Browse Source

Scale feedrate (mm/s to deg/s) for SCARA

pull/1/head
Scott Lahteine 6 years ago
parent
commit
e8e60263c8
  1. 2
      .travis.yml
  2. 2
      Marlin/src/config/examples/SCARA/Configuration.h
  3. 33
      Marlin/src/gcode/motion/G2_G3.cpp
  4. 108
      Marlin/src/module/motion.cpp
  5. 16
      Marlin/src/module/motion.h
  6. 41
      Marlin/src/module/planner.cpp
  7. 11
      Marlin/src/module/planner.h

2
.travis.yml

@ -315,7 +315,7 @@ script:
# SCARA with TMC2130 # SCARA with TMC2130
# #
- use_example_configs SCARA - use_example_configs SCARA
- opt_enable AUTO_BED_LEVELING_BILINEAR FIX_MOUNTED_PROBE USE_ZMIN_PLUG EEPROM_SETTINGS EEPROM_CHITCHAT ULTIMAKERCONTROLLER - opt_enable AUTO_BED_LEVELING_BILINEAR FIX_MOUNTED_PROBE USE_ZMIN_PLUG EEPROM_SETTINGS EEPROM_CHITCHAT ULTIMAKERCONTROLLER SCARA_FEEDRATE_SCALING
- opt_enable_adv HAVE_TMC2130 X_IS_TMC2130 Y_IS_TMC2130 Z_IS_TMC2130 - opt_enable_adv HAVE_TMC2130 X_IS_TMC2130 Y_IS_TMC2130 Z_IS_TMC2130
- opt_enable_adv MONITOR_DRIVER_STATUS STEALTHCHOP HYBRID_THRESHOLD SENSORLESS_HOMING - opt_enable_adv MONITOR_DRIVER_STATUS STEALTHCHOP HYBRID_THRESHOLD SENSORLESS_HOMING
- build_marlin_pio ${TRAVIS_BUILD_DIR} ${TEST_PLATFORM} - build_marlin_pio ${TRAVIS_BUILD_DIR} ${TEST_PLATFORM}

2
Marlin/src/config/examples/SCARA/Configuration.h

@ -72,7 +72,9 @@
//#define MAKERARM_SCARA //#define MAKERARM_SCARA
#if ENABLED(MORGAN_SCARA) || ENABLED(MAKERARM_SCARA) #if ENABLED(MORGAN_SCARA) || ENABLED(MAKERARM_SCARA)
//#define DEBUG_SCARA_KINEMATICS //#define DEBUG_SCARA_KINEMATICS
#define SCARA_FEEDRATE_SCALING // Convert XY feedrate from mm/s to degrees/s on the fly
// If movement is choppy try lowering this value // If movement is choppy try lowering this value
#define SCARA_SEGMENTS_PER_SECOND 200 #define SCARA_SEGMENTS_PER_SECOND 200

33
Marlin/src/gcode/motion/G2_G3.cpp

@ -35,6 +35,10 @@
#include "../../module/scara.h" #include "../../module/scara.h"
#endif #endif
#if ENABLED(SCARA_FEEDRATE_SCALING) && ENABLED(AUTO_BED_LEVELING_BILINEAR)
#include "../../feature/bedlevel/abl/abl.h"
#endif
#if N_ARC_CORRECTION < 1 #if N_ARC_CORRECTION < 1
#undef N_ARC_CORRECTION #undef N_ARC_CORRECTION
#define N_ARC_CORRECTION 1 #define N_ARC_CORRECTION 1
@ -137,6 +141,14 @@ void plan_arc(
millis_t next_idle_ms = millis() + 200UL; millis_t next_idle_ms = millis() + 200UL;
#if ENABLED(SCARA_FEEDRATE_SCALING)
// SCARA needs to scale the feed rate from mm/s to degrees/s
const float inv_segment_length = 1.0 / (MM_PER_ARC_SEGMENT),
inverse_secs = inv_segment_length * fr_mm_s;
float oldA = planner.position_float[A_AXIS],
oldB = planner.position_float[B_AXIS];
#endif
#if N_ARC_CORRECTION > 1 #if N_ARC_CORRECTION > 1
int8_t arc_recalc_count = N_ARC_CORRECTION; int8_t arc_recalc_count = N_ARC_CORRECTION;
#endif #endif
@ -180,11 +192,28 @@ void plan_arc(
clamp_to_software_endstops(raw); clamp_to_software_endstops(raw);
planner.buffer_line_kinematic(raw, fr_mm_s, active_extruder); #if ENABLED(SCARA_FEEDRATE_SCALING)
// For SCARA scale the feed rate from mm/s to degrees/s
// i.e., Complete the angular vector in the given time.
inverse_kinematics(raw);
ADJUST_DELTA(raw);
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], raw[Z_AXIS], raw[E_AXIS], HYPOT(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB) * inverse_secs, active_extruder);
oldA = delta[A_AXIS]; oldB = delta[B_AXIS];
#else
planner.buffer_line_kinematic(raw, fr_mm_s, active_extruder);
#endif
} }
// Ensure last segment arrives at target location. // Ensure last segment arrives at target location.
planner.buffer_line_kinematic(cart, fr_mm_s, active_extruder); #if ENABLED(SCARA_FEEDRATE_SCALING)
inverse_kinematics(cart);
ADJUST_DELTA(cart);
const float diff2 = HYPOT2(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB);
if (diff2)
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], cart[Z_AXIS], cart[E_AXIS], SQRT(diff2) * inverse_secs, active_extruder);
#else
planner.buffer_line_kinematic(cart, fr_mm_s, active_extruder);
#endif
// As far as the parser is concerned, the position is now == target. In reality the // As far as the parser is concerned, the position is now == target. In reality the
// motion control system might still be processing the action and the real tool position // motion control system might still be processing the action and the real tool position

108
Marlin/src/module/motion.cpp

@ -498,20 +498,18 @@ float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },
#if !UBL_SEGMENTED #if !UBL_SEGMENTED
#if IS_KINEMATIC #if IS_KINEMATIC
#if ENABLED(AUTO_BED_LEVELING_BILINEAR) #if IS_SCARA
#if ENABLED(DELTA) /**
#define ADJUST_DELTA(V) \ * Before raising this value, use M665 S[seg_per_sec] to decrease
if (planner.leveling_active) { \ * the number of segments-per-second. Default is 200. Some deltas
const float zadj = bilinear_z_offset(V); \ * do better with 160 or lower. It would be good to know how many
delta[A_AXIS] += zadj; \ * segments-per-second are actually possible for SCARA on AVR.
delta[B_AXIS] += zadj; \ *
delta[C_AXIS] += zadj; \ * Longer segments result in less kinematic overhead
} * but may produce jagged lines. Try 0.5mm, 1.0mm, and 2.0mm
#else * and compare the difference.
#define ADJUST_DELTA(V) if (planner.leveling_active) { delta[Z_AXIS] += bilinear_z_offset(V); } */
#endif #define SCARA_MIN_SEGMENT_LENGTH 0.5
#else
#define ADJUST_DELTA(V) NOOP
#endif #endif
/** /**
@ -566,9 +564,9 @@ float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },
// gives the number of segments // gives the number of segments
uint16_t segments = delta_segments_per_second * seconds; uint16_t segments = delta_segments_per_second * seconds;
// For SCARA minimum segment size is 0.25mm // For SCARA enforce a minimum segment size
#if IS_SCARA #if IS_SCARA
NOMORE(segments, cartesian_mm * 4); NOMORE(segments, cartesian_mm * (1.0 / SCARA_MIN_SEGMENT_LENGTH));
#endif #endif
// At least one segment is required // At least one segment is required
@ -576,7 +574,6 @@ float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },
// The approximate length of each segment // The approximate length of each segment
const float inv_segments = 1.0 / float(segments), const float inv_segments = 1.0 / float(segments),
cartesian_segment_mm = cartesian_mm * inv_segments,
segment_distance[XYZE] = { segment_distance[XYZE] = {
xdiff * inv_segments, xdiff * inv_segments,
ydiff * inv_segments, ydiff * inv_segments,
@ -584,16 +581,47 @@ float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },
ediff * inv_segments ediff * inv_segments
}; };
// SERIAL_ECHOPAIR("mm=", cartesian_mm); #if DISABLED(SCARA_FEEDRATE_SCALING)
// SERIAL_ECHOPAIR(" seconds=", seconds); const float cartesian_segment_mm = cartesian_mm * inv_segments;
// SERIAL_ECHOLNPAIR(" segments=", segments); #endif
// SERIAL_ECHOLNPAIR(" segment_mm=", cartesian_segment_mm);
// Get the current position as starting point /*
SERIAL_ECHOPAIR("mm=", cartesian_mm);
SERIAL_ECHOPAIR(" seconds=", seconds);
SERIAL_ECHOPAIR(" segments=", segments);
#if DISABLED(SCARA_FEEDRATE_SCALING)
SERIAL_ECHOLNPAIR(" segment_mm=", cartesian_segment_mm);
#else
SERIAL_EOL();
#endif
//*/
#if ENABLED(SCARA_FEEDRATE_SCALING)
// SCARA needs to scale the feed rate from mm/s to degrees/s
// i.e., Complete the angular vector in the given time.
const float segment_length = cartesian_mm * inv_segments,
inv_segment_length = 1.0 / segment_length, // 1/mm/segs
inverse_secs = inv_segment_length * _feedrate_mm_s;
float oldA = planner.position_float[A_AXIS],
oldB = planner.position_float[B_AXIS];
/*
SERIAL_ECHOPGM("Scaled kinematic move: ");
SERIAL_ECHOPAIR(" segment_length (inv)=", segment_length);
SERIAL_ECHOPAIR(" (", inv_segment_length);
SERIAL_ECHOPAIR(") _feedrate_mm_s=", _feedrate_mm_s);
SERIAL_ECHOPAIR(" inverse_secs=", inverse_secs);
SERIAL_ECHOPAIR(" oldA=", oldA);
SERIAL_ECHOLNPAIR(" oldB=", oldB);
safe_delay(5);
//*/
#endif
// Get the current position as starting point
float raw[XYZE]; float raw[XYZE];
COPY(raw, current_position); COPY(raw, current_position);
// Calculate and execute the segments // Calculate and execute the segments
while (--segments) { while (--segments) {
@ -613,11 +641,41 @@ float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },
#endif #endif
ADJUST_DELTA(raw); // Adjust Z if bed leveling is enabled ADJUST_DELTA(raw); // Adjust Z if bed leveling is enabled
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], _feedrate_mm_s, active_extruder, cartesian_segment_mm); #if ENABLED(SCARA_FEEDRATE_SCALING)
// For SCARA scale the feed rate from mm/s to degrees/s
// i.e., Complete the angular vector in the given time.
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], raw[Z_AXIS], raw[E_AXIS], HYPOT(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB) * inverse_secs, active_extruder);
/*
SERIAL_ECHO(segments);
SERIAL_ECHOPAIR(": X=", raw[X_AXIS]); SERIAL_ECHOPAIR(" Y=", raw[Y_AXIS]);
SERIAL_ECHOPAIR(" A=", delta[A_AXIS]); SERIAL_ECHOPAIR(" B=", delta[B_AXIS]);
SERIAL_ECHOLNPAIR(" F", HYPOT(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB) * inverse_secs * 60);
safe_delay(5);
//*/
oldA = delta[A_AXIS]; oldB = delta[B_AXIS];
#else
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], _feedrate_mm_s, active_extruder, cartesian_segment_mm);
#endif
} }
// Ensure last segment arrives at target location. // Ensure last segment arrives at target location.
planner.buffer_line_kinematic(rtarget, _feedrate_mm_s, active_extruder, cartesian_segment_mm); #if ENABLED(SCARA_FEEDRATE_SCALING)
inverse_kinematics(rtarget);
ADJUST_DELTA(rtarget);
const float diff2 = HYPOT2(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB);
if (diff2) {
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], rtarget[Z_AXIS], rtarget[E_AXIS], SQRT(diff2) * inverse_secs, active_extruder);
/*
SERIAL_ECHOPAIR("final: A=", delta[A_AXIS]); SERIAL_ECHOPAIR(" B=", delta[B_AXIS]);
SERIAL_ECHOPAIR(" adiff=", delta[A_AXIS] - oldA); SERIAL_ECHOPAIR(" bdiff=", delta[B_AXIS] - oldB);
SERIAL_ECHOLNPAIR(" F", (SQRT(diff2) * inverse_secs) * 60);
SERIAL_EOL();
safe_delay(5);
//*/
}
#else
planner.buffer_line_kinematic(rtarget, _feedrate_mm_s, active_extruder, cartesian_segment_mm);
#endif
return false; // caller will update current_position return false; // caller will update current_position
} }

16
Marlin/src/module/motion.h

@ -340,4 +340,20 @@ void homeaxis(const AxisEnum axis);
void set_home_offset(const AxisEnum axis, const float v); void set_home_offset(const AxisEnum axis, const float v);
#endif #endif
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
#if ENABLED(DELTA)
#define ADJUST_DELTA(V) \
if (planner.leveling_active) { \
const float zadj = bilinear_z_offset(V); \
delta[A_AXIS] += zadj; \
delta[B_AXIS] += zadj; \
delta[C_AXIS] += zadj; \
}
#else
#define ADJUST_DELTA(V) if (planner.leveling_active) { delta[Z_AXIS] += bilinear_z_offset(V); }
#endif
#else
#define ADJUST_DELTA(V) NOOP
#endif
#endif // MOTION_H #endif // MOTION_H

41
Marlin/src/module/planner.cpp

@ -185,8 +185,11 @@ float Planner::previous_speed[NUM_AXIS],
#endif #endif
#if ENABLED(LIN_ADVANCE) #if ENABLED(LIN_ADVANCE)
float Planner::extruder_advance_K, // Initialized by settings.load() float Planner::extruder_advance_K; // Initialized by settings.load()
Planner::position_float[XYZE]; // Needed for accurate maths. Steps cannot be used! #endif
#if HAS_POSITION_FLOAT
float Planner::position_float[XYZE]; // Needed for accurate maths. Steps cannot be used!
#endif #endif
#if ENABLED(ULTRA_LCD) #if ENABLED(ULTRA_LCD)
@ -202,7 +205,7 @@ Planner::Planner() { init(); }
void Planner::init() { void Planner::init() {
block_buffer_head = block_buffer_tail = 0; block_buffer_head = block_buffer_tail = 0;
ZERO(position); ZERO(position);
#if ENABLED(LIN_ADVANCE) #if HAS_POSITION_FLOAT
ZERO(position_float); ZERO(position_float);
#endif #endif
ZERO(previous_speed); ZERO(previous_speed);
@ -745,7 +748,7 @@ void Planner::check_axes_activity() {
* extruder - target extruder * extruder - target extruder
*/ */
void Planner::_buffer_steps(const int32_t (&target)[XYZE] void Planner::_buffer_steps(const int32_t (&target)[XYZE]
#if ENABLED(LIN_ADVANCE) #if HAS_POSITION_FLOAT
, const float (&target_float)[XYZE] , const float (&target_float)[XYZE]
#endif #endif
, float fr_mm_s, const uint8_t extruder, const float &millimeters/*=0.0*/ , float fr_mm_s, const uint8_t extruder, const float &millimeters/*=0.0*/
@ -775,7 +778,7 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE]
#if ENABLED(PREVENT_COLD_EXTRUSION) #if ENABLED(PREVENT_COLD_EXTRUSION)
if (thermalManager.tooColdToExtrude(extruder)) { if (thermalManager.tooColdToExtrude(extruder)) {
position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
#if ENABLED(LIN_ADVANCE) #if HAS_POSITION_FLOAT
position_float[E_AXIS] = target_float[E_AXIS]; position_float[E_AXIS] = target_float[E_AXIS];
#endif #endif
de = 0; // no difference de = 0; // no difference
@ -786,7 +789,7 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE]
#if ENABLED(PREVENT_LENGTHY_EXTRUDE) #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
if (labs(de * e_factor[extruder]) > (int32_t)axis_steps_per_mm[E_AXIS_N] * (EXTRUDE_MAXLENGTH)) { // It's not important to get max. extrusion length in a precision < 1mm, so save some cycles and cast to int if (labs(de * e_factor[extruder]) > (int32_t)axis_steps_per_mm[E_AXIS_N] * (EXTRUDE_MAXLENGTH)) { // It's not important to get max. extrusion length in a precision < 1mm, so save some cycles and cast to int
position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
#if ENABLED(LIN_ADVANCE) #if HAS_POSITION_FLOAT
position_float[E_AXIS] = target_float[E_AXIS]; position_float[E_AXIS] = target_float[E_AXIS];
#endif #endif
de = 0; // no difference de = 0; // no difference
@ -857,6 +860,10 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE]
block->steps[X_AXIS] = labs(da); block->steps[X_AXIS] = labs(da);
block->steps[B_AXIS] = labs(db + dc); block->steps[B_AXIS] = labs(db + dc);
block->steps[C_AXIS] = labs(db - dc); block->steps[C_AXIS] = labs(db - dc);
#elif IS_SCARA
block->steps[A_AXIS] = labs(da);
block->steps[B_AXIS] = labs(db);
block->steps[Z_AXIS] = labs(dc);
#else #else
// default non-h-bot planning // default non-h-bot planning
block->steps[A_AXIS] = labs(da); block->steps[A_AXIS] = labs(da);
@ -892,7 +899,7 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE]
powerManager.power_on(); powerManager.power_on();
#endif #endif
//enable active axes // Enable active axes
#if CORE_IS_XY #if CORE_IS_XY
if (block->steps[A_AXIS] || block->steps[B_AXIS]) { if (block->steps[A_AXIS] || block->steps[B_AXIS]) {
enable_X(); enable_X();
@ -1463,7 +1470,7 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE]
// Update the position (only when a move was queued) // Update the position (only when a move was queued)
static_assert(COUNT(target) > 1, "Parameter to _buffer_steps must be (&target)[XYZE]!"); static_assert(COUNT(target) > 1, "Parameter to _buffer_steps must be (&target)[XYZE]!");
COPY(position, target); COPY(position, target);
#if ENABLED(LIN_ADVANCE) #if HAS_POSITION_FLOAT
COPY(position_float, target_float); COPY(position_float, target_float);
#endif #endif
@ -1501,14 +1508,14 @@ void Planner::buffer_segment(const float &a, const float &b, const float &c, con
LROUND(e * axis_steps_per_mm[E_AXIS_N]) LROUND(e * axis_steps_per_mm[E_AXIS_N])
}; };
#if ENABLED(LIN_ADVANCE) #if HAS_POSITION_FLOAT
const float target_float[XYZE] = { a, b, c, e }; const float target_float[XYZE] = { a, b, c, e };
#endif #endif
// DRYRUN prevents E moves from taking place // DRYRUN prevents E moves from taking place
if (DEBUGGING(DRYRUN)) { if (DEBUGGING(DRYRUN)) {
position[E_AXIS] = target[E_AXIS]; position[E_AXIS] = target[E_AXIS];
#if ENABLED(LIN_ADVANCE) #if HAS_POSITION_FLOAT
position_float[E_AXIS] = e; position_float[E_AXIS] = e;
#endif #endif
} }
@ -1547,7 +1554,7 @@ void Planner::buffer_segment(const float &a, const float &b, const float &c, con
#define _BETWEEN(A) (position[A##_AXIS] + target[A##_AXIS]) >> 1 #define _BETWEEN(A) (position[A##_AXIS] + target[A##_AXIS]) >> 1
const int32_t between[ABCE] = { _BETWEEN(A), _BETWEEN(B), _BETWEEN(C), _BETWEEN(E) }; const int32_t between[ABCE] = { _BETWEEN(A), _BETWEEN(B), _BETWEEN(C), _BETWEEN(E) };
#if ENABLED(LIN_ADVANCE) #if HAS_POSITION_FLOAT
#define _BETWEEN_F(A) (position_float[A##_AXIS] + target_float[A##_AXIS]) * 0.5 #define _BETWEEN_F(A) (position_float[A##_AXIS] + target_float[A##_AXIS]) * 0.5
const float between_float[ABCE] = { _BETWEEN_F(A), _BETWEEN_F(B), _BETWEEN_F(C), _BETWEEN_F(E) }; const float between_float[ABCE] = { _BETWEEN_F(A), _BETWEEN_F(B), _BETWEEN_F(C), _BETWEEN_F(E) };
#endif #endif
@ -1555,7 +1562,7 @@ void Planner::buffer_segment(const float &a, const float &b, const float &c, con
DISABLE_STEPPER_DRIVER_INTERRUPT(); DISABLE_STEPPER_DRIVER_INTERRUPT();
_buffer_steps(between _buffer_steps(between
#if ENABLED(LIN_ADVANCE) #if HAS_POSITION_FLOAT
, between_float , between_float
#endif #endif
, fr_mm_s, extruder, millimeters * 0.5 , fr_mm_s, extruder, millimeters * 0.5
@ -1564,7 +1571,7 @@ void Planner::buffer_segment(const float &a, const float &b, const float &c, con
const uint8_t next = block_buffer_head; const uint8_t next = block_buffer_head;
_buffer_steps(target _buffer_steps(target
#if ENABLED(LIN_ADVANCE) #if HAS_POSITION_FLOAT
, target_float , target_float
#endif #endif
, fr_mm_s, extruder, millimeters * 0.5 , fr_mm_s, extruder, millimeters * 0.5
@ -1575,7 +1582,7 @@ void Planner::buffer_segment(const float &a, const float &b, const float &c, con
} }
else else
_buffer_steps(target _buffer_steps(target
#if ENABLED(LIN_ADVANCE) #if HAS_POSITION_FLOAT
, target_float , target_float
#endif #endif
, fr_mm_s, extruder, millimeters , fr_mm_s, extruder, millimeters
@ -1603,7 +1610,7 @@ void Planner::_set_position_mm(const float &a, const float &b, const float &c, c
nb = position[B_AXIS] = LROUND(b * axis_steps_per_mm[B_AXIS]), nb = position[B_AXIS] = LROUND(b * axis_steps_per_mm[B_AXIS]),
nc = position[C_AXIS] = LROUND(c * axis_steps_per_mm[C_AXIS]), nc = position[C_AXIS] = LROUND(c * axis_steps_per_mm[C_AXIS]),
ne = position[E_AXIS] = LROUND(e * axis_steps_per_mm[_EINDEX]); ne = position[E_AXIS] = LROUND(e * axis_steps_per_mm[_EINDEX]);
#if ENABLED(LIN_ADVANCE) #if HAS_POSITION_FLOAT
position_float[X_AXIS] = a; position_float[X_AXIS] = a;
position_float[Y_AXIS] = b; position_float[Y_AXIS] = b;
position_float[Z_AXIS] = c; position_float[Z_AXIS] = c;
@ -1635,7 +1642,7 @@ void Planner::set_position_mm_kinematic(const float (&cart)[XYZE]) {
void Planner::sync_from_steppers() { void Planner::sync_from_steppers() {
LOOP_XYZE(i) { LOOP_XYZE(i) {
position[i] = stepper.position((AxisEnum)i); position[i] = stepper.position((AxisEnum)i);
#if ENABLED(LIN_ADVANCE) #if HAS_POSITION_FLOAT
position_float[i] = position[i] * steps_to_mm[i position_float[i] = position[i] * steps_to_mm[i
#if ENABLED(DISTINCT_E_FACTORS) #if ENABLED(DISTINCT_E_FACTORS)
+ (i == E_AXIS ? active_extruder : 0) + (i == E_AXIS ? active_extruder : 0)
@ -1656,7 +1663,7 @@ void Planner::set_position_mm(const AxisEnum axis, const float &v) {
const uint8_t axis_index = axis; const uint8_t axis_index = axis;
#endif #endif
position[axis] = LROUND(v * axis_steps_per_mm[axis_index]); position[axis] = LROUND(v * axis_steps_per_mm[axis_index]);
#if ENABLED(LIN_ADVANCE) #if HAS_POSITION_FLOAT
position_float[axis] = v; position_float[axis] = v;
#endif #endif
stepper.set_position(axis, v); stepper.set_position(axis, v);

11
Marlin/src/module/planner.h

@ -130,6 +130,8 @@ typedef struct {
} block_t; } block_t;
#define HAS_POSITION_FLOAT (ENABLED(LIN_ADVANCE) || ENABLED(SCARA_FEEDRATE_SCALING))
#define BLOCK_MOD(n) ((n)&(BLOCK_BUFFER_SIZE-1)) #define BLOCK_MOD(n) ((n)&(BLOCK_BUFFER_SIZE-1))
class Planner { class Planner {
@ -194,8 +196,11 @@ class Planner {
#endif #endif
#if ENABLED(LIN_ADVANCE) #if ENABLED(LIN_ADVANCE)
static float extruder_advance_K, static float extruder_advance_K;
position_float[XYZE]; #endif
#if HAS_POSITION_FLOAT
static float position_float[XYZE];
#endif #endif
#if ENABLED(SKEW_CORRECTION) #if ENABLED(SKEW_CORRECTION)
@ -417,7 +422,7 @@ class Planner {
* millimeters - the length of the movement, if known * millimeters - the length of the movement, if known
*/ */
static void _buffer_steps(const int32_t (&target)[XYZE] static void _buffer_steps(const int32_t (&target)[XYZE]
#if ENABLED(LIN_ADVANCE) #if HAS_POSITION_FLOAT
, const float (&target_float)[XYZE] , const float (&target_float)[XYZE]
#endif #endif
, float fr_mm_s, const uint8_t extruder, const float &millimeters=0.0 , float fr_mm_s, const uint8_t extruder, const float &millimeters=0.0

Loading…
Cancel
Save