From e08f8eed0581bb91c886ffbf7e1234ef58935501 Mon Sep 17 00:00:00 2001 From: Chris Roadfeldt Date: Mon, 30 Mar 2015 23:51:36 -0500 Subject: [PATCH] Revert 06f767d..cba5692 This rolls back to commit 06f767d608120f09bcd0fd0aee582220cd8657d9. --- Marlin/Marlin.h | 1 + Marlin/Marlin_main.cpp | 871 +++++++----------- Marlin/dogm_lcd_implementation.h | 2 +- Marlin/planner.cpp | 4 +- Marlin/stepper.cpp | 115 +-- Marlin/ultralcd.cpp | 2 +- .../ultralcd_implementation_hitachi_HD44780.h | 16 +- 7 files changed, 410 insertions(+), 601 deletions(-) diff --git a/Marlin/Marlin.h b/Marlin/Marlin.h index 45a94e82e3..46720d9a34 100644 --- a/Marlin/Marlin.h +++ b/Marlin/Marlin.h @@ -229,6 +229,7 @@ void refresh_cmd_timeout(void); extern float homing_feedrate[]; extern bool axis_relative_modes[]; extern int feedmultiply; +extern int extrudemultiply; // Sets extrude multiply factor (in percent) for all extruders extern bool volumetric_enabled; extern int extruder_multiply[EXTRUDERS]; // sets extrude multiply factor (in percent) for each extruder individually extern float filament_size[EXTRUDERS]; // cross-sectional area of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder. diff --git a/Marlin/Marlin_main.cpp b/Marlin/Marlin_main.cpp index 0f04453523..0096206246 100644 --- a/Marlin/Marlin_main.cpp +++ b/Marlin/Marlin_main.cpp @@ -79,7 +79,7 @@ // G4 - Dwell S or P // G10 - retract filament according to settings of M207 // G11 - retract recover filament according to settings of M208 -// G28 - Home one or more axes +// G28 - Home all Axis // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet. // G30 - Single Z Probe, probes bed at current XY location. // G31 - Dock sled (Z_PROBE_SLED only) @@ -210,6 +210,7 @@ int homing_bump_divisor[] = HOMING_BUMP_DIVISOR; bool axis_relative_modes[] = AXIS_RELATIVE_MODES; int feedmultiply = 100; //100->1 200->2 int saved_feedmultiply; +int extrudemultiply = 100; //100->1 200->2 int extruder_multiply[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100); bool volumetric_enabled = false; float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA); @@ -305,7 +306,7 @@ int fanSpeed = 0; #ifdef SCARA float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1 static float delta[3] = { 0, 0, 0 }; -#endif +#endif bool cancel_heatup = false; @@ -476,6 +477,8 @@ bool enquecommand(const char *cmd) return true; } + + void setup_killpin() { #if defined(KILL_PIN) && KILL_PIN > -1 @@ -898,7 +901,7 @@ bool code_seen(char code) { strchr_pointer = strchr(cmdbuffer[bufindr], code); return (strchr_pointer != NULL); //Return True if a character was found } - + #define DEFINE_PGM_READ_ANY(type, reader) \ static inline type pgm_read_any(const type *p) \ { return pgm_read_##reader##_near(p); } @@ -929,7 +932,7 @@ XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR); static float x_home_pos(int extruder) { if (extruder == 0) - return base_home_pos(X_AXIS) + home_offset[X_AXIS]; + return base_home_pos(X_AXIS) + home_offset[X_AXIS]; else // In dual carriage mode the extruder offset provides an override of the // second X-carriage offset when homed - otherwise X2_HOME_POS is used. @@ -958,15 +961,15 @@ static void axis_is_at_home(int axis) { if (axis == X_AXIS) { if (active_extruder != 0) { current_position[X_AXIS] = x_home_pos(active_extruder); - min_pos[X_AXIS] = X2_MIN_POS; - max_pos[X_AXIS] = max(extruder_offset[1][X_AXIS], X2_MAX_POS); + min_pos[X_AXIS] = X2_MIN_POS; + max_pos[X_AXIS] = max(extruder_offset[1][X_AXIS], X2_MAX_POS); return; } else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) { - float xoff = home_offset[X_AXIS]; - current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff; - min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff; - max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[1][X_AXIS], X2_MAX_POS) - duplicate_extruder_x_offset); + current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS]; + min_pos[X_AXIS] = base_min_pos(X_AXIS) + home_offset[X_AXIS]; + max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + home_offset[X_AXIS], + max(extruder_offset[1][X_AXIS], X2_MAX_POS) - duplicate_extruder_x_offset); return; } } @@ -1020,189 +1023,178 @@ static void axis_is_at_home(int axis) { } /** - * Some planner shorthand inline functions + * Shorthand to tell the planner our current position (in mm). */ -inline void line_to_current_position() { - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder); -} -inline void line_to_z(float zPosition) { - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder); -} -inline void line_to_destination() { - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); -} inline void sync_plan_position() { plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); } #ifdef ENABLE_AUTO_BED_LEVELING +#ifdef AUTO_BED_LEVELING_GRID - #ifdef AUTO_BED_LEVELING_GRID - - #ifndef DELTA - - static void set_bed_level_equation_lsq(double *plane_equation_coefficients) { - vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1); - planeNormal.debug("planeNormal"); - plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal); - //bedLevel.debug("bedLevel"); - - //plan_bed_level_matrix.debug("bed level before"); - //vector_3 uncorrected_position = plan_get_position_mm(); - //uncorrected_position.debug("position before"); - - vector_3 corrected_position = plan_get_position(); - //corrected_position.debug("position after"); - current_position[X_AXIS] = corrected_position.x; - current_position[Y_AXIS] = corrected_position.y; - current_position[Z_AXIS] = zprobe_zoffset; // was: corrected_position.z - - sync_plan_position(); - } - - #endif // !DELTA +#ifndef DELTA + static void set_bed_level_equation_lsq(double *plane_equation_coefficients) { + vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1); + planeNormal.debug("planeNormal"); + plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal); + //bedLevel.debug("bedLevel"); + + //plan_bed_level_matrix.debug("bed level before"); + //vector_3 uncorrected_position = plan_get_position_mm(); + //uncorrected_position.debug("position before"); + + vector_3 corrected_position = plan_get_position(); + //corrected_position.debug("position after"); + current_position[X_AXIS] = corrected_position.x; + current_position[Y_AXIS] = corrected_position.y; + current_position[Z_AXIS] = zprobe_zoffset; // was: corrected_position.z - #else // !AUTO_BED_LEVELING_GRID + sync_plan_position(); + } +#endif - static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) { +#else // not AUTO_BED_LEVELING_GRID - plan_bed_level_matrix.set_to_identity(); +static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) { - vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1); - vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2); - vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3); - vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal(); + plan_bed_level_matrix.set_to_identity(); - if (planeNormal.z < 0) { - planeNormal.x = -planeNormal.x; - planeNormal.y = -planeNormal.y; - planeNormal.z = -planeNormal.z; - } + vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1); + vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2); + vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3); + vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal(); - plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal); + if (planeNormal.z < 0) { + planeNormal.x = -planeNormal.x; + planeNormal.y = -planeNormal.y; + planeNormal.z = -planeNormal.z; + } - vector_3 corrected_position = plan_get_position(); - current_position[X_AXIS] = corrected_position.x; - current_position[Y_AXIS] = corrected_position.y; - current_position[Z_AXIS] = zprobe_zoffset; // was: corrected_position.z + plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal); - sync_plan_position(); - } + vector_3 corrected_position = plan_get_position(); + current_position[X_AXIS] = corrected_position.x; + current_position[Y_AXIS] = corrected_position.y; + current_position[Z_AXIS] = zprobe_zoffset; // was: corrected_position.z - #endif // !AUTO_BED_LEVELING_GRID + sync_plan_position(); +} - static void run_z_probe() { +#endif // AUTO_BED_LEVELING_GRID - #ifdef DELTA +static void run_z_probe() { + #ifdef DELTA - float start_z = current_position[Z_AXIS]; - long start_steps = st_get_position(Z_AXIS); + float start_z = current_position[Z_AXIS]; + long start_steps = st_get_position(Z_AXIS); + + // move down slowly until you find the bed + feedrate = homing_feedrate[Z_AXIS] / 4; + destination[Z_AXIS] = -10; + prepare_move_raw(); + st_synchronize(); + endstops_hit_on_purpose(); - // move down slowly until you find the bed - feedrate = homing_feedrate[Z_AXIS] / 4; - destination[Z_AXIS] = -10; - prepare_move_raw(); - st_synchronize(); - endstops_hit_on_purpose(); - - // we have to let the planner know where we are right now as it is not where we said to go. - long stop_steps = st_get_position(Z_AXIS); - float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS]; - current_position[Z_AXIS] = mm; - calculate_delta(current_position); - plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]); - - #else // !DELTA + // we have to let the planner know where we are right now as it is not where we said to go. + long stop_steps = st_get_position(Z_AXIS); + float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS]; + current_position[Z_AXIS] = mm; + calculate_delta(current_position); + plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]); + + #else - plan_bed_level_matrix.set_to_identity(); - feedrate = homing_feedrate[Z_AXIS]; + plan_bed_level_matrix.set_to_identity(); + feedrate = homing_feedrate[Z_AXIS]; - // move down until you find the bed - float zPosition = -10; - line_to_z(zPosition); - st_synchronize(); + // move down until you find the bed + float zPosition = -10; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder); + st_synchronize(); - // we have to let the planner know where we are right now as it is not where we said to go. - zPosition = st_get_position_mm(Z_AXIS); - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]); + // we have to let the planner know where we are right now as it is not where we said to go. + zPosition = st_get_position_mm(Z_AXIS); + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]); - // move up the retract distance - zPosition += home_retract_mm(Z_AXIS); - line_to_z(zPosition); - st_synchronize(); - endstops_hit_on_purpose(); + // move up the retract distance + zPosition += home_retract_mm(Z_AXIS); + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder); + st_synchronize(); + endstops_hit_on_purpose(); - // move back down slowly to find bed - if (homing_bump_divisor[Z_AXIS] >= 1) - feedrate = homing_feedrate[Z_AXIS] / homing_bump_divisor[Z_AXIS]; - else { - feedrate = homing_feedrate[Z_AXIS] / 10; - SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1"); - } + // move back down slowly to find bed + if (homing_bump_divisor[Z_AXIS] >= 1) { + feedrate = homing_feedrate[Z_AXIS]/homing_bump_divisor[Z_AXIS]; + } + else { + feedrate = homing_feedrate[Z_AXIS]/10; + SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1"); + } - zPosition -= home_retract_mm(Z_AXIS) * 2; - line_to_z(zPosition); - st_synchronize(); - endstops_hit_on_purpose(); + zPosition -= home_retract_mm(Z_AXIS) * 2; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder); + st_synchronize(); + endstops_hit_on_purpose(); - current_position[Z_AXIS] = st_get_position_mm(Z_AXIS); - // make sure the planner knows where we are as it may be a bit different than we last said to move to - sync_plan_position(); - - #endif // !DELTA - } + current_position[Z_AXIS] = st_get_position_mm(Z_AXIS); + // make sure the planner knows where we are as it may be a bit different than we last said to move to + sync_plan_position(); + + #endif +} - static void do_blocking_move_to(float x, float y, float z) { +static void do_blocking_move_to(float x, float y, float z) { float oldFeedRate = feedrate; - #ifdef DELTA +#ifdef DELTA - feedrate = XY_TRAVEL_SPEED; - - destination[X_AXIS] = x; - destination[Y_AXIS] = y; - destination[Z_AXIS] = z; - prepare_move_raw(); - st_synchronize(); + feedrate = XY_TRAVEL_SPEED; + + destination[X_AXIS] = x; + destination[Y_AXIS] = y; + destination[Z_AXIS] = z; + prepare_move_raw(); + st_synchronize(); - #else +#else - feedrate = homing_feedrate[Z_AXIS]; + feedrate = homing_feedrate[Z_AXIS]; - current_position[Z_AXIS] = z; - line_to_current_position(); - st_synchronize(); + current_position[Z_AXIS] = z; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder); + st_synchronize(); - feedrate = xy_travel_speed; + feedrate = xy_travel_speed; - current_position[X_AXIS] = x; - current_position[Y_AXIS] = y; - line_to_current_position(); - st_synchronize(); + current_position[X_AXIS] = x; + current_position[Y_AXIS] = y; + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder); + st_synchronize(); - #endif +#endif feedrate = oldFeedRate; - } +} - static void setup_for_endstop_move() { +static void setup_for_endstop_move() { saved_feedrate = feedrate; saved_feedmultiply = feedmultiply; feedmultiply = 100; previous_millis_cmd = millis(); + enable_endstops(true); - } +} + +static void clean_up_after_endstop_move() { +#ifdef ENDSTOPS_ONLY_FOR_HOMING + enable_endstops(false); +#endif - static void clean_up_after_endstop_move() { - #ifdef ENDSTOPS_ONLY_FOR_HOMING - enable_endstops(false); - #endif feedrate = saved_feedrate; feedmultiply = saved_feedmultiply; previous_millis_cmd = millis(); - } +} -<<<<<<< HEAD static void engage_z_probe() { // Engage Z Servo endstop if enabled #ifdef SERVO_ENDSTOPS @@ -1250,59 +1242,13 @@ static void engage_z_probe() { SERIAL_ERROR_START; SERIAL_ERRORLNPGM("Z-Probe failed to engage!"); LCD_ALERTMESSAGEPGM("Err: ZPROBE"); -======= - static void engage_z_probe() { - - #ifdef SERVO_ENDSTOPS - - // Engage Z Servo endstop if enabled - if (servo_endstops[Z_AXIS] >= 0) { - #if SERVO_LEVELING - servos[servo_endstops[Z_AXIS]].attach(0); - #endif - servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]); - #if SERVO_LEVELING - delay(PROBE_SERVO_DEACTIVATION_DELAY); - servos[servo_endstops[Z_AXIS]].detach(); - #endif - } - - #elif defined(Z_PROBE_ALLEN_KEY) - - feedrate = homing_feedrate[X_AXIS]; - - // Move to the start position to initiate deployment - destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X; - destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y; - destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z; - prepare_move_raw(); - - // Home X to touch the belt - feedrate = homing_feedrate[X_AXIS]/10; - destination[X_AXIS] = 0; - prepare_move_raw(); - - // Home Y for safety - feedrate = homing_feedrate[X_AXIS]/2; - destination[Y_AXIS] = 0; - prepare_move_raw(); - - st_synchronize(); - - bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING); - if (z_min_endstop) { - if (!Stopped) { - SERIAL_ERROR_START; - SERIAL_ERRORLNPGM("Z-Probe failed to engage!"); - LCD_ALERTMESSAGEPGM("Err: ZPROBE"); ->>>>>>> MarlinFirmware/Development } Stop(); - } + } + #endif - #endif // Z_PROBE_ALLEN_KEY +} -<<<<<<< HEAD static void retract_z_probe() { // Retract Z Servo endstop if enabled #ifdef SERVO_ENDSTOPS @@ -1365,216 +1311,126 @@ static void retract_z_probe() { SERIAL_ERROR_START; SERIAL_ERRORLNPGM("Z-Probe failed to retract!"); LCD_ALERTMESSAGEPGM("Err: ZPROBE"); -======= - } - - static void retract_z_probe(const float z_after=Z_RAISE_AFTER_PROBING) { - - #ifdef SERVO_ENDSTOPS - - // Retract Z Servo endstop if enabled - if (servo_endstops[Z_AXIS] >= 0) { - - if (z_after > 0) { - do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_after); - st_synchronize(); ->>>>>>> MarlinFirmware/Development - } - - #if SERVO_LEVELING - servos[servo_endstops[Z_AXIS]].attach(0); - #endif - - servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]); - - #if SERVO_LEVELING - delay(PROBE_SERVO_DEACTIVATION_DELAY); - servos[servo_endstops[Z_AXIS]].detach(); - #endif - } - - #elif defined(Z_PROBE_ALLEN_KEY) - - // Move up for safety - feedrate = homing_feedrate[X_AXIS]; - destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING; - prepare_move_raw(); - - // Move to the start position to initiate retraction - destination[X_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_X; - destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Y; - destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Z; - prepare_move_raw(); - - // Move the nozzle down to push the probe into retracted position - feedrate = homing_feedrate[Z_AXIS]/10; - destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_RETRACT_DEPTH; - prepare_move_raw(); - - // Move up for safety - feedrate = homing_feedrate[Z_AXIS]/2; - destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_RETRACT_DEPTH * 2; - prepare_move_raw(); - - // Home XY for safety - feedrate = homing_feedrate[X_AXIS]/2; - destination[X_AXIS] = 0; - destination[Y_AXIS] = 0; - prepare_move_raw(); - - st_synchronize(); - - bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING); - if (!z_min_endstop) { - if (!Stopped) { - SERIAL_ERROR_START; - SERIAL_ERRORLNPGM("Z-Probe failed to retract!"); - LCD_ALERTMESSAGEPGM("Err: ZPROBE"); } Stop(); - } - - #endif + } + #endif - } +} - enum ProbeAction { - ProbeStay = 0, - ProbeEngage = BIT(0), - ProbeRetract = BIT(1), - ProbeEngageAndRetract = (ProbeEngage | ProbeRetract) - }; - - // Probe bed height at position (x,y), returns the measured z value - static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageAndRetract, int verbose_level=1) { - // move to right place - do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before); - do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]); - - #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY) - if (retract_action & ProbeEngage) engage_z_probe(); - #endif +enum ProbeAction { + ProbeStay = 0, + ProbeEngage = BIT(0), + ProbeRetract = BIT(1), + ProbeEngageAndRetract = (ProbeEngage | ProbeRetract) +}; + +/// Probe bed height at position (x,y), returns the measured z value +static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageAndRetract, int verbose_level=1) { + // move to right place + do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before); + do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]); + + #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY) + if (retract_action & ProbeEngage) engage_z_probe(); + #endif - run_z_probe(); - float measured_z = current_position[Z_AXIS]; + run_z_probe(); + float measured_z = current_position[Z_AXIS]; - #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY) - if (retract_action & ProbeRetract) retract_z_probe(z_before); - #endif + #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY) + if (retract_action & ProbeRetract) retract_z_probe(); + #endif - if (verbose_level > 2) { - SERIAL_PROTOCOLPGM(MSG_BED); - SERIAL_PROTOCOLPGM(" X: "); - SERIAL_PROTOCOL_F(x, 3); - SERIAL_PROTOCOLPGM(" Y: "); - SERIAL_PROTOCOL_F(y, 3); - SERIAL_PROTOCOLPGM(" Z: "); - SERIAL_PROTOCOL_F(measured_z, 3); - SERIAL_EOL; - } - return measured_z; + if (verbose_level > 2) { + SERIAL_PROTOCOLPGM(MSG_BED); + SERIAL_PROTOCOLPGM(" X: "); + SERIAL_PROTOCOL_F(x, 3); + SERIAL_PROTOCOLPGM(" Y: "); + SERIAL_PROTOCOL_F(y, 3); + SERIAL_PROTOCOLPGM(" Z: "); + SERIAL_PROTOCOL_F(measured_z, 3); + SERIAL_EOL; } + return measured_z; +} - #ifdef DELTA - - /** - * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING - */ +#ifdef DELTA +static void extrapolate_one_point(int x, int y, int xdir, int ydir) { + if (bed_level[x][y] != 0.0) { + return; // Don't overwrite good values. + } + float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right. + float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back. + float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal. + float median = c; // Median is robust (ignores outliers). + if (a < b) { + if (b < c) median = b; + if (c < a) median = a; + } else { // b <= a + if (c < b) median = b; + if (a < c) median = a; + } + bed_level[x][y] = median; +} - static void extrapolate_one_point(int x, int y, int xdir, int ydir) { - if (bed_level[x][y] != 0.0) { - return; // Don't overwrite good values. - } - float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right. - float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back. - float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal. - float median = c; // Median is robust (ignores outliers). - if (a < b) { - if (b < c) median = b; - if (c < a) median = a; - } else { // b <= a - if (c < b) median = b; - if (a < c) median = a; - } - bed_level[x][y] = median; +// Fill in the unprobed points (corners of circular print surface) +// using linear extrapolation, away from the center. +static void extrapolate_unprobed_bed_level() { + int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2; + for (int y = 0; y <= half; y++) { + for (int x = 0; x <= half; x++) { + if (x + y < 3) continue; + extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0); + extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0); + extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0); + extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0); } + } +} - // Fill in the unprobed points (corners of circular print surface) - // using linear extrapolation, away from the center. - static void extrapolate_unprobed_bed_level() { - int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2; - for (int y = 0; y <= half; y++) { - for (int x = 0; x <= half; x++) { - if (x + y < 3) continue; - extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0); - extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0); - extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0); - extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0); - } - } - } - - // Print calibration results for plotting or manual frame adjustment. - static void print_bed_level() { - for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) { - for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) { - SERIAL_PROTOCOL_F(bed_level[x][y], 2); - SERIAL_PROTOCOLPGM(" "); - } - SERIAL_ECHOLN(""); - } +// Print calibration results for plotting or manual frame adjustment. +static void print_bed_level() { + for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) { + for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) { + SERIAL_PROTOCOL_F(bed_level[x][y], 2); + SERIAL_PROTOCOLPGM(" "); } + SERIAL_ECHOLN(""); + } +} - // Reset calibration results to zero. - void reset_bed_level() { - for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) { - for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) { - bed_level[x][y] = 0.0; - } - } +// Reset calibration results to zero. +void reset_bed_level() { + for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) { + for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) { + bed_level[x][y] = 0.0; } + } +} - #endif // DELTA +#endif // DELTA #endif // ENABLE_AUTO_BED_LEVELING static void homeaxis(int axis) { - #define HOMEAXIS_DO(LETTER) \ - ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1)) - - if (axis == X_AXIS ? HOMEAXIS_DO(X) : - axis == Y_AXIS ? HOMEAXIS_DO(Y) : - axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) { - - int axis_home_dir; - - #ifdef DUAL_X_CARRIAGE - if (axis == X_AXIS) axis_home_dir = x_home_dir(active_extruder); - #else - axis_home_dir = home_dir(axis); - #endif +#define HOMEAXIS_DO(LETTER) \ + ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1)) + + if (axis==X_AXIS ? HOMEAXIS_DO(X) : + axis==Y_AXIS ? HOMEAXIS_DO(Y) : + axis==Z_AXIS ? HOMEAXIS_DO(Z) : + 0) { + int axis_home_dir = home_dir(axis); +#ifdef DUAL_X_CARRIAGE + if (axis == X_AXIS) + axis_home_dir = x_home_dir(active_extruder); +#endif current_position[axis] = 0; sync_plan_position(); - #ifndef Z_PROBE_SLED - // Engage Servo endstop if enabled - #ifdef SERVO_ENDSTOPS - #if SERVO_LEVELING - if (axis == Z_AXIS) { - engage_z_probe(); - } - else - #endif // SERVO_LEVELING - - if (servo_endstops[axis] > -1) - servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]); - #endif // SERVO_ENDSTOPS - - #endif // Z_PROBE_SLED - -<<<<<<< HEAD #ifndef Z_PROBE_SLED // Engage Servo endstop if enabled and we are not using Z_PROBE_AND_ENDSTOP unless we are using Z_SAFE_HOMING #ifdef SERVO_ENDSTOPS && (defined (Z_SAFE_HOMING) || ! defined (Z_PROBE_AND_ENDSTOP)) @@ -1589,33 +1445,33 @@ static void homeaxis(int axis) { } #endif #endif // Z_PROBE_SLED -======= ->>>>>>> MarlinFirmware/Development #ifdef Z_DUAL_ENDSTOPS - if (axis == Z_AXIS) In_Homing_Process(true); + if (axis==Z_AXIS) In_Homing_Process(true); #endif - destination[axis] = 1.5 * max_length(axis) * axis_home_dir; feedrate = homing_feedrate[axis]; - line_to_destination(); + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); st_synchronize(); current_position[axis] = 0; sync_plan_position(); destination[axis] = -home_retract_mm(axis) * axis_home_dir; - line_to_destination(); + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); st_synchronize(); - destination[axis] = 2 * home_retract_mm(axis) * axis_home_dir; + destination[axis] = 2*home_retract_mm(axis) * axis_home_dir; if (homing_bump_divisor[axis] >= 1) - feedrate = homing_feedrate[axis] / homing_bump_divisor[axis]; - else { - feedrate = homing_feedrate[axis] / 10; - SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1"); + { + feedrate = homing_feedrate[axis]/homing_bump_divisor[axis]; + } + else + { + feedrate = homing_feedrate[axis]/10; + SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1"); } - line_to_destination(); + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); st_synchronize(); #ifdef Z_DUAL_ENDSTOPS if (axis==Z_AXIS) @@ -1630,7 +1486,7 @@ static void homeaxis(int axis) { destination[axis] = fabs(z_endstop_adj); if (z_endstop_adj < 0) Lock_z_motor(true); else Lock_z2_motor(true); } - line_to_destination(); + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); st_synchronize(); Lock_z_motor(false); Lock_z2_motor(false); @@ -1643,7 +1499,7 @@ static void homeaxis(int axis) { if (endstop_adj[axis] * axis_home_dir < 0) { sync_plan_position(); destination[axis] = endstop_adj[axis]; - line_to_destination(); + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); st_synchronize(); } #endif @@ -1688,7 +1544,7 @@ void refresh_cmd_timeout(void) } plan_set_e_position(current_position[E_AXIS]); float oldFeedrate = feedrate; - feedrate = retract_feedrate * 60; + feedrate=retract_feedrate*60; retracted[active_extruder]=true; prepare_move(); if(retract_zlift > 0.01) { @@ -1724,8 +1580,8 @@ void refresh_cmd_timeout(void) } plan_set_e_position(current_position[E_AXIS]); float oldFeedrate = feedrate; - feedrate = retract_recover_feedrate * 60; - retracted[active_extruder] = false; + feedrate=retract_recover_feedrate*60; + retracted[active_extruder]=false; prepare_move(); feedrate = oldFeedrate; } @@ -1879,16 +1735,17 @@ inline void gcode_G4() { */ inline void gcode_G28() { #ifdef ENABLE_AUTO_BED_LEVELING - plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data) #ifdef DELTA reset_bed_level(); + #else + plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data) #endif #endif #if defined(MESH_BED_LEVELING) uint8_t mbl_was_active = mbl.active; mbl.active = 0; - #endif + #endif // MESH_BED_LEVELING saved_feedrate = feedrate; saved_feedmultiply = feedmultiply; @@ -1911,7 +1768,7 @@ inline void gcode_G28() { for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH; feedrate = 1.732 * homing_feedrate[X_AXIS]; - line_to_destination(); + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); st_synchronize(); endstops_hit_on_purpose(); @@ -1959,7 +1816,7 @@ inline void gcode_G28() { } else { feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1); } - line_to_destination(); + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); st_synchronize(); axis_is_at_home(X_AXIS); @@ -1967,7 +1824,7 @@ inline void gcode_G28() { sync_plan_position(); destination[X_AXIS] = current_position[X_AXIS]; destination[Y_AXIS] = current_position[Y_AXIS]; - line_to_destination(); + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); feedrate = 0.0; st_synchronize(); endstops_hit_on_purpose(); @@ -2035,7 +1892,7 @@ inline void gcode_G28() { #ifndef Z_PROBE_AND_ENDSTOP destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed feedrate = max_feedrate[Z_AXIS]; - line_to_destination(); + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder); st_synchronize(); #endif #endif @@ -2048,11 +1905,11 @@ inline void gcode_G28() { destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER); destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER); destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed - feedrate = XY_TRAVEL_SPEED; + feedrate = XY_TRAVEL_SPEED / 60; current_position[Z_AXIS] = 0; sync_plan_position(); - line_to_destination(); + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder); st_synchronize(); current_position[X_AXIS] = destination[X_AXIS]; current_position[Y_AXIS] = destination[Y_AXIS]; @@ -2074,7 +1931,7 @@ inline void gcode_G28() { plan_set_position(cpx, cpy, current_position[Z_AXIS], current_position[E_AXIS]); destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed feedrate = max_feedrate[Z_AXIS]; - line_to_destination(); + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder); st_synchronize(); HOMEAXIS(Z); } @@ -2127,7 +1984,7 @@ inline void gcode_G28() { destination[Z_AXIS] = current_position[Z_AXIS]; destination[E_AXIS] = current_position[E_AXIS]; feedrate = homing_feedrate[X_AXIS]; - line_to_destination(); + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder); st_synchronize(); current_position[Z_AXIS] = MESH_HOME_SEARCH_Z; sync_plan_position(); @@ -2141,19 +1998,6 @@ inline void gcode_G28() { endstops_hit_on_purpose(); } -#if defined(MESH_BED_LEVELING) || defined(ENABLE_AUTO_BED_LEVELING) - - // Check for known positions in X and Y - inline bool can_run_bed_leveling() { - if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) return true; - LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN); - SERIAL_ECHO_START; - SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN); - return false; - } - -#endif // MESH_BED_LEVELING || ENABLE_AUTO_BED_LEVELING - #ifdef MESH_BED_LEVELING /** @@ -2168,10 +2012,6 @@ inline void gcode_G28() { * */ inline void gcode_G29() { - - // Prevent leveling without first homing in X and Y - if (!can_run_bed_leveling()) return; - static int probe_point = -1; int state = 0; if (code_seen('S') || code_seen('s')) { @@ -2288,8 +2128,13 @@ inline void gcode_G28() { */ inline void gcode_G29() { - // Prevent leveling without first homing in X and Y - if (!can_run_bed_leveling()) return; + // Prevent user from running a G29 without first homing in X and Y + if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) { + LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN); + SERIAL_ECHO_START; + SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN); + return; + } int verbose_level = 1; @@ -2371,15 +2216,16 @@ inline void gcode_G28() { st_synchronize(); - if (!dryrun) { - // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong - plan_bed_level_matrix.set_to_identity(); - + if (!dryrun) + { #ifdef DELTA reset_bed_level(); #else //!DELTA + + // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly //vector_3 corrected_position = plan_get_position_mm(); //corrected_position.debug("position before G29"); + plan_bed_level_matrix.set_to_identity(); vector_3 uncorrected_position = plan_get_position(); //uncorrected_position.debug("position during G29"); current_position[X_AXIS] = uncorrected_position.x; @@ -2387,7 +2233,7 @@ inline void gcode_G28() { current_position[Z_AXIS] = uncorrected_position.z; sync_plan_position(); - #endif // !DELTA + #endif } setup_for_endstop_move(); @@ -2448,12 +2294,13 @@ inline void gcode_G28() { // raise extruder float measured_z, - z_before = Z_RAISE_BETWEEN_PROBINGS + (probePointCounter ? current_position[Z_AXIS] : 0); + z_before = probePointCounter == 0 ? Z_RAISE_BEFORE_PROBING : current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS; #ifdef DELTA // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe); - if (distance_from_center > DELTA_PROBABLE_RADIUS) continue; + if (distance_from_center > DELTA_PROBABLE_RADIUS) + continue; #endif //DELTA // Enhanced G29 - Do not retract servo between probes @@ -2481,11 +2328,6 @@ inline void gcode_G28() { #endif probePointCounter++; - - manage_heater(); - manage_inactivity(); - lcd_update(); - } //xProbe } //yProbe @@ -2572,14 +2414,16 @@ inline void gcode_G28() { if (verbose_level > 0) plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:"); - if (!dryrun) { - // Correct the Z height difference from z-probe position and hotend tip position. - // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend. - // When the bed is uneven, this height must be corrected. - float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER, - y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER, - z_tmp = current_position[Z_AXIS], - real_z = (float)st_get_position(Z_AXIS) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane) + // Correct the Z height difference from z-probe position and hotend tip position. + // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend. + // When the bed is uneven, this height must be corrected. + if (!dryrun) + { + float x_tmp, y_tmp, z_tmp, real_z; + real_z = float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane) + x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER; + y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER; + z_tmp = current_position[Z_AXIS]; apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner. @@ -3947,7 +3791,7 @@ inline void gcode_M221() { extruder_multiply[tmp_extruder] = sval; } else { - extruder_multiply[active_extruder] = sval; + extrudemultiply = sval; } } } @@ -4384,7 +4228,7 @@ inline void gcode_M400() { st_synchronize(); } //SERIAL_PROTOCOLPGM("Filament dia (measured mm):"); //SERIAL_PROTOCOL(filament_width_meas); //SERIAL_PROTOCOLPGM("Extrusion ratio(%):"); - //SERIAL_PROTOCOL(extruder_multiply[active_extruder]); + //SERIAL_PROTOCOL(extrudemultiply); } /** @@ -4857,14 +4701,18 @@ void process_commands() { gcode_G28(); break; - #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING) - case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points. + #if defined(MESH_BED_LEVELING) + case 29: // G29 Handle mesh based leveling gcode_G29(); break; #endif #ifdef ENABLE_AUTO_BED_LEVELING + case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points. + gcode_G29(); + break; + #ifndef Z_PROBE_SLED case 30: // G30 Single Z Probe @@ -5559,72 +5407,69 @@ void prepare_move() #ifdef SCARA //for now same as delta-code - float difference[NUM_AXIS]; - for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i]; - - float cartesian_mm = sqrt( sq(difference[X_AXIS]) + - sq(difference[Y_AXIS]) + - sq(difference[Z_AXIS])); - if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); } - if (cartesian_mm < 0.000001) { return; } - float seconds = 6000 * cartesian_mm / feedrate / feedmultiply; - int steps = max(1, int(scara_segments_per_second * seconds)); - - //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm); - //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds); - //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps); - - for (int s = 1; s <= steps; s++) { - float fraction = float(s) / float(steps); - for(int8_t i = 0; i < NUM_AXIS; i++) { - destination[i] = current_position[i] + difference[i] * fraction; - } - - calculate_delta(destination); - //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]); - //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]); - //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]); - //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]); - //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]); - //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]); - - plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], - destination[E_AXIS], feedrate*feedmultiply/60/100.0, - active_extruder); - } +float difference[NUM_AXIS]; +for (int8_t i=0; i < NUM_AXIS; i++) { + difference[i] = destination[i] - current_position[i]; +} - #endif // SCARA - - #ifdef DELTA +float cartesian_mm = sqrt( sq(difference[X_AXIS]) + + sq(difference[Y_AXIS]) + + sq(difference[Z_AXIS])); +if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); } +if (cartesian_mm < 0.000001) { return; } +float seconds = 6000 * cartesian_mm / feedrate / feedmultiply; +int steps = max(1, int(scara_segments_per_second * seconds)); + //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm); + //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds); + //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps); +for (int s = 1; s <= steps; s++) { + float fraction = float(s) / float(steps); + for(int8_t i=0; i < NUM_AXIS; i++) { + destination[i] = current_position[i] + difference[i] * fraction; + } - float difference[NUM_AXIS]; - for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i]; - - float cartesian_mm = sqrt(sq(difference[X_AXIS]) + - sq(difference[Y_AXIS]) + - sq(difference[Z_AXIS])); - if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]); - if (cartesian_mm < 0.000001) return; - float seconds = 6000 * cartesian_mm / feedrate / feedmultiply; - int steps = max(1, int(delta_segments_per_second * seconds)); - - // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm); - // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds); - // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps); - - for (int s = 1; s <= steps; s++) { - float fraction = float(s) / float(steps); - for (int8_t i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i] + difference[i] * fraction; - calculate_delta(destination); - #ifdef ENABLE_AUTO_BED_LEVELING - adjust_delta(destination); - #endif - plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], - destination[E_AXIS], feedrate*feedmultiply/60/100.0, - active_extruder); + + calculate_delta(destination); + //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]); + //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]); + //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]); + //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]); + //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]); + //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]); + + plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], + destination[E_AXIS], feedrate*feedmultiply/60/100.0, + active_extruder); +} +#endif // SCARA + +#ifdef DELTA + float difference[NUM_AXIS]; + for (int8_t i=0; i < NUM_AXIS; i++) { + difference[i] = destination[i] - current_position[i]; + } + float cartesian_mm = sqrt(sq(difference[X_AXIS]) + + sq(difference[Y_AXIS]) + + sq(difference[Z_AXIS])); + if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); } + if (cartesian_mm < 0.000001) { return; } + float seconds = 6000 * cartesian_mm / feedrate / feedmultiply; + int steps = max(1, int(delta_segments_per_second * seconds)); + // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm); + // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds); + // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps); + for (int s = 1; s <= steps; s++) { + float fraction = float(s) / float(steps); + for(int8_t i=0; i < NUM_AXIS; i++) { + destination[i] = current_position[i] + difference[i] * fraction; } - - #endif // DELTA + calculate_delta(destination); + plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], + destination[E_AXIS], feedrate*feedmultiply/60/100.0, + active_extruder); + } + +#endif // DELTA #ifdef DUAL_X_CARRIAGE if (active_extruder_parked) @@ -5670,13 +5515,13 @@ void prepare_move() #if ! (defined DELTA || defined SCARA) // Do not use feedmultiply for E or Z only moves if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) { - line_to_destination(); + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); } else { #if defined(MESH_BED_LEVELING) - mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder); + mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder); return; #else - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder); + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder); #endif // MESH_BED_LEVELING } #endif // !(DELTA || SCARA) diff --git a/Marlin/dogm_lcd_implementation.h b/Marlin/dogm_lcd_implementation.h index 63e99bd3aa..89cd5e835c 100644 --- a/Marlin/dogm_lcd_implementation.h +++ b/Marlin/dogm_lcd_implementation.h @@ -369,7 +369,7 @@ static void lcd_implementation_status_screen() { lcd_printPGM(PSTR("dia:")); lcd_print(ftostr12ns(filament_width_meas)); lcd_printPGM(PSTR(" factor:")); - lcd_print(itostr3(volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM])); + lcd_print(itostr3(extrudemultiply)); lcd_print('%'); } #endif diff --git a/Marlin/planner.cpp b/Marlin/planner.cpp index d98ef63d4d..786527d0d7 100644 --- a/Marlin/planner.cpp +++ b/Marlin/planner.cpp @@ -545,7 +545,7 @@ float junction_deviation = 0.1; block->steps[Z_AXIS] = labs(dz); block->steps[E_AXIS] = labs(de); block->steps[E_AXIS] *= volumetric_multiplier[active_extruder]; - block->steps[E_AXIS] *= extruder_multiply[active_extruder]; + block->steps[E_AXIS] *= extrudemultiply; block->steps[E_AXIS] /= 100; block->step_event_count = max(block->steps[X_AXIS], max(block->steps[Y_AXIS], max(block->steps[Z_AXIS], block->steps[E_AXIS]))); @@ -679,7 +679,7 @@ float junction_deviation = 0.1; delta_mm[Y_AXIS] = dy / axis_steps_per_unit[Y_AXIS]; #endif delta_mm[Z_AXIS] = dz / axis_steps_per_unit[Z_AXIS]; - delta_mm[E_AXIS] = (de / axis_steps_per_unit[E_AXIS]) * volumetric_multiplier[active_extruder] * extruder_multiply[active_extruder] / 100.0; + delta_mm[E_AXIS] = (de / axis_steps_per_unit[E_AXIS]) * volumetric_multiplier[active_extruder] * extrudemultiply / 100.0; if (block->steps[X_AXIS] <= dropsegments && block->steps[Y_AXIS] <= dropsegments && block->steps[Z_AXIS] <= dropsegments) { block->millimeters = fabs(delta_mm[E_AXIS]); diff --git a/Marlin/stepper.cpp b/Marlin/stepper.cpp index d38474bafd..73c23ae9de 100644 --- a/Marlin/stepper.cpp +++ b/Marlin/stepper.cpp @@ -515,36 +515,31 @@ ISR(TIMER1_COMPA_vect) { } if (TEST(out_bits, Z_AXIS)) { // -direction - Z_APPLY_DIR(INVERT_Z_DIR,0); count_direction[Z_AXIS] = -1; - - if (check_endstops) { - - #if defined(Z_MIN_PIN) && Z_MIN_PIN >= 0 - - #ifdef Z_DUAL_ENDSTOPS - - bool z_min_endstop = READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING, - z2_min_endstop = - #if defined(Z2_MIN_PIN) && Z2_MIN_PIN >= 0 - READ(Z2_MIN_PIN) != Z2_MIN_ENDSTOP_INVERTING - #else - z_min_endstop - #endif - ; - - bool z_min_both = z_min_endstop && old_z_min_endstop, - z2_min_both = z2_min_endstop && old_z2_min_endstop; - if ((z_min_both || z2_min_both) && current_block->steps[Z_AXIS] > 0) { + if (check_endstops) + { + #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1 + #ifndef Z_DUAL_ENDSTOPS + UPDATE_ENDSTOP(z, Z, min, MIN); + #else + bool z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING); + #if defined(Z2_MIN_PIN) && Z2_MIN_PIN > -1 + bool z2_min_endstop=(READ(Z2_MIN_PIN) != Z2_MIN_ENDSTOP_INVERTING); + #else + bool z2_min_endstop=z_min_endstop; + #endif + if(((z_min_endstop && old_z_min_endstop) || (z2_min_endstop && old_z2_min_endstop)) && (current_block->steps[Z_AXIS] > 0)) + { endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; - endstop_z_hit = true; - if (!performing_homing || (performing_homing && z_min_both && z2_min_both)) //if not performing home or if both endstops were trigged during homing... + endstop_z_hit=true; + if (!(performing_homing) || ((performing_homing)&&(z_min_endstop && old_z_min_endstop)&&(z2_min_endstop && old_z2_min_endstop))) //if not performing home or if both endstops were trigged during homing... + { step_events_completed = current_block->step_event_count; + } } old_z_min_endstop = z_min_endstop; old_z2_min_endstop = z2_min_endstop; -<<<<<<< HEAD #endif #endif @@ -561,55 +556,37 @@ ISR(TIMER1_COMPA_vect) { old_z_probe_endstop = z_probe_endstop; #endif } -======= - - #else // !Z_DUAL_ENDSTOPS - - UPDATE_ENDSTOP(z, Z, min, MIN); - - #endif // !Z_DUAL_ENDSTOPS - - #endif // Z_MIN_PIN - - } // check_endstops - ->>>>>>> MarlinFirmware/Development } else { // +direction - Z_APPLY_DIR(!INVERT_Z_DIR,0); count_direction[Z_AXIS] = 1; - if (check_endstops) { - #if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0 - - #ifdef Z_DUAL_ENDSTOPS - - bool z_max_endstop = READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING, - z2_max_endstop = - #if defined(Z2_MAX_PIN) && Z2_MAX_PIN >= 0 - READ(Z2_MAX_PIN) != Z2_MAX_ENDSTOP_INVERTING - #else - z_max_endstop - #endif - ; - - bool z_max_both = z_max_endstop && old_z_max_endstop, - z2_max_both = z2_max_endstop && old_z2_max_endstop; - if ((z_max_both || z2_max_both) && current_block->steps[Z_AXIS] > 0) { + #ifndef Z_DUAL_ENDSTOPS + UPDATE_ENDSTOP(z, Z, max, MAX); + #else + bool z_max_endstop=(READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING); + #if defined(Z2_MAX_PIN) && Z2_MAX_PIN > -1 + bool z2_max_endstop=(READ(Z2_MAX_PIN) != Z2_MAX_ENDSTOP_INVERTING); + #else + bool z2_max_endstop=z_max_endstop; + #endif + if(((z_max_endstop && old_z_max_endstop) || (z2_max_endstop && old_z2_max_endstop)) && (current_block->steps[Z_AXIS] > 0)) + { endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; - endstop_z_hit = true; + endstop_z_hit=true; - // if (z_max_both) SERIAL_ECHOLN("z_max_endstop = true"); - // if (z2_max_both) SERIAL_ECHOLN("z2_max_endstop = true"); +// if (z_max_endstop && old_z_max_endstop) SERIAL_ECHOLN("z_max_endstop = true"); +// if (z2_max_endstop && old_z2_max_endstop) SERIAL_ECHOLN("z2_max_endstop = true"); - if (!performing_homing || (performing_homing && z_max_both && z2_max_both)) //if not performing home or if both endstops were trigged during homing... + + if (!(performing_homing) || ((performing_homing)&&(z_max_endstop && old_z_max_endstop)&&(z2_max_endstop && old_z2_max_endstop))) //if not performing home or if both endstops were trigged during homing... + { step_events_completed = current_block->step_event_count; + } } old_z_max_endstop = z_max_endstop; old_z2_max_endstop = z2_max_endstop; -<<<<<<< HEAD #endif #endif @@ -626,34 +603,20 @@ ISR(TIMER1_COMPA_vect) { #endif } } -======= - - #else // !Z_DUAL_ENDSTOPS - - UPDATE_ENDSTOP(z, Z, max, MAX); - - #endif // !Z_DUAL_ENDSTOPS - - #endif // Z_MAX_PIN - - } // check_endstops - - } // +direction ->>>>>>> MarlinFirmware/Development #ifndef ADVANCE if (TEST(out_bits, E_AXIS)) { // -direction REV_E_DIR(); - count_direction[E_AXIS] = -1; + count_direction[E_AXIS]=-1; } else { // +direction NORM_E_DIR(); - count_direction[E_AXIS] = 1; + count_direction[E_AXIS]=1; } #endif //!ADVANCE // Take multiple steps per interrupt (For high speed moves) - for (int8_t i = 0; i < step_loops; i++) { + for (int8_t i=0; i < step_loops; i++) { #ifndef AT90USB MSerial.checkRx(); // Check for serial chars. #endif diff --git a/Marlin/ultralcd.cpp b/Marlin/ultralcd.cpp index 58a66973f4..c85f8e14df 100644 --- a/Marlin/ultralcd.cpp +++ b/Marlin/ultralcd.cpp @@ -485,7 +485,7 @@ static void lcd_tune_menu() { MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_BED, &target_temperature_bed, 0, BED_MAXTEMP - 15); #endif MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_FAN_SPEED, &fanSpeed, 0, 255); - MENU_ITEM_EDIT(int3, MSG_FLOW, &extruder_multiply[active_extruder], 10, 999); + MENU_ITEM_EDIT(int3, MSG_FLOW, &extrudemultiply, 10, 999); MENU_ITEM_EDIT(int3, MSG_FLOW MSG_F0, &extruder_multiply[0], 10, 999); #if TEMP_SENSOR_1 != 0 MENU_ITEM_EDIT(int3, MSG_FLOW MSG_F1, &extruder_multiply[1], 10, 999); diff --git a/Marlin/ultralcd_implementation_hitachi_HD44780.h b/Marlin/ultralcd_implementation_hitachi_HD44780.h index c21785ed25..aaa55800ac 100644 --- a/Marlin/ultralcd_implementation_hitachi_HD44780.h +++ b/Marlin/ultralcd_implementation_hitachi_HD44780.h @@ -624,7 +624,7 @@ static void lcd_implementation_status_screen() static void lcd_implementation_drawmenu_generic(bool sel, uint8_t row, const char* pstr, char pre_char, char post_char) { char c; - uint8_t n = LCD_WIDTH - 2; + uint8_t n = LCD_WIDTH - 1 - (LCD_WIDTH < 20 ? 1 : 2); lcd.setCursor(0, row); lcd.print(sel ? pre_char : ' '); while ((c = pgm_read_byte(pstr)) && n > 0) { @@ -633,11 +633,12 @@ static void lcd_implementation_drawmenu_generic(bool sel, uint8_t row, const cha } while(n--) lcd.print(' '); lcd.print(post_char); + lcd.print(' '); } static void lcd_implementation_drawmenu_setting_edit_generic(bool sel, uint8_t row, const char* pstr, char pre_char, char* data) { char c; - uint8_t n = LCD_WIDTH - 2 - lcd_strlen(data); + uint8_t n = LCD_WIDTH - 1 - (LCD_WIDTH < 20 ? 1 : 2) - lcd_strlen(data); lcd.setCursor(0, row); lcd.print(sel ? pre_char : ' '); while ((c = pgm_read_byte(pstr)) && n > 0) { @@ -650,7 +651,7 @@ static void lcd_implementation_drawmenu_setting_edit_generic(bool sel, uint8_t r } static void lcd_implementation_drawmenu_setting_edit_generic_P(bool sel, uint8_t row, const char* pstr, char pre_char, const char* data) { char c; - uint8_t n = LCD_WIDTH - 2 - lcd_strlen_P(data); + uint8_t n = LCD_WIDTH - 1 - (LCD_WIDTH < 20 ? 1 : 2) - lcd_strlen_P(data); lcd.setCursor(0, row); lcd.print(sel ? pre_char : ' '); while ((c = pgm_read_byte(pstr)) && n > 0) { @@ -687,11 +688,11 @@ void lcd_implementation_drawedit(const char* pstr, char* value) { lcd.setCursor(1, 1); lcd_printPGM(pstr); lcd.print(':'); - lcd.setCursor(LCD_WIDTH - lcd_strlen(value), 1); + lcd.setCursor(LCD_WIDTH - (LCD_WIDTH < 20 ? 0 : 1) - lcd_strlen(value), 1); lcd_print(value); } -static void lcd_implementation_drawmenu_sd(bool sel, uint8_t row, const char* pstr, const char* filename, char* longFilename, uint8_t concat, char post_char) { +static void lcd_implementation_drawmenu_sd(bool sel, uint8_t row, const char* pstr, const char* filename, char* longFilename, uint8_t concat) { char c; uint8_t n = LCD_WIDTH - concat; lcd.setCursor(0, row); @@ -705,15 +706,14 @@ static void lcd_implementation_drawmenu_sd(bool sel, uint8_t row, const char* ps filename++; } while (n--) lcd.print(' '); - lcd.print(post_char); } static void lcd_implementation_drawmenu_sdfile(bool sel, uint8_t row, const char* pstr, const char* filename, char* longFilename) { - lcd_implementation_drawmenu_sd(sel, row, pstr, filename, longFilename, 2, ' '); + lcd_implementation_drawmenu_sd(sel, row, pstr, filename, longFilename, 1); } static void lcd_implementation_drawmenu_sddirectory(bool sel, uint8_t row, const char* pstr, const char* filename, char* longFilename) { - lcd_implementation_drawmenu_sd(sel, row, pstr, filename, longFilename, 2, LCD_STR_FOLDER[0]); + lcd_implementation_drawmenu_sd(sel, row, pstr, filename, longFilename, 2); } #define lcd_implementation_drawmenu_back(sel, row, pstr, data) lcd_implementation_drawmenu_generic(sel, row, pstr, LCD_STR_UPLEVEL[0], LCD_STR_UPLEVEL[0])