|
@ -675,7 +675,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const |
|
|
const float target_float[XYZE] = { a, b, c, e }, |
|
|
const float target_float[XYZE] = { a, b, c, e }, |
|
|
de_float = target_float[E_AXIS] - position_float[E_AXIS], |
|
|
de_float = target_float[E_AXIS] - position_float[E_AXIS], |
|
|
mm_D_float = sqrt(sq(target_float[X_AXIS] - position_float[X_AXIS]) + sq(target_float[Y_AXIS] - position_float[Y_AXIS])); |
|
|
mm_D_float = sqrt(sq(target_float[X_AXIS] - position_float[X_AXIS]) + sq(target_float[Y_AXIS] - position_float[Y_AXIS])); |
|
|
|
|
|
|
|
|
memcpy(position_float, target_float, sizeof(position_float)); |
|
|
memcpy(position_float, target_float, sizeof(position_float)); |
|
|
#endif |
|
|
#endif |
|
|
|
|
|
|
|
@ -1108,7 +1108,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const |
|
|
if (accel * block->steps[AXIS] > comp) accel = comp / block->steps[AXIS]; \ |
|
|
if (accel * block->steps[AXIS] > comp) accel = comp / block->steps[AXIS]; \ |
|
|
} \ |
|
|
} \ |
|
|
}while(0) |
|
|
}while(0) |
|
|
|
|
|
|
|
|
#define LIMIT_ACCEL_FLOAT(AXIS,INDX) do{ \ |
|
|
#define LIMIT_ACCEL_FLOAT(AXIS,INDX) do{ \ |
|
|
if (block->steps[AXIS] && max_acceleration_steps_per_s2[AXIS+INDX] < accel) { \ |
|
|
if (block->steps[AXIS] && max_acceleration_steps_per_s2[AXIS+INDX] < accel) { \ |
|
|
const float comp = (float)max_acceleration_steps_per_s2[AXIS+INDX] * (float)block->step_event_count; \ |
|
|
const float comp = (float)max_acceleration_steps_per_s2[AXIS+INDX] * (float)block->step_event_count; \ |
|
@ -1292,11 +1292,11 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const |
|
|
// Use LIN_ADVANCE for blocks if all these are true:
|
|
|
// Use LIN_ADVANCE for blocks if all these are true:
|
|
|
//
|
|
|
//
|
|
|
// esteps : We have E steps todo (a printing move)
|
|
|
// esteps : We have E steps todo (a printing move)
|
|
|
//
|
|
|
//
|
|
|
// block->steps[X_AXIS] || block->steps[Y_AXIS] : We have a movement in XY direction (i.e., not retract / prime).
|
|
|
// block->steps[X_AXIS] || block->steps[Y_AXIS] : We have a movement in XY direction (i.e., not retract / prime).
|
|
|
//
|
|
|
//
|
|
|
// extruder_advance_k : There is an advance factor set.
|
|
|
// extruder_advance_k : There is an advance factor set.
|
|
|
//
|
|
|
//
|
|
|
// block->steps[E_AXIS] != block->step_event_count : A problem occurs if the move before a retract is too small.
|
|
|
// block->steps[E_AXIS] != block->step_event_count : A problem occurs if the move before a retract is too small.
|
|
|
// In that case, the retract and move will be executed together.
|
|
|
// In that case, the retract and move will be executed together.
|
|
|
// This leads to too many advance steps due to a huge e_acceleration.
|
|
|
// This leads to too many advance steps due to a huge e_acceleration.
|
|
|