_z2_max_endstop = z2_max_endstop; #else // !Z_DUAL_ENDSTOPS - UPDATE_ENDSTOP(z, Z, max, MAX); + UPDATE_ENDSTOP(Z, MAX); #endif // !Z_DUAL_ENDSTOPS - #endif // Z_MAX_PIN #ifdef Z_PROBE_ENDSTOP - UPDATE_ENDSTOP(z, Z, probe, PROBE); - z_probe_endstop=(READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING); - if(z_probe_endstop && old_z_probe_endstop) + UPDATE_ENDSTOP(Z, PROBE); + SET_ENDSTOP_BIT(Z, PROBE); + if (TEST_ENDSTOP(Z_PROBE)) { endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; endstop_hit_bits |= BIT(Z_PROBE); -// if (z_probe_endstop && old_z_probe_endstop) SERIAL_ECHOLN("z_probe_endstop = true"); } - old_z_probe_endstop = z_probe_endstop; #endif } - + old_endstop_bits = current_endstop_bits; } - // Take multiple steps per interrupt (For high speed moves) for (int8_t i = 0; i < step_loops; i++) { #ifndef AT90USB