|
|
@ -54,6 +54,9 @@ |
|
|
|
* G10 - Retract filament according to settings of M207 |
|
|
|
* G11 - Retract recover filament according to settings of M208 |
|
|
|
* G12 - Clean tool |
|
|
|
* G17 - Select Plane XY (Requires CNC_WORKSPACE_PLANES) |
|
|
|
* G18 - Select Plane ZX (Requires CNC_WORKSPACE_PLANES) |
|
|
|
* G19 - Select Plane YZ (Requires CNC_WORKSPACE_PLANES) |
|
|
|
* G20 - Set input units to inches |
|
|
|
* G21 - Set input units to millimeters |
|
|
|
* G26 - Mesh Validation Pattern (Requires UBL_G26_MESH_VALIDATION) |
|
|
@ -73,7 +76,7 @@ |
|
|
|
* "M" Codes |
|
|
|
* |
|
|
|
* M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled) |
|
|
|
* M1 - Same as M0 |
|
|
|
* M1 -> M0 |
|
|
|
* M3 - Turn laser/spindle on, set spindle/laser speed/power, set rotation to clockwise |
|
|
|
* M4 - Turn laser/spindle on, set spindle/laser speed/power, set rotation to counter-clockwise |
|
|
|
* M5 - Turn laser/spindle off |
|
|
@ -630,9 +633,9 @@ float cartes[XYZ] = { 0 }; |
|
|
|
bool filament_sensor = false; // M405 turns on filament sensor control. M406 turns it off.
|
|
|
|
float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404.
|
|
|
|
filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
|
|
|
|
int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
|
|
|
|
int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
|
|
|
|
int meas_delay_cm = MEASUREMENT_DELAY_CM; // Distance delay setting
|
|
|
|
uint8_t meas_delay_cm = MEASUREMENT_DELAY_CM, // Distance delay setting
|
|
|
|
measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
|
|
|
|
int8_t filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
|
|
|
|
#endif |
|
|
|
|
|
|
|
#if ENABLED(FILAMENT_RUNOUT_SENSOR) |
|
|
@ -688,6 +691,10 @@ static bool send_ok[BUFSIZE]; |
|
|
|
millis_t lastUpdateMillis; |
|
|
|
#endif |
|
|
|
|
|
|
|
#if ENABLED(CNC_WORKSPACE_PLANES) |
|
|
|
static WorkspacePlane workspace_plane = PLANE_XY; |
|
|
|
#endif |
|
|
|
|
|
|
|
FORCE_INLINE float pgm_read_any(const float *p) { return pgm_read_float_near(p); } |
|
|
|
FORCE_INLINE signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); } |
|
|
|
|
|
|
@ -3264,12 +3271,16 @@ inline void gcode_G0_G1( |
|
|
|
* X or Y must differ from the current XY. |
|
|
|
* Mixing R with I or J will throw an error. |
|
|
|
* |
|
|
|
* - P specifies the number of full circles to do |
|
|
|
* before the specified arc move. |
|
|
|
* |
|
|
|
* Examples: |
|
|
|
* |
|
|
|
* G2 I10 ; CW circle centered at X+10 |
|
|
|
* G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12 |
|
|
|
*/ |
|
|
|
#if ENABLED(ARC_SUPPORT) |
|
|
|
|
|
|
|
inline void gcode_G2_G3(bool clockwise) { |
|
|
|
if (IsRunning()) { |
|
|
|
|
|
|
@ -3287,27 +3298,39 @@ inline void gcode_G0_G1( |
|
|
|
float arc_offset[2] = { 0.0, 0.0 }; |
|
|
|
if (parser.seen('R')) { |
|
|
|
const float r = parser.value_linear_units(), |
|
|
|
x1 = current_position[X_AXIS], y1 = current_position[Y_AXIS], |
|
|
|
x2 = destination[X_AXIS], y2 = destination[Y_AXIS]; |
|
|
|
if (r && (x2 != x1 || y2 != y1)) { |
|
|
|
p1 = current_position[X_AXIS], q1 = current_position[Y_AXIS], |
|
|
|
p2 = destination[X_AXIS], q2 = destination[Y_AXIS]; |
|
|
|
if (r && (p2 != p1 || q2 != q1)) { |
|
|
|
const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
|
|
|
|
dx = x2 - x1, dy = y2 - y1, // X and Y differences
|
|
|
|
dx = p2 - p1, dy = q2 - q1, // X and Y differences
|
|
|
|
d = HYPOT(dx, dy), // Linear distance between the points
|
|
|
|
h = SQRT(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
|
|
|
|
mx = (x1 + x2) * 0.5, my = (y1 + y2) * 0.5, // Point between the two points
|
|
|
|
mx = (p1 + p2) * 0.5, my = (q1 + q2) * 0.5, // Point between the two points
|
|
|
|
sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
|
|
|
|
cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
|
|
|
|
arc_offset[X_AXIS] = cx - x1; |
|
|
|
arc_offset[Y_AXIS] = cy - y1; |
|
|
|
arc_offset[0] = cx - p1; |
|
|
|
arc_offset[1] = cy - q1; |
|
|
|
} |
|
|
|
} |
|
|
|
else { |
|
|
|
if (parser.seen('I')) arc_offset[X_AXIS] = parser.value_linear_units(); |
|
|
|
if (parser.seen('J')) arc_offset[Y_AXIS] = parser.value_linear_units(); |
|
|
|
if (parser.seen('I')) arc_offset[0] = parser.value_linear_units(); |
|
|
|
if (parser.seen('J')) arc_offset[1] = parser.value_linear_units(); |
|
|
|
} |
|
|
|
|
|
|
|
if (arc_offset[0] || arc_offset[1]) { |
|
|
|
// Send an arc to the planner
|
|
|
|
|
|
|
|
#if ENABLED(ARC_P_CIRCLES) |
|
|
|
// P indicates number of circles to do
|
|
|
|
int8_t circles_to_do = parser.seen('P') ? parser.value_byte() : 0; |
|
|
|
if (!WITHIN(circles_to_do, 0, 100)) { |
|
|
|
SERIAL_ERROR_START(); |
|
|
|
SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS); |
|
|
|
} |
|
|
|
while (circles_to_do--) |
|
|
|
plan_arc(current_position, arc_offset, clockwise); |
|
|
|
#endif |
|
|
|
|
|
|
|
// Send the arc to the planner
|
|
|
|
plan_arc(destination, arc_offset, clockwise); |
|
|
|
refresh_cmd_timeout(); |
|
|
|
} |
|
|
@ -3318,7 +3341,8 @@ inline void gcode_G0_G1( |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
#endif |
|
|
|
|
|
|
|
#endif // ARC_SUPPORT
|
|
|
|
|
|
|
|
/**
|
|
|
|
* G4: Dwell S<seconds> or P<milliseconds> |
|
|
@ -3406,6 +3430,25 @@ inline void gcode_G4() { |
|
|
|
} |
|
|
|
#endif |
|
|
|
|
|
|
|
#if ENABLED(CNC_WORKSPACE_PLANES) |
|
|
|
|
|
|
|
void report_workspace_plane() { |
|
|
|
SERIAL_ECHO_START(); |
|
|
|
SERIAL_ECHOPGM("Workspace Plane "); |
|
|
|
serialprintPGM(workspace_plane == PLANE_YZ ? PSTR("YZ\n") : workspace_plane == PLANE_ZX ? PSTR("ZX\n") : PSTR("XY\n")); |
|
|
|
} |
|
|
|
|
|
|
|
/**
|
|
|
|
* G17: Select Plane XY |
|
|
|
* G18: Select Plane ZX |
|
|
|
* G19: Select Plane YZ |
|
|
|
*/ |
|
|
|
inline void gcode_G17() { workspace_plane = PLANE_XY; } |
|
|
|
inline void gcode_G18() { workspace_plane = PLANE_ZX; } |
|
|
|
inline void gcode_G19() { workspace_plane = PLANE_YZ; } |
|
|
|
|
|
|
|
#endif // CNC_WORKSPACE_PLANES
|
|
|
|
|
|
|
|
#if ENABLED(INCH_MODE_SUPPORT) |
|
|
|
/**
|
|
|
|
* G20: Set input mode to inches |
|
|
@ -3720,6 +3763,10 @@ inline void gcode_G28(const bool always_home_all) { |
|
|
|
set_bed_leveling_enabled(false); |
|
|
|
#endif |
|
|
|
|
|
|
|
#if ENABLED(CNC_WORKSPACE_PLANES) |
|
|
|
workspace_plane = PLANE_XY; |
|
|
|
#endif |
|
|
|
|
|
|
|
// Always home with tool 0 active
|
|
|
|
#if HOTENDS > 1 |
|
|
|
const uint8_t old_tool_index = active_extruder; |
|
|
@ -8898,11 +8945,11 @@ inline void gcode_M400() { stepper.synchronize(); } |
|
|
|
inline void gcode_M405() { |
|
|
|
// This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
|
|
|
|
// everything else, it uses parser.value_int() instead of parser.value_linear_units().
|
|
|
|
if (parser.seen('D')) meas_delay_cm = parser.value_int(); |
|
|
|
if (parser.seen('D')) meas_delay_cm = parser.value_byte(); |
|
|
|
NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY); |
|
|
|
|
|
|
|
if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
|
|
|
|
const int temp_ratio = thermalManager.widthFil_to_size_ratio() - 100; // -100 to scale within a signed byte
|
|
|
|
const uint8_t temp_ratio = thermalManager.widthFil_to_size_ratio() - 100; // -100 to scale within a signed byte
|
|
|
|
|
|
|
|
for (uint8_t i = 0; i < COUNT(measurement_delay); ++i) |
|
|
|
measurement_delay[i] = temp_ratio; |
|
|
@ -10309,6 +10356,18 @@ void process_next_command() { |
|
|
|
break; |
|
|
|
#endif // NOZZLE_CLEAN_FEATURE
|
|
|
|
|
|
|
|
#if ENABLED(CNC_WORKSPACE_PLANES) |
|
|
|
case 17: // G17: Select Plane XY
|
|
|
|
gcode_G17(); |
|
|
|
break; |
|
|
|
case 18: // G18: Select Plane ZX
|
|
|
|
gcode_G18(); |
|
|
|
break; |
|
|
|
case 19: // G19: Select Plane YZ
|
|
|
|
gcode_G19(); |
|
|
|
break; |
|
|
|
#endif // CNC_WORKSPACE_PLANES
|
|
|
|
|
|
|
|
#if ENABLED(INCH_MODE_SUPPORT) |
|
|
|
case 20: //G20: Inch Mode
|
|
|
|
gcode_G20(); |
|
|
@ -11920,6 +11979,12 @@ void prepare_move_to_destination() { |
|
|
|
} |
|
|
|
|
|
|
|
#if ENABLED(ARC_SUPPORT) |
|
|
|
|
|
|
|
#if N_ARC_CORRECTION < 1 |
|
|
|
#undef N_ARC_CORRECTION |
|
|
|
#define N_ARC_CORRECTION 1 |
|
|
|
#endif |
|
|
|
|
|
|
|
/**
|
|
|
|
* Plan an arc in 2 dimensions |
|
|
|
* |
|
|
@ -11934,26 +11999,36 @@ void prepare_move_to_destination() { |
|
|
|
float *offset, // Center of rotation relative to current_position
|
|
|
|
uint8_t clockwise // Clockwise?
|
|
|
|
) { |
|
|
|
#if ENABLED(CNC_WORKSPACE_PLANES) |
|
|
|
AxisEnum p_axis, q_axis, l_axis; |
|
|
|
switch (workspace_plane) { |
|
|
|
case PLANE_XY: p_axis = X_AXIS; q_axis = Y_AXIS; l_axis = Z_AXIS; break; |
|
|
|
case PLANE_ZX: p_axis = Z_AXIS; q_axis = X_AXIS; l_axis = Y_AXIS; break; |
|
|
|
case PLANE_YZ: p_axis = Y_AXIS; q_axis = Z_AXIS; l_axis = X_AXIS; break; |
|
|
|
} |
|
|
|
#else |
|
|
|
constexpr AxisEnum p_axis = X_AXIS, q_axis = Y_AXIS, l_axis = Z_AXIS; |
|
|
|
#endif |
|
|
|
|
|
|
|
float r_X = -offset[X_AXIS], // Radius vector from center to current location
|
|
|
|
r_Y = -offset[Y_AXIS]; |
|
|
|
// Radius vector from center to current location
|
|
|
|
float r_P = -offset[0], r_Q = -offset[1]; |
|
|
|
|
|
|
|
const float radius = HYPOT(r_X, r_Y), |
|
|
|
center_X = current_position[X_AXIS] - r_X, |
|
|
|
center_Y = current_position[Y_AXIS] - r_Y, |
|
|
|
rt_X = logical[X_AXIS] - center_X, |
|
|
|
rt_Y = logical[Y_AXIS] - center_Y, |
|
|
|
linear_travel = logical[Z_AXIS] - current_position[Z_AXIS], |
|
|
|
const float radius = HYPOT(r_P, r_Q), |
|
|
|
center_P = current_position[p_axis] - r_P, |
|
|
|
center_Q = current_position[q_axis] - r_Q, |
|
|
|
rt_X = logical[p_axis] - center_P, |
|
|
|
rt_Y = logical[q_axis] - center_Q, |
|
|
|
linear_travel = logical[l_axis] - current_position[l_axis], |
|
|
|
extruder_travel = logical[E_AXIS] - current_position[E_AXIS]; |
|
|
|
|
|
|
|
// CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
|
|
|
|
float angular_travel = ATAN2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y); |
|
|
|
float angular_travel = ATAN2(r_P * rt_Y - r_Q * rt_X, r_P * rt_X + r_Q * rt_Y); |
|
|
|
if (angular_travel < 0) angular_travel += RADIANS(360); |
|
|
|
if (clockwise) angular_travel -= RADIANS(360); |
|
|
|
|
|
|
|
// Make a circle if the angular rotation is 0
|
|
|
|
if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS]) |
|
|
|
angular_travel += RADIANS(360); |
|
|
|
// Make a circle if the angular rotation is 0 and the target is current position
|
|
|
|
if (angular_travel == 0 && current_position[p_axis] == logical[p_axis] && current_position[q_axis] == logical[q_axis]) |
|
|
|
angular_travel = RADIANS(360); |
|
|
|
|
|
|
|
const float mm_of_travel = HYPOT(angular_travel * radius, FABS(linear_travel)); |
|
|
|
if (mm_of_travel < 0.001) return; |
|
|
@ -11996,7 +12071,7 @@ void prepare_move_to_destination() { |
|
|
|
cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
|
|
|
|
|
|
|
|
// Initialize the linear axis
|
|
|
|
arc_target[Z_AXIS] = current_position[Z_AXIS]; |
|
|
|
arc_target[l_axis] = current_position[l_axis]; |
|
|
|
|
|
|
|
// Initialize the extruder axis
|
|
|
|
arc_target[E_AXIS] = current_position[E_AXIS]; |
|
|
@ -12005,7 +12080,10 @@ void prepare_move_to_destination() { |
|
|
|
|
|
|
|
millis_t next_idle_ms = millis() + 200UL; |
|
|
|
|
|
|
|
int8_t count = 0; |
|
|
|
#if N_ARC_CORRECTION > 1 |
|
|
|
int8_t count = N_ARC_CORRECTION; |
|
|
|
#endif |
|
|
|
|
|
|
|
for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
|
|
|
|
|
|
|
|
thermalManager.manage_heater(); |
|
|
@ -12014,28 +12092,33 @@ void prepare_move_to_destination() { |
|
|
|
idle(); |
|
|
|
} |
|
|
|
|
|
|
|
if (++count < N_ARC_CORRECTION) { |
|
|
|
// Apply vector rotation matrix to previous r_X / 1
|
|
|
|
const float r_new_Y = r_X * sin_T + r_Y * cos_T; |
|
|
|
r_X = r_X * cos_T - r_Y * sin_T; |
|
|
|
r_Y = r_new_Y; |
|
|
|
} |
|
|
|
else { |
|
|
|
#if N_ARC_CORRECTION > 1 |
|
|
|
if (--count) { |
|
|
|
// Apply vector rotation matrix to previous r_P / 1
|
|
|
|
const float r_new_Y = r_P * sin_T + r_Q * cos_T; |
|
|
|
r_P = r_P * cos_T - r_Q * sin_T; |
|
|
|
r_Q = r_new_Y; |
|
|
|
} |
|
|
|
else |
|
|
|
#endif |
|
|
|
{ |
|
|
|
#if N_ARC_CORRECTION > 1 |
|
|
|
count = N_ARC_CORRECTION; |
|
|
|
#endif |
|
|
|
|
|
|
|
// Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
|
|
|
|
// Compute exact location by applying transformation matrix from initial radius vector(=-offset).
|
|
|
|
// To reduce stuttering, the sin and cos could be computed at different times.
|
|
|
|
// For now, compute both at the same time.
|
|
|
|
const float cos_Ti = cos(i * theta_per_segment), |
|
|
|
sin_Ti = sin(i * theta_per_segment); |
|
|
|
r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti; |
|
|
|
r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti; |
|
|
|
count = 0; |
|
|
|
const float cos_Ti = cos(i * theta_per_segment), sin_Ti = sin(i * theta_per_segment); |
|
|
|
r_P = -offset[0] * cos_Ti + offset[1] * sin_Ti; |
|
|
|
r_Q = -offset[0] * sin_Ti - offset[1] * cos_Ti; |
|
|
|
} |
|
|
|
|
|
|
|
// Update arc_target location
|
|
|
|
arc_target[X_AXIS] = center_X + r_X; |
|
|
|
arc_target[Y_AXIS] = center_Y + r_Y; |
|
|
|
arc_target[Z_AXIS] += linear_per_segment; |
|
|
|
arc_target[p_axis] = center_P + r_P; |
|
|
|
arc_target[q_axis] = center_Q + r_Q; |
|
|
|
arc_target[l_axis] += linear_per_segment; |
|
|
|
arc_target[E_AXIS] += extruder_per_segment; |
|
|
|
|
|
|
|
clamp_to_software_endstops(arc_target); |
|
|
@ -12201,7 +12284,7 @@ void prepare_move_to_destination() { |
|
|
|
#endif |
|
|
|
HOTEND_LOOP() |
|
|
|
max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e)); |
|
|
|
bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led; |
|
|
|
const bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led; |
|
|
|
if (new_led != red_led) { |
|
|
|
red_led = new_led; |
|
|
|
#if PIN_EXISTS(STAT_LED_RED) |
|
|
|