Browse Source

Improvements for Laser / Spindle (#17661)

vanilla_fb_2.0.x
Luu Lac 4 years ago
committed by GitHub
parent
commit
eda2fd8dbe
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
  1. 46
      Marlin/Configuration_adv.h
  2. 50
      Marlin/src/HAL/AVR/fastio.cpp
  3. 57
      Marlin/src/feature/spindle_laser.cpp
  4. 254
      Marlin/src/feature/spindle_laser.h
  5. 23
      Marlin/src/feature/spindle_laser_types.h
  6. 9
      Marlin/src/gcode/calibrate/G28.cpp
  7. 45
      Marlin/src/gcode/control/M3-M5.cpp
  8. 10
      Marlin/src/gcode/gcode.cpp
  9. 10
      Marlin/src/inc/Conditionals_adv.h
  10. 12
      Marlin/src/inc/SanityCheck.h
  11. 11
      Marlin/src/lcd/dogm/status_screen_DOGM.cpp
  12. 1
      Marlin/src/lcd/menu/menu_main.cpp
  13. 14
      Marlin/src/lcd/menu/menu_spindle_laser.cpp
  14. 8
      Marlin/src/module/planner.cpp
  15. 26
      Marlin/src/module/planner.h
  16. 134
      Marlin/src/module/stepper.cpp

46
Marlin/Configuration_adv.h

@ -2777,7 +2777,7 @@
#if EITHER(SPINDLE_FEATURE, LASER_FEATURE)
#define SPINDLE_LASER_ACTIVE_HIGH false // Set to "true" if the on/off function is active HIGH
#define SPINDLE_LASER_PWM true // Set to "true" if your controller supports setting the speed/power
#define SPINDLE_LASER_PWM_INVERT true // Set to "true" if the speed/power goes up when you want it to go slower
#define SPINDLE_LASER_PWM_INVERT false // Set to "true" if the speed/power goes up when you want it to go slower
#define SPINDLE_LASER_FREQUENCY 2500 // (Hz) Spindle/laser frequency (only on supported HALs: AVR and LPC)
@ -2787,13 +2787,17 @@
* - PERCENT (S0 - S100)
* - RPM (S0 - S50000) Best for use with a spindle
*/
#define CUTTER_POWER_DISPLAY PWM255
#define CUTTER_POWER_UNIT PWM255
/**
* Relative mode uses relative range (SPEED_POWER_MIN to SPEED_POWER_MAX) instead of normal range (0 to SPEED_POWER_MAX)
* Best use with SuperPID router controller where for example S0 = 5,000 RPM and S255 = 30,000 RPM
* Relative Cutter Power
* Normally, 'M3 O<power>' sets
* OCR power is relative to the range SPEED_POWER_MIN...SPEED_POWER_MAX.
* so input powers of 0...255 correspond to SPEED_POWER_MIN...SPEED_POWER_MAX
* instead of normal range (0 to SPEED_POWER_MAX).
* Best used with (e.g.) SuperPID router controller: S0 = 5,000 RPM and S255 = 30,000 RPM
*/
//#define CUTTER_POWER_RELATIVE // Set speed proportional to [SPEED_POWER_MIN...SPEED_POWER_MAX] instead of directly
//#define CUTTER_POWER_RELATIVE // Set speed proportional to [SPEED_POWER_MIN...SPEED_POWER_MAX]
#if ENABLED(SPINDLE_FEATURE)
//#define SPINDLE_CHANGE_DIR // Enable if your spindle controller can change spindle direction
@ -2804,25 +2808,25 @@
#define SPINDLE_LASER_POWERDOWN_DELAY 5000 // (ms) Delay to allow the spindle to stop
/**
* M3/M4 uses the following equation to convert speed/power to PWM duty cycle
* Power = ((DC / 255 * 100) - SPEED_POWER_INTERCEPT)) * (1 / SPEED_POWER_SLOPE)
* where PWM DC varies from 0 to 255
* M3/M4 Power Equation
*
* Set these required parameters for your controller
* Each tool uses different value ranges for speed / power control.
* These parameters are used to convert between tool power units and PWM.
*
* Speed/Power = (PWMDC / 255 * 100 - SPEED_POWER_INTERCEPT) / SPEED_POWER_SLOPE
* PWMDC = (spdpwr - SPEED_POWER_MIN) / (SPEED_POWER_MAX - SPEED_POWER_MIN) / SPEED_POWER_SLOPE
*/
#define SPEED_POWER_SLOPE 118.4 // SPEED_POWER_SLOPE = SPEED_POWER_MAX / 255
#define SPEED_POWER_INTERCEPT 0
#define SPEED_POWER_MIN 5000
#define SPEED_POWER_MAX 30000 // SuperPID router controller 0 - 30,000 RPM
#define SPEED_POWER_STARTUP 25000 // The default value for speed power when M3 is called without arguments
#define SPEED_POWER_INTERCEPT 0 // (%) 0-100 i.e., Minimum power percentage
#define SPEED_POWER_MIN 5000 // (RPM)
#define SPEED_POWER_MAX 30000 // (RPM) SuperPID router controller 0 - 30,000 RPM
#define SPEED_POWER_STARTUP 25000 // (RPM) M3/M4 speed/power default (with no arguments)
#else
#define SPEED_POWER_SLOPE 0.3922 // SPEED_POWER_SLOPE = SPEED_POWER_MAX / 255
#define SPEED_POWER_INTERCEPT 0
#define SPEED_POWER_MIN 0
#define SPEED_POWER_MAX 100 // 0-100%
#define SPEED_POWER_STARTUP 80 // The default value for speed power when M3 is called without arguments
#define SPEED_POWER_INTERCEPT 0 // (%) 0-100 i.e., Minimum power percentage
#define SPEED_POWER_MIN 0 // (%) 0-100
#define SPEED_POWER_MAX 100 // (%) 0-100
#define SPEED_POWER_STARTUP 80 // (%) M3/M4 speed/power default (with no arguments)
/**
* Enable inline laser power to be handled in the planner / stepper routines.
@ -2871,6 +2875,10 @@
// Turn off the laser on G0 moves with no power parameter.
// If a power parameter is provided, use that instead.
//#define LASER_MOVE_G0_OFF
// Turn off the laser on G28 homing.
//#define LASER_MOVE_G28_OFF
#endif
/**

50
Marlin/src/HAL/AVR/fastio.cpp

@ -234,5 +234,55 @@ uint8_t extDigitalRead(const int8_t pin) {
}
}
#if 0
/**
* Set Timer 5 PWM frequency in Hz, from 3.8Hz up to ~16MHz
* with a minimum resolution of 100 steps.
*
* DC values -1.0 to 1.0. Negative duty cycle inverts the pulse.
*/
uint16_t set_pwm_frequency_hz(const float &hz, const float dca, const float dcb, const float dcc) {
float count = 0;
if (hz > 0 && (dca || dcb || dcc)) {
count = float(F_CPU) / hz; // 1x prescaler, TOP for 16MHz base freq.
uint16_t prescaler; // Range of 30.5Hz (65535) 64.5KHz (>31)
if (count >= 255. * 256.) { prescaler = 1024; SET_CS(5, PRESCALER_1024); }
else if (count >= 255. * 64.) { prescaler = 256; SET_CS(5, PRESCALER_256); }
else if (count >= 255. * 8.) { prescaler = 64; SET_CS(5, PRESCALER_64); }
else if (count >= 255.) { prescaler = 8; SET_CS(5, PRESCALER_8); }
else { prescaler = 1; SET_CS(5, PRESCALER_1); }
count /= float(prescaler);
const float pwm_top = round(count); // Get the rounded count
ICR5 = (uint16_t)pwm_top - 1; // Subtract 1 for TOP
OCR5A = pwm_top * ABS(dca); // Update and scale DCs
OCR5B = pwm_top * ABS(dcb);
OCR5C = pwm_top * ABS(dcc);
_SET_COM(5, A, dca ? (dca < 0 ? COM_SET_CLEAR : COM_CLEAR_SET) : COM_NORMAL); // Set compare modes
_SET_COM(5, B, dcb ? (dcb < 0 ? COM_SET_CLEAR : COM_CLEAR_SET) : COM_NORMAL);
_SET_COM(5, C, dcc ? (dcc < 0 ? COM_SET_CLEAR : COM_CLEAR_SET) : COM_NORMAL);
SET_WGM(5, FAST_PWM_ICRn); // Fast PWM with ICR5 as TOP
//SERIAL_ECHOLNPGM("Timer 5 Settings:");
//SERIAL_ECHOLNPAIR(" Prescaler=", prescaler);
//SERIAL_ECHOLNPAIR(" TOP=", ICR5);
//SERIAL_ECHOLNPAIR(" OCR5A=", OCR5A);
//SERIAL_ECHOLNPAIR(" OCR5B=", OCR5B);
//SERIAL_ECHOLNPAIR(" OCR5C=", OCR5C);
}
else {
// Restore the default for Timer 5
SET_WGM(5, PWM_PC_8); // PWM 8-bit (Phase Correct)
SET_COMS(5, NORMAL, NORMAL, NORMAL); // Do nothing
SET_CS(5, PRESCALER_64); // 16MHz / 64 = 250KHz
OCR5A = OCR5B = OCR5C = 0;
}
return round(count);
}
#endif
#endif // FASTIO_EXT_START
#endif // __AVR__

57
Marlin/src/feature/spindle_laser.cpp

@ -31,12 +31,13 @@
#include "spindle_laser.h"
SpindleLaser cutter;
uint8_t SpindleLaser::power;
bool SpindleLaser::isReady; // Ready to apply power setting from the UI to OCR
cutter_power_t SpindleLaser::menuPower, // Power set via LCD menu in PWM, PERCENT, or RPM
SpindleLaser::unitPower; // LCD status power in PWM, PERCENT, or RPM
cutter_power_t SpindleLaser::power;
bool SpindleLaser::isOn; // state to determine when to apply setPower to power
cutter_setPower_t SpindleLaser::setPower = interpret_power(SPEED_POWER_MIN); // spindle/laser speed/power control in PWM, Percentage or RPM
#if ENABLED(MARLIN_DEV_MODE)
cutter_frequency_t SpindleLaser::frequency; // setting PWM frequency; range: 2K - 50K
cutter_frequency_t SpindleLaser::frequency; // setting PWM frequency; range: 2K - 50K
#endif
#define SPINDLE_LASER_PWM_OFF ((SPINDLE_LASER_PWM_INVERT) ? 255 : 0)
@ -44,13 +45,13 @@ cutter_setPower_t SpindleLaser::setPower = interpret_power(SPEED_POWER_MIN); /
// Init the cutter to a safe OFF state
//
void SpindleLaser::init() {
OUT_WRITE(SPINDLE_LASER_ENA_PIN, !SPINDLE_LASER_ACTIVE_HIGH); // Init spindle to off
OUT_WRITE(SPINDLE_LASER_ENA_PIN, !SPINDLE_LASER_ACTIVE_HIGH); // Init spindle to off
#if ENABLED(SPINDLE_CHANGE_DIR)
OUT_WRITE(SPINDLE_DIR_PIN, SPINDLE_INVERT_DIR ? 255 : 0); // Init rotation to clockwise (M3)
OUT_WRITE(SPINDLE_DIR_PIN, SPINDLE_INVERT_DIR ? 255 : 0); // Init rotation to clockwise (M3)
#endif
#if ENABLED(SPINDLE_LASER_PWM)
SET_PWM(SPINDLE_LASER_PWM_PIN);
analogWrite(pin_t(SPINDLE_LASER_PWM_PIN), SPINDLE_LASER_PWM_OFF); // set to lowest speed
analogWrite(pin_t(SPINDLE_LASER_PWM_PIN), SPINDLE_LASER_PWM_OFF); // set to lowest speed
#endif
#if ENABLED(HAL_CAN_SET_PWM_FREQ) && defined(SPINDLE_LASER_FREQUENCY)
set_pwm_frequency(pin_t(SPINDLE_LASER_PWM_PIN), SPINDLE_LASER_FREQUENCY);
@ -59,38 +60,47 @@ void SpindleLaser::init() {
}
#if ENABLED(SPINDLE_LASER_PWM)
/**
* Set the cutter PWM directly to the given ocr value
**/
* Set the cutter PWM directly to the given ocr value
*/
void SpindleLaser::set_ocr(const uint8_t ocr) {
WRITE(SPINDLE_LASER_ENA_PIN, SPINDLE_LASER_ACTIVE_HIGH); // turn spindle on
WRITE(SPINDLE_LASER_ENA_PIN, SPINDLE_LASER_ACTIVE_HIGH); // turn spindle on
analogWrite(pin_t(SPINDLE_LASER_PWM_PIN), ocr ^ SPINDLE_LASER_PWM_OFF);
}
void SpindleLaser::ocr_off() {
WRITE(SPINDLE_LASER_ENA_PIN, !SPINDLE_LASER_ACTIVE_HIGH); // Turn spindle off
analogWrite(pin_t(SPINDLE_LASER_PWM_PIN), SPINDLE_LASER_PWM_OFF); // Only write low byte
}
#endif
//
// Set cutter ON state (and PWM) to the given cutter power value
// Set cutter ON/OFF state (and PWM) to the given cutter power value
//
void SpindleLaser::apply_power(const cutter_power_t inpow) {
static cutter_power_t last_power_applied = 0;
if (inpow == last_power_applied) return;
last_power_applied = inpow;
void SpindleLaser::apply_power(const uint8_t opwr) {
static uint8_t last_power_applied = 0;
if (opwr == last_power_applied) return;
last_power_applied = opwr;
power = opwr;
#if ENABLED(SPINDLE_LASER_PWM)
if (enabled())
set_ocr(translate_power(inpow));
if (cutter.unitPower == 0 && CUTTER_UNIT_IS(RPM)) {
ocr_off();
isReady = false;
}
else if (enabled() || ENABLED(CUTTER_POWER_RELATIVE)) {
set_ocr(power);
isReady = true;
}
else {
WRITE(SPINDLE_LASER_ENA_PIN, !SPINDLE_LASER_ACTIVE_HIGH); // Turn spindle off
analogWrite(pin_t(SPINDLE_LASER_PWM_PIN), SPINDLE_LASER_PWM_OFF); // Only write low byte
ocr_off();
isReady = false;
}
#else
WRITE(SPINDLE_LASER_ENA_PIN, (SPINDLE_LASER_ACTIVE_HIGH) ? enabled() : !enabled());
WRITE(SPINDLE_LASER_ENA_PIN, enabled() == SPINDLE_LASER_ACTIVE_HIGH);
isReady = true;
#endif
}
#if ENABLED(SPINDLE_CHANGE_DIR)
//
// Set the spindle direction and apply immediately
// Stop on direction change if SPINDLE_STOP_ON_DIR_CHANGE is enabled
@ -100,7 +110,6 @@ void SpindleLaser::apply_power(const cutter_power_t inpow) {
if (TERN0(SPINDLE_STOP_ON_DIR_CHANGE, enabled()) && READ(SPINDLE_DIR_PIN) != dir_state) disable();
WRITE(SPINDLE_DIR_PIN, dir_state);
}
#endif
#endif // HAS_CUTTER

254
Marlin/src/feature/spindle_laser.h

@ -34,87 +34,146 @@
#include "../module/planner.h"
#endif
#define PCT_TO_PWM(X) ((X) * 255 / 100)
#ifndef SPEED_POWER_INTERCEPT
#define SPEED_POWER_INTERCEPT 0
#endif
#define SPEED_POWER_FLOOR TERN(CUTTER_POWER_RELATIVE, SPEED_POWER_MIN, 0)
// #define _MAP(N,S1,S2,D1,D2) ((N)*_MAX((D2)-(D1),0)/_MAX((S2)-(S1),1)+(D1))
class SpindleLaser {
public:
static bool isOn; // state to determine when to apply setPower to power
static cutter_power_t power;
static cutter_setPower_t setPower; // spindle/laser menu set power; in PWM, Percentage or RPM
#if ENABLED(MARLIN_DEV_MODE)
static cutter_frequency_t frequency; // set PWM frequency; range: 2K-50K
#endif
static constexpr float
min_pct = round(TERN(CUTTER_POWER_RELATIVE, 0, (100 * float(SPEED_POWER_MIN) / TERN(SPINDLE_FEATURE, float(SPEED_POWER_MAX), 100)))),
max_pct = round(TERN(SPINDLE_FEATURE, 100, float(SPEED_POWER_MAX)));
static cutter_setPower_t interpret_power(const float pwr) { // convert speed/power to configured PWM, Percentage or RPM in relative or normal range
#if CUTTER_DISPLAY_IS(PERCENT)
return (pwr / SPEED_POWER_MAX) * 100; // to percent
#elif CUTTER_DISPLAY_IS(RPM) // to RPM is unaltered
return pwr;
#else // to PWM
#if ENABLED(CUTTER_POWER_RELATIVE)
return (pwr - SPEED_POWER_MIN) / (SPEED_POWER_MAX - SPEED_POWER_MIN) * 255; // using rpm range as relative percentage
#else
return (pwr / SPEED_POWER_MAX) * 255;
#endif
#endif
static const inline uint8_t pct_to_ocr(const float pct) { return uint8_t(PCT_TO_PWM(pct)); }
// cpower = configured values (ie SPEED_POWER_MAX)
static const inline uint8_t cpwr_to_pct(const cutter_cpower_t cpwr) { // configured value to pct
return unitPower ? round(100 * (cpwr - SPEED_POWER_FLOOR) / (SPEED_POWER_MAX - SPEED_POWER_FLOOR)) : 0;
}
/**
* Translate speed/power --> percentage --> PWM value
**/
static cutter_power_t translate_power(const float pwr) {
float pwrpc;
#if CUTTER_DISPLAY_IS(PERCENT)
pwrpc = pwr;
#elif CUTTER_DISPLAY_IS(RPM) // RPM to percent
#if ENABLED(CUTTER_POWER_RELATIVE)
pwrpc = (pwr - SPEED_POWER_MIN) / (SPEED_POWER_MAX - SPEED_POWER_MIN) * 100;
#else
pwrpc = pwr / SPEED_POWER_MAX * 100;
#endif
#else
return pwr; // PWM
#endif
#if ENABLED(SPINDLE_FEATURE)
#if ENABLED(CUTTER_POWER_RELATIVE)
constexpr float spmin = 0;
// Convert a configured value (cpower)(ie SPEED_POWER_STARTUP) to unit power (upwr, upower),
// which can be PWM, Percent, or RPM (rel/abs).
static const inline cutter_power_t cpwr_to_upwr(const cutter_cpower_t cpwr) { // STARTUP power to Unit power
const cutter_power_t upwr = (
#if ENABLED(SPINDLE_FEATURE)
// Spindle configured values are in RPM
#if CUTTER_UNIT_IS(RPM)
cpwr // to RPM
#elif CUTTER_UNIT_IS(PERCENT) // to PCT
cpwr_to_pct(cpwr)
#else // to PWM
PCT_TO_PWM(cpwr_to_pct(cpwr))
#endif
#else
constexpr float spmin = SPEED_POWER_MIN / SPEED_POWER_MAX * 100; // convert to percentage
// Laser configured values are in PCT
#if CUTTER_UNIT_IS(PWM255)
PCT_TO_PWM(cpwr)
#else
cpwr // to RPM/PCT
#endif
#endif
constexpr float spmax = 100;
#else
constexpr float spmin = SPEED_POWER_MIN;
constexpr float spmax = SPEED_POWER_MAX;
#endif
constexpr float inv_slope = RECIPROCAL(SPEED_POWER_SLOPE),
min_ocr = (spmin - (SPEED_POWER_INTERCEPT)) * inv_slope, // Minimum allowed
max_ocr = (spmax - (SPEED_POWER_INTERCEPT)) * inv_slope; // Maximum allowed
float ocr_val;
if (pwrpc < spmin) ocr_val = min_ocr; // Use minimum if set below
else if (pwrpc > spmax) ocr_val = max_ocr; // Use maximum if set above
else ocr_val = (pwrpc - (SPEED_POWER_INTERCEPT)) * inv_slope; // Use calculated OCR value
return ocr_val; // ...limited to Atmel PWM max
);
return upwr;
}
static const cutter_power_t mpower_min() { return cpwr_to_upwr(SPEED_POWER_MIN); }
static const cutter_power_t mpower_max() { return cpwr_to_upwr(SPEED_POWER_MAX); }
static bool isReady; // Ready to apply power setting from the UI to OCR
static uint8_t power;
#if ENABLED(MARLIN_DEV_MODE)
static cutter_frequency_t frequency; // Set PWM frequency; range: 2K-50K
#endif
static cutter_power_t menuPower; // Power as set via LCD menu in PWM, Percentage or RPM
static cutter_power_t unitPower; // Power as displayed status in PWM, Percentage or RPM
static void init();
// Modifying this function should update everywhere
static inline bool enabled(const cutter_power_t pwr) { return pwr > 0; }
static inline bool enabled() { return enabled(power); }
#if ENABLED(MARLIN_DEV_MODE)
static inline void refresh_frequency() { set_pwm_frequency(pin_t(SPINDLE_LASER_PWM_PIN), frequency); }
#endif
static void apply_power(const cutter_power_t inpow);
// Modifying this function should update everywhere
static inline bool enabled(const cutter_power_t opwr) { return opwr > 0; }
static inline bool enabled() { return enabled(power); }
static void apply_power(const uint8_t inpow);
FORCE_INLINE static void refresh() { apply_power(power); }
FORCE_INLINE static void set_power(const cutter_power_t pwr) { power = pwr; refresh(); }
FORCE_INLINE static void set_power(const uint8_t upwr) { power = upwr; refresh(); }
static inline void set_enabled(const bool enable) { set_power(enable ? (power ?: interpret_power(SPEED_POWER_STARTUP)) : 0); }
static inline void set_enabled(const bool enable) { set_power(enable ? (power ?: (unitPower ? upower_to_ocr(cpwr_to_upwr(SPEED_POWER_STARTUP)) : 0)) : 0); }
#if ENABLED(SPINDLE_LASER_PWM)
static void set_ocr(const uint8_t ocr);
static inline void set_ocr_power(const uint8_t pwr) { power = pwr; set_ocr(pwr); }
// static uint8_t translate_power(const cutter_power_t pwr); // Used by update output for power->OCR translation
#endif
static inline void set_ocr_power(const uint8_t ocr) { power = ocr; set_ocr(ocr); }
static void ocr_off();
// Used to update output for power->OCR translation
static inline uint8_t upower_to_ocr(const cutter_power_t upwr) {
return (
#if CUTTER_UNIT_IS(PWM255)
uint8_t(upwr)
#elif CUTTER_UNIT_IS(PERCENT)
pct_to_ocr(upwr)
#else
uint8_t(pct_to_ocr(cpwr_to_pct(upwr)))
#endif
);
}
// Correct power to configured range
static inline cutter_power_t power_to_range(const cutter_power_t pwr) {
return power_to_range(pwr, (
#if CUTTER_UNIT_IS(PWM255)
0
#elif CUTTER_UNIT_IS(PERCENT)
1
#elif CUTTER_UNIT_IS(RPM)
2
#else
#error "???"
#endif
));
}
static inline cutter_power_t power_to_range(const cutter_power_t pwr, const uint8_t pwrUnit) {
if (pwr <= 0) return 0;
cutter_power_t upwr;
switch (pwrUnit) {
case 0: // PWM
upwr = (
(pwr < pct_to_ocr(min_pct)) ? pct_to_ocr(min_pct) // Use minimum if set below
: (pwr > pct_to_ocr(max_pct)) ? pct_to_ocr(max_pct) // Use maximum if set above
: pwr
);
break;
case 1: // PERCENT
upwr = (
(pwr < min_pct) ? min_pct // Use minimum if set below
: (pwr > max_pct) ? max_pct // Use maximum if set above
: pwr // PCT
);
break;
case 2: // RPM
upwr = (
(pwr < SPEED_POWER_MIN) ? SPEED_POWER_MIN // Use minimum if set below
: (pwr > SPEED_POWER_MAX) ? SPEED_POWER_MAX // Use maximum if set above
: pwr // Calculate OCR value
);
break;
default: break;
}
return upwr;
}
#endif // SPINDLE_LASER_PWM
// Wait for spindle to spin up or spin down
static inline void power_delay(const bool on) {
@ -129,37 +188,82 @@ public:
static inline void set_direction(const bool) {}
#endif
static inline void disable() { isOn = false; set_enabled(false); }
static inline void disable() { isReady = false; set_enabled(false); }
#if HAS_LCD_MENU
static inline void enable_forward() { isOn = true; setPower ? (power = setPower) : (setPower = interpret_power(SPEED_POWER_STARTUP)); set_direction(false); set_enabled(true); }
static inline void enable_reverse() { isOn = true; setPower ? (power = setPower) : (setPower = interpret_power(SPEED_POWER_STARTUP)); set_direction(true); set_enabled(true); }
static inline void enable_with_dir(const bool reverse) {
isReady = true;
const uint8_t ocr = upower_to_ocr(menuPower);
if (menuPower)
power = ocr;
else
menuPower = cpwr_to_upwr(SPEED_POWER_STARTUP);
unitPower = menuPower;
set_direction(reverse);
set_enabled(true);
}
FORCE_INLINE static void enable_forward() { enable_with_dir(false); }
FORCE_INLINE static void enable_reverse() { enable_with_dir(true); }
#if ENABLED(SPINDLE_LASER_PWM)
static inline void update_from_mpower() {
if (isReady) power = upower_to_ocr(menuPower);
unitPower = menuPower;
}
#endif
#endif
#if ENABLED(LASER_POWER_INLINE)
/**
* Inline power adds extra fields to the planner block
* to handle laser power and scale to movement speed.
*/
// Force disengage planner power control
static inline void inline_disable() { planner.laser.status = 0; planner.laser.power = 0; isOn = false;}
static inline void inline_disable() {
isReady = false;
unitPower = 0;
planner.laser_inline.status = 0;
planner.laser_inline.power = 0;
}
// Inline modes of all other functions; all enable planner inline power control
static inline void inline_enabled(const bool enable) { enable ? inline_power(SPEED_POWER_STARTUP) : inline_ocr_power(0); }
static inline void set_inline_enabled(const bool enable) {
if (enable) { inline_power(cpwr_to_upwr(SPEED_POWER_STARTUP)); }
else { unitPower = 0; isReady = false; menuPower = 0; TERN(SPINDLE_LASER_PWM, inline_ocr_power, inline_power)(0);}
}
static void inline_power(const cutter_power_t pwr) {
// Set the power for subsequent movement blocks
static void inline_power(const cutter_power_t upwr) {
unitPower = upwr;
menuPower = unitPower;
#if ENABLED(SPINDLE_LASER_PWM)
inline_ocr_power(translate_power(pwr));
isReady = true;
#if ENABLED(SPEED_POWER_RELATIVE) && !CUTTER_UNIT_IS(RPM) // relative mode does not turn laser off at 0, except for RPM
planner.laser_inline.status = 0x03;
planner.laser_inline.power = upower_to_ocr(upwr);
#else
if (upwr > 0)
inline_ocr_power(upower_to_ocr(upwr));
#endif
#else
planner.laser.status = enabled(pwr) ? 0x03 : 0x01;
planner.laser.power = pwr;
planner.laser_inline.status = enabled(pwr) ? 0x03 : 0x01;
planner.laser_inline.power = pwr;
isReady = enabled(upwr);
#endif
}
static inline void inline_direction(const bool reverse) { UNUSED(reverse); } // TODO is this ever going to be needed
static inline void inline_direction(const bool) { /* never */ }
#if ENABLED(SPINDLE_LASER_PWM)
static inline void inline_ocr_power(const uint8_t pwr) {
planner.laser.status = pwr ? 0x03 : 0x01;
planner.laser.power = pwr;
static inline void inline_ocr_power(const uint8_t ocrpwr) {
planner.laser_inline.status = ocrpwr ? 0x03 : 0x01;
planner.laser_inline.power = ocrpwr;
}
#endif
#endif
#endif // LASER_POWER_INLINE
static inline void kill() {
TERN_(LASER_POWER_INLINE, inline_disable());

23
Marlin/src/feature/spindle_laser_types.h

@ -34,19 +34,20 @@
#define _MSG_CUTTER(M) MSG_LASER_##M
#endif
#define MSG_CUTTER(M) _MSG_CUTTER(M)
#if CUTTER_DISPLAY_IS(RPM) && SPEED_POWER_MAX > 255
#define cutter_power_t uint16_t
#define cutter_setPower_t uint16_t
#define CUTTER_MENU_POWER_TYPE uint16_5
#define cutter_power2str ui16tostr5rj
typedef IF<(SPEED_POWER_MAX > 255), uint16_t, uint8_t>::type cutter_cpower_t;
#if CUTTER_UNIT_IS(RPM) && SPEED_POWER_MAX > 255
typedef uint16_t cutter_power_t;
#define CUTTER_MENU_POWER_TYPE uint16_5
#define cutter_power2str ui16tostr5rj
#else
#define cutter_power_t uint8_t
#define cutter_setPower_t uint8_t
#define CUTTER_MENU_POWER_TYPE uint8
#define cutter_power2str ui8tostr3rj
typedef uint8_t cutter_power_t;
#define CUTTER_MENU_POWER_TYPE uint8
#define cutter_power2str ui8tostr3rj
#endif
#if ENABLED(MARLIN_DEV_MODE)
#define cutter_frequency_t uint16_t
#define CUTTER_MENU_FREQUENCY_TYPE uint16_5
typedef uint16_t cutter_frequency_t;
#define CUTTER_MENU_FREQUENCY_TYPE uint16_5
#endif

9
Marlin/src/gcode/calibrate/G28.cpp

@ -51,6 +51,10 @@
#include "../../libs/L64XX/L64XX_Marlin.h"
#endif
#if ENABLED(LASER_MOVE_G28_OFF)
#include "../../feature/spindle_laser.h"
#endif
#define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
#include "../../core/debug_out.h"
@ -195,6 +199,11 @@
*
*/
void GcodeSuite::G28() {
#if ENABLED(LASER_MOVE_G28_OFF)
cutter.set_inline_enabled(false); // turn off laser
#endif
if (DEBUGGING(LEVELING)) {
DEBUG_ECHOLNPGM(">>> G28");
log_machine_info();

45
Marlin/src/gcode/control/M3-M5.cpp

@ -28,28 +28,18 @@
#include "../../feature/spindle_laser.h"
#include "../../module/stepper.h"
inline cutter_power_t get_s_power() {
return cutter_power_t(
parser.intval('S', cutter.interpret_power(SPEED_POWER_STARTUP))
);
}
/**
* Laser:
*
* M3 - Laser ON/Power (Ramped power)
* M4 - Laser ON/Power (Continuous power)
*
* S<power> - Set power. S0 will turn the laser off.
* O<ocr> - Set power and OCR
*
* Spindle:
*
* M3 - Spindle ON (Clockwise)
* M4 - Spindle ON (Counter-clockwise)
*
* S<power> - Set power. S0 will turn the spindle off.
* O<ocr> - Set power and OCR
* Parameters:
* S<power> - Set power. S0 will turn the spindle/laser off, except in relative mode.
* O<ocr> - Set power and OCR (oscillator count register)
*
* If no PWM pin is defined then M3/M4 just turns it on.
*
@ -76,17 +66,25 @@ inline cutter_power_t get_s_power() {
* PWM duty cycle goes from 0 (off) to 255 (always on).
*/
void GcodeSuite::M3_M4(const bool is_M4) {
auto get_s_power = [] {
if (parser.seen('S'))
cutter.unitPower = cutter.power_to_range(cutter_power_t(round(parser.value_float())));
else
cutter.unitPower = cutter.cpwr_to_upwr(SPEED_POWER_STARTUP);
return cutter.unitPower;
};
#if ENABLED(LASER_POWER_INLINE)
if (parser.seen('I') == DISABLED(LASER_POWER_INLINE_INVERT)) {
// Laser power in inline mode
cutter.inline_direction(is_M4); // Should always be unused
#if ENABLED(SPINDLE_LASER_PWM)
if (parser.seen('O'))
cutter.inline_ocr_power(parser.value_byte()); // The OCR is a value from 0 to 255 (uint8_t)
if (parser.seen('O')) {
cutter.unitPower = cutter.power_to_range(parser.value_byte(), 0);
cutter.inline_ocr_power(cutter.unitPower); // The OCR is a value from 0 to 255 (uint8_t)
}
else
cutter.inline_power(get_s_power());
cutter.inline_power(cutter.upower_to_ocr(get_s_power()));
#else
cutter.inline_enabled(true);
#endif
@ -97,17 +95,19 @@ void GcodeSuite::M3_M4(const bool is_M4) {
#endif
planner.synchronize(); // Wait for previous movement commands (G0/G0/G2/G3) to complete before changing power
cutter.set_direction(is_M4);
#if ENABLED(SPINDLE_LASER_PWM)
if (parser.seenval('O'))
cutter.set_ocr_power(parser.value_byte()); // The OCR is a value from 0 to 255 (uint8_t)
if (parser.seenval('O')) {
cutter.unitPower = cutter.power_to_range(parser.value_byte(), 0);
cutter.set_ocr_power(cutter.unitPower); // The OCR is a value from 0 to 255 (uint8_t)
}
else
cutter.set_power(get_s_power());
cutter.set_power(cutter.upower_to_ocr(get_s_power()));
#else
cutter.set_enabled(true);
#endif
cutter.menuPower = cutter.unitPower;
}
/**
@ -116,7 +116,7 @@ void GcodeSuite::M3_M4(const bool is_M4) {
void GcodeSuite::M5() {
#if ENABLED(LASER_POWER_INLINE)
if (parser.seen('I') == DISABLED(LASER_POWER_INLINE_INVERT)) {
cutter.inline_enabled(false); // Laser power in inline mode
cutter.set_inline_enabled(false); // Laser power in inline mode
return;
}
// Non-inline, standard case
@ -124,6 +124,7 @@ void GcodeSuite::M5() {
#endif
planner.synchronize();
cutter.set_enabled(false);
cutter.menuPower = cutter.unitPower;
}
#endif // HAS_CUTTER

10
Marlin/src/gcode/gcode.cpp

@ -180,13 +180,9 @@ void GcodeSuite::get_destination_from_command() {
#if ENABLED(LASER_MOVE_POWER)
// Set the laser power in the planner to configure this move
if (parser.seen('S'))
cutter.inline_power(parser.value_int());
else {
#if ENABLED(LASER_MOVE_G0_OFF)
if (parser.codenum == 0) // G0
cutter.inline_enabled(false);
#endif
}
cutter.inline_power(cutter.power_to_range(cutter_power_t(round(parser.value_float()))));
else if (ENABLED(LASER_MOVE_G0_OFF) && parser.codenum == 0) // G0
cutter.set_inline_enabled(false);
#endif
}

10
Marlin/src/inc/Conditionals_adv.h

@ -142,11 +142,11 @@
//
#if EITHER(SPINDLE_FEATURE, LASER_FEATURE)
#define HAS_CUTTER 1
#define _CUTTER_DISP_PWM255 1
#define _CUTTER_DISP_PERCENT 2
#define _CUTTER_DISP_RPM 3
#define _CUTTER_DISP(V) _CAT(_CUTTER_DISP_, V)
#define CUTTER_DISPLAY_IS(V) (_CUTTER_DISP(CUTTER_POWER_DISPLAY) == _CUTTER_DISP(V))
#define _CUTTER_POWER_PWM255 1
#define _CUTTER_POWER_PERCENT 2
#define _CUTTER_POWER_RPM 3
#define _CUTTER_POWER(V) _CAT(_CUTTER_POWER_, V)
#define CUTTER_UNIT_IS(V) (_CUTTER_POWER(CUTTER_POWER_UNIT) == _CUTTER_POWER(V))
#endif
// Add features that need hardware PWM here

12
Marlin/src/inc/SanityCheck.h

@ -421,6 +421,8 @@
#error "SPINDLE_STOP_ON_DIR_CHANGE is now SPINDLE_CHANGE_DIR_STOP. Please update your Configuration_adv.h."
#elif defined(SPINDLE_LASER_ENABLE_INVERT)
#error "SPINDLE_LASER_ENABLE_INVERT is now SPINDLE_LASER_ACTIVE_HIGH. Please update your Configuration_adv.h."
#elif defined(CUTTER_POWER_DISPLAY)
#error "CUTTER_POWER_DISPLAY is now CUTTER_POWER_UNIT. Please update your Configuration_adv.h."
#elif defined(CHAMBER_HEATER_PIN)
#error "CHAMBER_HEATER_PIN is now HEATER_CHAMBER_PIN. Please update your configuration and/or pins."
#elif defined(TMC_Z_CALIBRATION)
@ -2825,10 +2827,10 @@ static_assert( _ARR_TEST(3,0) && _ARR_TEST(3,1) && _ARR_TEST(3,2)
#endif
#if HAS_CUTTER
#ifndef CUTTER_POWER_DISPLAY
#error "CUTTER_POWER_DISPLAY is required with a spindle or laser. Please update your Configuration_adv.h."
#elif !CUTTER_DISPLAY_IS(PWM255) && !CUTTER_DISPLAY_IS(PERCENT) && !CUTTER_DISPLAY_IS(RPM)
#error "CUTTER_POWER_DISPLAY must be PWM255, PERCENT, or RPM. Please update your Configuration_adv.h."
#ifndef CUTTER_POWER_UNIT
#error "CUTTER_POWER_UNIT is required with a spindle or laser. Please update your Configuration_adv.h."
#elif !CUTTER_UNIT_IS(PWM255) && !CUTTER_UNIT_IS(PERCENT) && !CUTTER_UNIT_IS(RPM)
#error "CUTTER_POWER_UNIT must be PWM255, PERCENT, or RPM. Please update your Configuration_adv.h."
#endif
#if ENABLED(LASER_POWER_INLINE)
@ -2878,7 +2880,7 @@ static_assert( _ARR_TEST(3,0) && _ARR_TEST(3,1) && _ARR_TEST(3,2)
#error "SPINDLE_LASER_PWM_PIN not assigned to a PWM pin."
#elif !defined(SPINDLE_LASER_PWM_INVERT)
#error "SPINDLE_LASER_PWM_INVERT is required for (SPINDLE|LASER)_FEATURE."
#elif !defined(SPEED_POWER_SLOPE) || !defined(SPEED_POWER_INTERCEPT) || !defined(SPEED_POWER_MIN) || !defined(SPEED_POWER_MAX) || !defined(SPEED_POWER_STARTUP)
#elif !(defined(SPEED_POWER_INTERCEPT) && defined(SPEED_POWER_MIN) && defined(SPEED_POWER_MAX) && defined(SPEED_POWER_STARTUP))
#error "SPINDLE_LASER_PWM equation constant(s) missing."
#elif _PIN_CONFLICT(X_MIN)
#error "SPINDLE_LASER_PWM pin conflicts with X_MIN_PIN."

11
Marlin/src/lcd/dogm/status_screen_DOGM.cpp

@ -541,12 +541,15 @@ void MarlinUI::draw_status_screen() {
// Laser / Spindle
#if DO_DRAW_CUTTER
if (cutter.power && PAGE_CONTAINS(STATUS_CUTTER_TEXT_Y - INFO_FONT_ASCENT, STATUS_CUTTER_TEXT_Y - 1)) {
lcd_put_u8str(STATUS_CUTTER_TEXT_X, STATUS_CUTTER_TEXT_Y, cutter_power2str(cutter.power));
#if CUTTER_DISPLAY_IS(PERCENT)
if (cutter.isReady && PAGE_CONTAINS(STATUS_CUTTER_TEXT_Y - INFO_FONT_ASCENT, STATUS_CUTTER_TEXT_Y - 1)) {
#if CUTTER_UNIT_IS(PERCENT)
lcd_put_u8str(STATUS_CUTTER_TEXT_X, STATUS_CUTTER_TEXT_Y, cutter_power2str(cutter.unitPower));
lcd_put_wchar('%');
#elif CUTTER_DISPLAY_IS(RPM)
#elif CUTTER_UNIT_IS(RPM)
lcd_put_u8str(STATUS_CUTTER_TEXT_X - 2, STATUS_CUTTER_TEXT_Y, ftostr51rj(float(cutter.unitPower) / 1000));
lcd_put_wchar('K');
#else
lcd_put_u8str(STATUS_CUTTER_TEXT_X, STATUS_CUTTER_TEXT_Y, cutter_power2str(cutter.unitPower));
#endif
}
#endif

1
Marlin/src/lcd/menu/menu_main.cpp

@ -73,7 +73,6 @@ void menu_configuration();
#endif
#if HAS_CUTTER
#include "../../feature/spindle_laser.h"
void menu_spindle_laser();
#endif

14
Marlin/src/lcd/menu/menu_spindle_laser.cpp

@ -34,19 +34,19 @@
void menu_spindle_laser() {
const bool can_disable = cutter.enabled() && cutter.isOn;
const bool is_enabled = cutter.enabled() && cutter.isReady;
START_MENU();
BACK_ITEM(MSG_MAIN);
#if ENABLED(SPINDLE_LASER_PWM)
EDIT_ITEM_FAST( CUTTER_MENU_POWER_TYPE, MSG_CUTTER(POWER), &cutter.setPower
, cutter.interpret_power(SPEED_POWER_MIN), cutter.interpret_power(SPEED_POWER_MAX)
, []{ if (cutter.isOn) cutter.power = cutter.setPower; }
);
// Change the cutter's "current power" value without turning the cutter on or off
// Power is displayed and set in units and range according to CUTTER_POWER_UNIT
EDIT_ITEM_FAST(CUTTER_MENU_POWER_TYPE, MSG_CUTTER(POWER), &cutter.menuPower,
cutter.mpower_min(), cutter.mpower_max(), cutter.update_from_mpower);
#endif
if (can_disable)
if (is_enabled)
ACTION_ITEM(MSG_CUTTER(OFF), cutter.disable);
else {
ACTION_ITEM(MSG_CUTTER(ON), cutter.enable_forward);
@ -57,7 +57,7 @@
#if ENABLED(MARLIN_DEV_MODE)
#if ENABLED(HAL_CAN_SET_PWM_FREQ) && defined(SPINDLE_LASER_FREQUENCY)
EDIT_ITEM_FAST(CUTTER_MENU_FREQUENCY_TYPE, MSG_CUTTER_FREQUENCY, &cutter.frequency, 2000, 50000,[]{ cutter.refresh_frequency();});
EDIT_ITEM_FAST(CUTTER_MENU_FREQUENCY_TYPE, MSG_CUTTER_FREQUENCY, &cutter.frequency, 2000, 50000, cutter.refresh_frequency);
#endif
#endif
END_MENU();

8
Marlin/src/module/planner.cpp

@ -129,7 +129,7 @@ uint8_t Planner::delay_before_delivering; // This counter delays delivery
planner_settings_t Planner::settings; // Initialized by settings.load()
#if ENABLED(LASER_POWER_INLINE)
laser_state_t Planner::laser; // Current state for blocks
laser_state_t Planner::laser_inline; // Current state for blocks
#endif
uint32_t Planner::max_acceleration_steps_per_s2[XYZE_N]; // (steps/s^2) Derived from mm_per_s2
@ -1693,7 +1693,7 @@ bool Planner::_buffer_steps(const xyze_long_t &target
* fr_mm_s - (target) speed of the move
* extruder - target extruder
*
* Returns true is movement is acceptable, false otherwise
* Returns true if movement is acceptable, false otherwise
*/
bool Planner::_populate_block(block_t * const block, bool split_move,
const abce_long_t &target
@ -1803,8 +1803,8 @@ bool Planner::_populate_block(block_t * const block, bool split_move,
// Update block laser power
#if ENABLED(LASER_POWER_INLINE)
block->laser.status = laser.status;
block->laser.power = laser.power;
block->laser.status = laser_inline.status;
block->laser.power = laser_inline.power;
#endif
// Number of steps for each axis

26
Marlin/src/module/planner.h

@ -117,8 +117,15 @@ enum BlockFlag : char {
#if ENABLED(LASER_POWER_INLINE)
typedef struct {
uint8_t status, // See planner settings for meaning
power; // Ditto; When in trapezoid mode this is nominal power
bool isPlanned:1;
bool isEnabled:1;
bool dir:1;
bool Reserved:6;
} power_status_t;
typedef struct {
power_status_t status; // See planner settings for meaning
uint8_t power; // Ditto; When in trapezoid mode this is nominal power
#if ENABLED(LASER_POWER_INLINE_TRAPEZOID)
uint8_t power_entry; // Entry power for the laser
#if DISABLED(LASER_POWER_INLINE_TRAPEZOID_CONT)
@ -234,18 +241,15 @@ typedef struct block_t {
#if ENABLED(LASER_POWER_INLINE)
typedef struct {
/**
* Laser status bitmask; most bits are unused;
* 0: Planner buffer enable
* 1: Laser enable
* 2: Reserved for direction
* Laser status flags
*/
uint8_t status;
power_status_t status;
/**
* Laser power: 0 or 255 in case of PWM-less laser,
* or the OCR value;
* or the OCR (oscillator count register) value;
*
* Using OCR instead of raw power,
* as it avoids floating points during move loop
* Using OCR instead of raw power, because it avoids
* floating point operations during the move loop.
*/
uint8_t power;
} laser_state_t;
@ -332,7 +336,7 @@ class Planner {
static planner_settings_t settings;
#if ENABLED(LASER_POWER_INLINE)
static laser_state_t laser;
static laser_state_t laser_inline;
#endif
static uint32_t max_acceleration_steps_per_s2[XYZE_N]; // (steps/s^2) Derived from mm_per_s2

134
Marlin/src/module/stepper.cpp

@ -244,8 +244,8 @@ xyze_long_t Stepper::count_position{0};
xyze_int8_t Stepper::count_direction{0};
#if ENABLED(LASER_POWER_INLINE_TRAPEZOID)
Stepper::stepper_laser_t Stepper::laser = {
.trap_en = false,
Stepper::stepper_laser_t Stepper::laser_trap = {
.enabled = false,
.cur_power = 0,
.cruise_set = false,
#if DISABLED(LASER_POWER_INLINE_TRAPEZOID_CONT)
@ -1843,28 +1843,28 @@ uint32_t Stepper::block_phase_isr() {
// Update laser - Accelerating
#if ENABLED(LASER_POWER_INLINE_TRAPEZOID)
if (laser.trap_en) {
if (laser_trap.enabled) {
#if DISABLED(LASER_POWER_INLINE_TRAPEZOID_CONT)
if (current_block->laser.entry_per) {
laser.acc_step_count -= step_events_completed - laser.last_step_count;
laser.last_step_count = step_events_completed;
laser_trap.acc_step_count -= step_events_completed - laser_trap.last_step_count;
laser_trap.last_step_count = step_events_completed;
// Should be faster than a divide, since this should trip just once
if (laser.acc_step_count < 0) {
while (laser.acc_step_count < 0) {
laser.acc_step_count += current_block->laser.entry_per;
if (laser.cur_power < current_block->laser.power) laser.cur_power++;
if (laser_trap.acc_step_count < 0) {
while (laser_trap.acc_step_count < 0) {
laser_trap.acc_step_count += current_block->laser.entry_per;
if (laser_trap.cur_power < current_block->laser.power) laser_trap.cur_power++;
}
cutter.set_ocr_power(laser.cur_power);
cutter.set_ocr_power(laser_trap.cur_power);
}
}
#else
if (laser.till_update)
laser.till_update--;
if (laser_trap.till_update)
laser_trap.till_update--;
else {
laser.till_update = LASER_POWER_INLINE_TRAPEZOID_CONT_PER;
laser.cur_power = (current_block->laser.power * acc_step_rate) / current_block->nominal_rate;
cutter.set_ocr_power(laser.cur_power); // Cycle efficiency is irrelevant it the last line was many cycles
laser_trap.till_update = LASER_POWER_INLINE_TRAPEZOID_CONT_PER;
laser_trap.cur_power = (current_block->laser.power * acc_step_rate) / current_block->nominal_rate;
cutter.set_ocr_power(laser_trap.cur_power); // Cycle efficiency is irrelevant it the last line was many cycles
}
#endif
}
@ -1920,28 +1920,28 @@ uint32_t Stepper::block_phase_isr() {
// Update laser - Decelerating
#if ENABLED(LASER_POWER_INLINE_TRAPEZOID)
if (laser.trap_en) {
if (laser_trap.enabled) {
#if DISABLED(LASER_POWER_INLINE_TRAPEZOID_CONT)
if (current_block->laser.exit_per) {
laser.acc_step_count -= step_events_completed - laser.last_step_count;
laser.last_step_count = step_events_completed;
laser_trap.acc_step_count -= step_events_completed - laser_trap.last_step_count;
laser_trap.last_step_count = step_events_completed;
// Should be faster than a divide, since this should trip just once
if (laser.acc_step_count < 0) {
while (laser.acc_step_count < 0) {
laser.acc_step_count += current_block->laser.exit_per;
if (laser.cur_power > current_block->laser.power_exit) laser.cur_power--;
if (laser_trap.acc_step_count < 0) {
while (laser_trap.acc_step_count < 0) {
laser_trap.acc_step_count += current_block->laser.exit_per;
if (laser_trap.cur_power > current_block->laser.power_exit) laser_trap.cur_power--;
}
cutter.set_ocr_power(laser.cur_power);
cutter.set_ocr_power(laser_trap.cur_power);
}
}
#else
if (laser.till_update)
laser.till_update--;
if (laser_trap.till_update)
laser_trap.till_update--;
else {
laser.till_update = LASER_POWER_INLINE_TRAPEZOID_CONT_PER;
laser.cur_power = (current_block->laser.power * step_rate) / current_block->nominal_rate;
cutter.set_ocr_power(laser.cur_power); // Cycle efficiency isn't relevant when the last line was many cycles
laser_trap.till_update = LASER_POWER_INLINE_TRAPEZOID_CONT_PER;
laser_trap.cur_power = (current_block->laser.power * step_rate) / current_block->nominal_rate;
cutter.set_ocr_power(laser_trap.cur_power); // Cycle efficiency isn't relevant when the last line was many cycles
}
#endif
}
@ -1966,16 +1966,16 @@ uint32_t Stepper::block_phase_isr() {
// Update laser - Cruising
#if ENABLED(LASER_POWER_INLINE_TRAPEZOID)
if (laser.trap_en) {
if (!laser.cruise_set) {
laser.cur_power = current_block->laser.power;
cutter.set_ocr_power(laser.cur_power);
laser.cruise_set = true;
if (laser_trap.enabled) {
if (!laser_trap.cruise_set) {
laser_trap.cur_power = current_block->laser.power;
cutter.set_ocr_power(laser_trap.cur_power);
laser_trap.cruise_set = true;
}
#if ENABLED(LASER_POWER_INLINE_TRAPEZOID_CONT)
laser.till_update = LASER_POWER_INLINE_TRAPEZOID_CONT_PER;
laser_trap.till_update = LASER_POWER_INLINE_TRAPEZOID_CONT_PER;
#else
laser.last_step_count = step_events_completed;
laser_trap.last_step_count = step_events_completed;
#endif
}
#endif
@ -2000,7 +2000,10 @@ uint32_t Stepper::block_phase_isr() {
return interval; // No more queued movements!
}
TERN_(HAS_CUTTER, cutter.apply_power(current_block->cutter_power));
// For non-inline cutter, grossly apply power
#if ENABLED(LASER_FEATURE) && DISABLED(LASER_POWER_INLINE)
cutter.apply_power(current_block->cutter_power);
#endif
TERN_(POWER_LOSS_RECOVERY, recovery.info.sdpos = current_block->sdpos);
@ -2150,15 +2153,9 @@ uint32_t Stepper::block_phase_isr() {
else LA_isr_rate = LA_ADV_NEVER;
#endif
if (
#if HAS_L64XX
true // Always set direction for L64xx (This also enables the chips)
#else
current_block->direction_bits != last_direction_bits
#if DISABLED(MIXING_EXTRUDER)
|| stepper_extruder != last_moved_extruder
#endif
#endif
if ( ENABLED(HAS_L64XX) // Always set direction for L64xx (Also enables the chips)
|| current_block->direction_bits != last_direction_bits
|| TERN(MIXING_EXTRUDER, false, stepper_extruder != last_moved_extruder)
) {
last_direction_bits = current_block->direction_bits;
#if EXTRUDERS > 1
@ -2170,33 +2167,31 @@ uint32_t Stepper::block_phase_isr() {
}
#if ENABLED(LASER_POWER_INLINE)
const uint8_t stat = current_block->laser.status;
const power_status_t stat = current_block->laser.status;
#if ENABLED(LASER_POWER_INLINE_TRAPEZOID)
laser.trap_en = (stat & 0x03) == 0x03;
laser.cur_power = current_block->laser.power_entry; // RESET STATE
laser.cruise_set = false;
laser_trap.enabled = stat.isPlanned && stat.isEnabled;
laser_trap.cur_power = current_block->laser.power_entry; // RESET STATE
laser_trap.cruise_set = false;
#if DISABLED(LASER_POWER_INLINE_TRAPEZOID_CONT)
laser.last_step_count = 0;
laser.acc_step_count = current_block->laser.entry_per / 2;
laser_trap.last_step_count = 0;
laser_trap.acc_step_count = current_block->laser.entry_per / 2;
#else
laser.till_update = 0;
laser_trap.till_update = 0;
#endif
// Always have PWM in this case
if (TEST(stat, 0)) { // Planner controls the laser
if (TEST(stat, 1)) // Laser is on
cutter.set_ocr_power(laser.cur_power);
else
cutter.set_power(0);
if (stat.isPlanned) { // Planner controls the laser
cutter.set_ocr_power(
stat.isEnabled ? laser_trap.cur_power : 0 // ON with power or OFF
);
}
#else
if (TEST(stat, 0)) { // Planner controls the laser
if (stat.isPlanned) { // Planner controls the laser
#if ENABLED(SPINDLE_LASER_PWM)
if (TEST(stat, 1)) // Laser is on
cutter.set_ocr_power(current_block->laser.power);
else
cutter.set_power(0);
cutter.set_ocr_power(
stat.isEnabled ? current_block->laser.power : 0 // ON with power or OFF
);
#else
cutter.set_enabled(TEST(stat, 1));
cutter.set_enabled(stat.isEnabled);
#endif
}
#endif
@ -2237,15 +2232,14 @@ uint32_t Stepper::block_phase_isr() {
#if ENABLED(LASER_POWER_INLINE_CONTINUOUS)
else { // No new block found; so apply inline laser parameters
// This should mean ending file with 'M5 I' will stop the laser; thus the inline flag isn't needed
const uint8_t stat = planner.laser.status;
if (TEST(stat, 0)) { // Planner controls the laser
const power_status_t stat = planner.laser_inline.status;
if (stat.isPlanned) { // Planner controls the laser
#if ENABLED(SPINDLE_LASER_PWM)
if (TEST(stat, 1)) // Laser is on
cutter.set_ocr_power(planner.laser.power);
else
cutter.set_power(0);
cutter.set_ocr_power(
stat.isEnabled ? planner.laser_inline.power : 0 // ON with power or OFF
);
#else
cutter.set_enabled(TEST(stat, 1));
cutter.set_enabled(stat.isEnabled);
#endif
}
}

Loading…
Cancel
Save