From dc0247c57e7bf3edf6cefed8620158a97151b84c Mon Sep 17 00:00:00 2001 From: Scott Lahteine Date: Tue, 23 Feb 2021 16:09:54 -0600 Subject: [PATCH] Outdent UBL code --- Marlin/src/feature/bedlevel/ubl/ubl.cpp | 382 +-- Marlin/src/feature/bedlevel/ubl/ubl.h | 486 ++-- Marlin/src/feature/bedlevel/ubl/ubl_G29.cpp | 2858 +++++++++---------- 3 files changed, 1863 insertions(+), 1863 deletions(-) diff --git a/Marlin/src/feature/bedlevel/ubl/ubl.cpp b/Marlin/src/feature/bedlevel/ubl/ubl.cpp index ef3289f732..601f0ebb54 100644 --- a/Marlin/src/feature/bedlevel/ubl/ubl.cpp +++ b/Marlin/src/feature/bedlevel/ubl/ubl.cpp @@ -24,234 +24,234 @@ #if ENABLED(AUTO_BED_LEVELING_UBL) - #include "../bedlevel.h" +#include "../bedlevel.h" - unified_bed_leveling ubl; +unified_bed_leveling ubl; - #include "../../../MarlinCore.h" - #include "../../../gcode/gcode.h" +#include "../../../MarlinCore.h" +#include "../../../gcode/gcode.h" - #include "../../../module/settings.h" - #include "../../../module/planner.h" - #include "../../../module/motion.h" - #include "../../../module/probe.h" +#include "../../../module/settings.h" +#include "../../../module/planner.h" +#include "../../../module/motion.h" +#include "../../../module/probe.h" - #if ENABLED(EXTENSIBLE_UI) - #include "../../../lcd/extui/ui_api.h" - #endif - - #include "math.h" +#if ENABLED(EXTENSIBLE_UI) + #include "../../../lcd/extui/ui_api.h" +#endif - void unified_bed_leveling::echo_name() { SERIAL_ECHOPGM("Unified Bed Leveling"); } +#include "math.h" - void unified_bed_leveling::report_current_mesh() { - if (!leveling_is_valid()) return; - SERIAL_ECHO_MSG(" G29 I999"); - GRID_LOOP(x, y) - if (!isnan(z_values[x][y])) { - SERIAL_ECHO_START(); - SERIAL_ECHOPAIR(" M421 I", x, " J", y); - SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, z_values[x][y], 4); - serial_delay(75); // Prevent Printrun from exploding - } - } +void unified_bed_leveling::echo_name() { SERIAL_ECHOPGM("Unified Bed Leveling"); } - void unified_bed_leveling::report_state() { - echo_name(); - SERIAL_ECHO_TERNARY(planner.leveling_active, " System v" UBL_VERSION " ", "", "in", "active\n"); - serial_delay(50); +void unified_bed_leveling::report_current_mesh() { + if (!leveling_is_valid()) return; + SERIAL_ECHO_MSG(" G29 I999"); + GRID_LOOP(x, y) + if (!isnan(z_values[x][y])) { + SERIAL_ECHO_START(); + SERIAL_ECHOPAIR(" M421 I", x, " J", y); + SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, z_values[x][y], 4); + serial_delay(75); // Prevent Printrun from exploding + } +} + +void unified_bed_leveling::report_state() { + echo_name(); + SERIAL_ECHO_TERNARY(planner.leveling_active, " System v" UBL_VERSION " ", "", "in", "active\n"); + serial_delay(50); +} + +int8_t unified_bed_leveling::storage_slot; + +float unified_bed_leveling::z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; + +#define _GRIDPOS(A,N) (MESH_MIN_##A + N * (MESH_##A##_DIST)) + +const float +unified_bed_leveling::_mesh_index_to_xpos[GRID_MAX_POINTS_X] PROGMEM = ARRAY_N(GRID_MAX_POINTS_X, + _GRIDPOS(X, 0), _GRIDPOS(X, 1), _GRIDPOS(X, 2), _GRIDPOS(X, 3), + _GRIDPOS(X, 4), _GRIDPOS(X, 5), _GRIDPOS(X, 6), _GRIDPOS(X, 7), + _GRIDPOS(X, 8), _GRIDPOS(X, 9), _GRIDPOS(X, 10), _GRIDPOS(X, 11), + _GRIDPOS(X, 12), _GRIDPOS(X, 13), _GRIDPOS(X, 14), _GRIDPOS(X, 15) +), +unified_bed_leveling::_mesh_index_to_ypos[GRID_MAX_POINTS_Y] PROGMEM = ARRAY_N(GRID_MAX_POINTS_Y, + _GRIDPOS(Y, 0), _GRIDPOS(Y, 1), _GRIDPOS(Y, 2), _GRIDPOS(Y, 3), + _GRIDPOS(Y, 4), _GRIDPOS(Y, 5), _GRIDPOS(Y, 6), _GRIDPOS(Y, 7), + _GRIDPOS(Y, 8), _GRIDPOS(Y, 9), _GRIDPOS(Y, 10), _GRIDPOS(Y, 11), + _GRIDPOS(Y, 12), _GRIDPOS(Y, 13), _GRIDPOS(Y, 14), _GRIDPOS(Y, 15) +); + +volatile int16_t unified_bed_leveling::encoder_diff; + +unified_bed_leveling::unified_bed_leveling() { reset(); } + +void unified_bed_leveling::reset() { + const bool was_enabled = planner.leveling_active; + set_bed_leveling_enabled(false); + storage_slot = -1; + ZERO(z_values); + #if ENABLED(EXTENSIBLE_UI) + GRID_LOOP(x, y) ExtUI::onMeshUpdate(x, y, 0); + #endif + if (was_enabled) report_current_position(); +} + +void unified_bed_leveling::invalidate() { + set_bed_leveling_enabled(false); + set_all_mesh_points_to_value(NAN); +} + +void unified_bed_leveling::set_all_mesh_points_to_value(const float value) { + GRID_LOOP(x, y) { + z_values[x][y] = value; + TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(x, y, value)); } - - int8_t unified_bed_leveling::storage_slot; - - float unified_bed_leveling::z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; - - #define _GRIDPOS(A,N) (MESH_MIN_##A + N * (MESH_##A##_DIST)) - - const float - unified_bed_leveling::_mesh_index_to_xpos[GRID_MAX_POINTS_X] PROGMEM = ARRAY_N(GRID_MAX_POINTS_X, - _GRIDPOS(X, 0), _GRIDPOS(X, 1), _GRIDPOS(X, 2), _GRIDPOS(X, 3), - _GRIDPOS(X, 4), _GRIDPOS(X, 5), _GRIDPOS(X, 6), _GRIDPOS(X, 7), - _GRIDPOS(X, 8), _GRIDPOS(X, 9), _GRIDPOS(X, 10), _GRIDPOS(X, 11), - _GRIDPOS(X, 12), _GRIDPOS(X, 13), _GRIDPOS(X, 14), _GRIDPOS(X, 15) - ), - unified_bed_leveling::_mesh_index_to_ypos[GRID_MAX_POINTS_Y] PROGMEM = ARRAY_N(GRID_MAX_POINTS_Y, - _GRIDPOS(Y, 0), _GRIDPOS(Y, 1), _GRIDPOS(Y, 2), _GRIDPOS(Y, 3), - _GRIDPOS(Y, 4), _GRIDPOS(Y, 5), _GRIDPOS(Y, 6), _GRIDPOS(Y, 7), - _GRIDPOS(Y, 8), _GRIDPOS(Y, 9), _GRIDPOS(Y, 10), _GRIDPOS(Y, 11), - _GRIDPOS(Y, 12), _GRIDPOS(Y, 13), _GRIDPOS(Y, 14), _GRIDPOS(Y, 15) - ); - - volatile int16_t unified_bed_leveling::encoder_diff; - - unified_bed_leveling::unified_bed_leveling() { reset(); } - - void unified_bed_leveling::reset() { - const bool was_enabled = planner.leveling_active; - set_bed_leveling_enabled(false); - storage_slot = -1; - ZERO(z_values); - #if ENABLED(EXTENSIBLE_UI) - GRID_LOOP(x, y) ExtUI::onMeshUpdate(x, y, 0); - #endif - if (was_enabled) report_current_position(); +} + +#if ENABLED(OPTIMIZED_MESH_STORAGE) + + constexpr float mesh_store_scaling = 1000; + constexpr int16_t Z_STEPS_NAN = INT16_MAX; + + void unified_bed_leveling::set_store_from_mesh(const bed_mesh_t &in_values, mesh_store_t &stored_values) { + auto z_to_store = [](const float &z) { + if (isnan(z)) return Z_STEPS_NAN; + const int32_t z_scaled = TRUNC(z * mesh_store_scaling); + if (z_scaled == Z_STEPS_NAN || !WITHIN(z_scaled, INT16_MIN, INT16_MAX)) + return Z_STEPS_NAN; // If Z is out of range, return our custom 'NaN' + return int16_t(z_scaled); + }; + GRID_LOOP(x, y) stored_values[x][y] = z_to_store(in_values[x][y]); } - void unified_bed_leveling::invalidate() { - set_bed_leveling_enabled(false); - set_all_mesh_points_to_value(NAN); + void unified_bed_leveling::set_mesh_from_store(const mesh_store_t &stored_values, bed_mesh_t &out_values) { + auto store_to_z = [](const int16_t z_scaled) { + return z_scaled == Z_STEPS_NAN ? NAN : z_scaled / mesh_store_scaling; + }; + GRID_LOOP(x, y) out_values[x][y] = store_to_z(stored_values[x][y]); } - void unified_bed_leveling::set_all_mesh_points_to_value(const float value) { - GRID_LOOP(x, y) { - z_values[x][y] = value; - TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(x, y, value)); - } +#endif // OPTIMIZED_MESH_STORAGE + +static void serial_echo_xy(const uint8_t sp, const int16_t x, const int16_t y) { + SERIAL_ECHO_SP(sp); + SERIAL_CHAR('('); + if (x < 100) { SERIAL_CHAR(' '); if (x < 10) SERIAL_CHAR(' '); } + SERIAL_ECHO(x); + SERIAL_CHAR(','); + if (y < 100) { SERIAL_CHAR(' '); if (y < 10) SERIAL_CHAR(' '); } + SERIAL_ECHO(y); + SERIAL_CHAR(')'); + serial_delay(5); +} + +static void serial_echo_column_labels(const uint8_t sp) { + SERIAL_ECHO_SP(7); + LOOP_L_N(i, GRID_MAX_POINTS_X) { + if (i < 10) SERIAL_CHAR(' '); + SERIAL_ECHO(i); + SERIAL_ECHO_SP(sp); } + serial_delay(10); +} - #if ENABLED(OPTIMIZED_MESH_STORAGE) - - constexpr float mesh_store_scaling = 1000; - constexpr int16_t Z_STEPS_NAN = INT16_MAX; - - void unified_bed_leveling::set_store_from_mesh(const bed_mesh_t &in_values, mesh_store_t &stored_values) { - auto z_to_store = [](const float &z) { - if (isnan(z)) return Z_STEPS_NAN; - const int32_t z_scaled = TRUNC(z * mesh_store_scaling); - if (z_scaled == Z_STEPS_NAN || !WITHIN(z_scaled, INT16_MIN, INT16_MAX)) - return Z_STEPS_NAN; // If Z is out of range, return our custom 'NaN' - return int16_t(z_scaled); - }; - GRID_LOOP(x, y) stored_values[x][y] = z_to_store(in_values[x][y]); - } +/** + * Produce one of these mesh maps: + * 0: Human-readable + * 1: CSV format for spreadsheet import + * 2: TODO: Display on Graphical LCD + * 4: Compact Human-Readable + */ +void unified_bed_leveling::display_map(const int map_type) { + const bool was = gcode.set_autoreport_paused(true); - void unified_bed_leveling::set_mesh_from_store(const mesh_store_t &stored_values, bed_mesh_t &out_values) { - auto store_to_z = [](const int16_t z_scaled) { - return z_scaled == Z_STEPS_NAN ? NAN : z_scaled / mesh_store_scaling; - }; - GRID_LOOP(x, y) out_values[x][y] = store_to_z(stored_values[x][y]); - } + constexpr uint8_t eachsp = 1 + 6 + 1, // [-3.567] + twixt = eachsp * (GRID_MAX_POINTS_X) - 9 * 2; // Leading 4sp, Coordinates 9sp each - #endif // OPTIMIZED_MESH_STORAGE + const bool human = !(map_type & 0x3), csv = map_type == 1, lcd = map_type == 2, comp = map_type & 0x4; - static void serial_echo_xy(const uint8_t sp, const int16_t x, const int16_t y) { - SERIAL_ECHO_SP(sp); - SERIAL_CHAR('('); - if (x < 100) { SERIAL_CHAR(' '); if (x < 10) SERIAL_CHAR(' '); } - SERIAL_ECHO(x); - SERIAL_CHAR(','); - if (y < 100) { SERIAL_CHAR(' '); if (y < 10) SERIAL_CHAR(' '); } - SERIAL_ECHO(y); - SERIAL_CHAR(')'); - serial_delay(5); + SERIAL_ECHOPGM("\nBed Topography Report"); + if (human) { + SERIAL_ECHOLNPGM(":\n"); + serial_echo_xy(4, MESH_MIN_X, MESH_MAX_Y); + serial_echo_xy(twixt, MESH_MAX_X, MESH_MAX_Y); + SERIAL_EOL(); + serial_echo_column_labels(eachsp - 2); } - - static void serial_echo_column_labels(const uint8_t sp) { - SERIAL_ECHO_SP(7); - LOOP_L_N(i, GRID_MAX_POINTS_X) { - if (i < 10) SERIAL_CHAR(' '); - SERIAL_ECHO(i); - SERIAL_ECHO_SP(sp); - } - serial_delay(10); + else { + SERIAL_ECHOPGM(" for "); + serialprintPGM(csv ? PSTR("CSV:\n") : PSTR("LCD:\n")); } - /** - * Produce one of these mesh maps: - * 0: Human-readable - * 1: CSV format for spreadsheet import - * 2: TODO: Display on Graphical LCD - * 4: Compact Human-Readable - */ - void unified_bed_leveling::display_map(const int map_type) { - const bool was = gcode.set_autoreport_paused(true); + // Add XY probe offset from extruder because probe.probe_at_point() subtracts them when + // moving to the XY position to be measured. This ensures better agreement between + // the current Z position after G28 and the mesh values. + const xy_int8_t curr = closest_indexes(xy_pos_t(current_position) + probe.offset_xy); - constexpr uint8_t eachsp = 1 + 6 + 1, // [-3.567] - twixt = eachsp * (GRID_MAX_POINTS_X) - 9 * 2; // Leading 4sp, Coordinates 9sp each + if (!lcd) SERIAL_EOL(); + for (int8_t j = GRID_MAX_POINTS_Y - 1; j >= 0; j--) { - const bool human = !(map_type & 0x3), csv = map_type == 1, lcd = map_type == 2, comp = map_type & 0x4; - - SERIAL_ECHOPGM("\nBed Topography Report"); + // Row Label (J index) if (human) { - SERIAL_ECHOLNPGM(":\n"); - serial_echo_xy(4, MESH_MIN_X, MESH_MAX_Y); - serial_echo_xy(twixt, MESH_MAX_X, MESH_MAX_Y); - SERIAL_EOL(); - serial_echo_column_labels(eachsp - 2); - } - else { - SERIAL_ECHOPGM(" for "); - serialprintPGM(csv ? PSTR("CSV:\n") : PSTR("LCD:\n")); + if (j < 10) SERIAL_CHAR(' '); + SERIAL_ECHO(j); + SERIAL_ECHOPGM(" |"); } - // Add XY probe offset from extruder because probe.probe_at_point() subtracts them when - // moving to the XY position to be measured. This ensures better agreement between - // the current Z position after G28 and the mesh values. - const xy_int8_t curr = closest_indexes(xy_pos_t(current_position) + probe.offset_xy); + // Row Values (I indexes) + LOOP_L_N(i, GRID_MAX_POINTS_X) { - if (!lcd) SERIAL_EOL(); - for (int8_t j = GRID_MAX_POINTS_Y - 1; j >= 0; j--) { + // Opening Brace or Space + const bool is_current = i == curr.x && j == curr.y; + if (human) SERIAL_CHAR(is_current ? '[' : ' '); - // Row Label (J index) - if (human) { - if (j < 10) SERIAL_CHAR(' '); - SERIAL_ECHO(j); - SERIAL_ECHOPGM(" |"); + // Z Value at current I, J + const float f = z_values[i][j]; + if (lcd) { + // TODO: Display on Graphical LCD } - - // Row Values (I indexes) - LOOP_L_N(i, GRID_MAX_POINTS_X) { - - // Opening Brace or Space - const bool is_current = i == curr.x && j == curr.y; - if (human) SERIAL_CHAR(is_current ? '[' : ' '); - - // Z Value at current I, J - const float f = z_values[i][j]; - if (lcd) { - // TODO: Display on Graphical LCD - } - else if (isnan(f)) - serialprintPGM(human ? PSTR(" . ") : PSTR("NAN")); - else if (human || csv) { - if (human && f >= 0.0) SERIAL_CHAR(f > 0 ? '+' : ' '); // Display sign also for positive numbers (' ' for 0) - SERIAL_ECHO_F(f, 3); // Positive: 5 digits, Negative: 6 digits - } - if (csv && i < GRID_MAX_POINTS_X - 1) SERIAL_CHAR('\t'); - - // Closing Brace or Space - if (human) SERIAL_CHAR(is_current ? ']' : ' '); - - SERIAL_FLUSHTX(); - idle_no_sleep(); + else if (isnan(f)) + serialprintPGM(human ? PSTR(" . ") : PSTR("NAN")); + else if (human || csv) { + if (human && f >= 0.0) SERIAL_CHAR(f > 0 ? '+' : ' '); // Display sign also for positive numbers (' ' for 0) + SERIAL_ECHO_F(f, 3); // Positive: 5 digits, Negative: 6 digits } - if (!lcd) SERIAL_EOL(); + if (csv && i < GRID_MAX_POINTS_X - 1) SERIAL_CHAR('\t'); - // A blank line between rows (unless compact) - if (j && human && !comp) SERIAL_ECHOLNPGM(" |"); - } + // Closing Brace or Space + if (human) SERIAL_CHAR(is_current ? ']' : ' '); - if (human) { - serial_echo_column_labels(eachsp - 2); - SERIAL_EOL(); - serial_echo_xy(4, MESH_MIN_X, MESH_MIN_Y); - serial_echo_xy(twixt, MESH_MAX_X, MESH_MIN_Y); - SERIAL_EOL(); - SERIAL_EOL(); + SERIAL_FLUSHTX(); + idle_no_sleep(); } + if (!lcd) SERIAL_EOL(); - gcode.set_autoreport_paused(was); + // A blank line between rows (unless compact) + if (j && human && !comp) SERIAL_ECHOLNPGM(" |"); } - bool unified_bed_leveling::sanity_check() { - uint8_t error_flag = 0; + if (human) { + serial_echo_column_labels(eachsp - 2); + SERIAL_EOL(); + serial_echo_xy(4, MESH_MIN_X, MESH_MIN_Y); + serial_echo_xy(twixt, MESH_MAX_X, MESH_MIN_Y); + SERIAL_EOL(); + SERIAL_EOL(); + } - if (settings.calc_num_meshes() < 1) { - SERIAL_ECHOLNPGM("?Mesh too big for EEPROM."); - error_flag++; - } + gcode.set_autoreport_paused(was); +} - return !!error_flag; +bool unified_bed_leveling::sanity_check() { + uint8_t error_flag = 0; + + if (settings.calc_num_meshes() < 1) { + SERIAL_ECHOLNPGM("?Mesh too big for EEPROM."); + error_flag++; } + return !!error_flag; +} + #endif // AUTO_BED_LEVELING_UBL diff --git a/Marlin/src/feature/bedlevel/ubl/ubl.h b/Marlin/src/feature/bedlevel/ubl/ubl.h index 876063c878..d5da43a6a2 100644 --- a/Marlin/src/feature/bedlevel/ubl/ubl.h +++ b/Marlin/src/feature/bedlevel/ubl/ubl.h @@ -46,275 +46,275 @@ struct mesh_index_pair; #endif class unified_bed_leveling { - private: - - static int g29_verbose_level, - g29_phase_value, - g29_repetition_cnt, - g29_storage_slot, - g29_map_type; - static bool g29_c_flag; - static float g29_card_thickness, - g29_constant; - static xy_pos_t g29_pos; - static xy_bool_t xy_seen; - - #if HAS_BED_PROBE - static int g29_grid_size; - #endif - - #if IS_NEWPANEL - static void move_z_with_encoder(const float &multiplier); - static float measure_point_with_encoder(); - static float measure_business_card_thickness(); - static void manually_probe_remaining_mesh(const xy_pos_t&, const float&, const float&, const bool) _O0; - static void fine_tune_mesh(const xy_pos_t &pos, const bool do_ubl_mesh_map) _O0; - #endif +private: + + static int g29_verbose_level, + g29_phase_value, + g29_repetition_cnt, + g29_storage_slot, + g29_map_type; + static bool g29_c_flag; + static float g29_card_thickness, + g29_constant; + static xy_pos_t g29_pos; + static xy_bool_t xy_seen; + + #if HAS_BED_PROBE + static int g29_grid_size; + #endif + + #if IS_NEWPANEL + static void move_z_with_encoder(const float &multiplier); + static float measure_point_with_encoder(); + static float measure_business_card_thickness(); + static void manually_probe_remaining_mesh(const xy_pos_t&, const float&, const float&, const bool) _O0; + static void fine_tune_mesh(const xy_pos_t &pos, const bool do_ubl_mesh_map) _O0; + #endif + + static bool g29_parameter_parsing() _O0; + static void shift_mesh_height(); + static void probe_entire_mesh(const xy_pos_t &near, const bool do_ubl_mesh_map, const bool stow_probe, const bool do_furthest) _O0; + static void tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3); + static void tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map); + static bool smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir); + static inline bool smart_fill_one(const xy_uint8_t &pos, const xy_uint8_t &dir) { + return smart_fill_one(pos.x, pos.y, dir.x, dir.y); + } + static void smart_fill_mesh(); + + #if ENABLED(UBL_DEVEL_DEBUGGING) + static void g29_what_command(); + static void g29_eeprom_dump(); + static void g29_compare_current_mesh_to_stored_mesh(); + #endif + +public: + + static void echo_name(); + static void report_current_mesh(); + static void report_state(); + static void save_ubl_active_state_and_disable(); + static void restore_ubl_active_state_and_leave(); + static void display_map(const int) _O0; + static mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType, const xy_pos_t&, const bool=false, MeshFlags *done_flags=nullptr) _O0; + static mesh_index_pair find_furthest_invalid_mesh_point() _O0; + static void reset(); + static void invalidate(); + static void set_all_mesh_points_to_value(const float value); + static void adjust_mesh_to_mean(const bool cflag, const float value); + static bool sanity_check(); + + static void G29() _O0; // O0 for no optimization + static void smart_fill_wlsf(const float &) _O2; // O2 gives smaller code than Os on A2560 + + static int8_t storage_slot; + + static bed_mesh_t z_values; + #if ENABLED(OPTIMIZED_MESH_STORAGE) + static void set_store_from_mesh(const bed_mesh_t &in_values, mesh_store_t &stored_values); + static void set_mesh_from_store(const mesh_store_t &stored_values, bed_mesh_t &out_values); + #endif + static const float _mesh_index_to_xpos[GRID_MAX_POINTS_X], + _mesh_index_to_ypos[GRID_MAX_POINTS_Y]; + + #if HAS_LCD_MENU + static bool lcd_map_control; + static void steppers_were_disabled(); + #else + static inline void steppers_were_disabled() {} + #endif + + static volatile int16_t encoder_diff; // Volatile because buttons may changed it at interrupt time + + unified_bed_leveling(); + + FORCE_INLINE static void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; } + + static int8_t cell_index_x_raw(const float &x) { + return FLOOR((x - (MESH_MIN_X)) * RECIPROCAL(MESH_X_DIST)); + } + + static int8_t cell_index_y_raw(const float &y) { + return FLOOR((y - (MESH_MIN_Y)) * RECIPROCAL(MESH_Y_DIST)); + } + + static int8_t cell_index_x_valid(const float &x) { + return WITHIN(cell_index_x_raw(x), 0, (GRID_MAX_POINTS_X - 2)); + } + + static int8_t cell_index_y_valid(const float &y) { + return WITHIN(cell_index_y_raw(y), 0, (GRID_MAX_POINTS_Y - 2)); + } + + static int8_t cell_index_x(const float &x) { + return constrain(cell_index_x_raw(x), 0, (GRID_MAX_POINTS_X) - 2); + } + + static int8_t cell_index_y(const float &y) { + return constrain(cell_index_y_raw(y), 0, (GRID_MAX_POINTS_Y) - 2); + } + + static inline xy_int8_t cell_indexes(const float &x, const float &y) { + return { cell_index_x(x), cell_index_y(y) }; + } + static inline xy_int8_t cell_indexes(const xy_pos_t &xy) { return cell_indexes(xy.x, xy.y); } + + static int8_t closest_x_index(const float &x) { + const int8_t px = (x - (MESH_MIN_X) + (MESH_X_DIST) * 0.5) * RECIPROCAL(MESH_X_DIST); + return WITHIN(px, 0, GRID_MAX_POINTS_X - 1) ? px : -1; + } + static int8_t closest_y_index(const float &y) { + const int8_t py = (y - (MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * RECIPROCAL(MESH_Y_DIST); + return WITHIN(py, 0, GRID_MAX_POINTS_Y - 1) ? py : -1; + } + static inline xy_int8_t closest_indexes(const xy_pos_t &xy) { + return { closest_x_index(xy.x), closest_y_index(xy.y) }; + } + + /** + * z2 --| + * z0 | | + * | | + (z2-z1) + * z1 | | | + * ---+-------------+--------+-- --| + * a1 a0 a2 + * |<---delta_a---------->| + * + * calc_z0 is the basis for all the Mesh Based correction. It is used to + * find the expected Z Height at a position between two known Z-Height locations. + * + * It is fairly expensive with its 4 floating point additions and 2 floating point + * multiplications. + */ + FORCE_INLINE static float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) { + return z1 + (z2 - z1) * (a0 - a1) / (a2 - a1); + } + + #ifdef UBL_Z_RAISE_WHEN_OFF_MESH + #define _UBL_OUTER_Z_RAISE UBL_Z_RAISE_WHEN_OFF_MESH + #else + #define _UBL_OUTER_Z_RAISE NAN + #endif + + /** + * z_correction_for_x_on_horizontal_mesh_line is an optimization for + * the case where the printer is making a vertical line that only crosses horizontal mesh lines. + */ + static inline float z_correction_for_x_on_horizontal_mesh_line(const float &rx0, const int x1_i, const int yi) { + if (!WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(yi, 0, GRID_MAX_POINTS_Y - 1)) { + + if (DEBUGGING(LEVELING)) { + if (WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1)) DEBUG_ECHOPGM("yi"); else DEBUG_ECHOPGM("x1_i"); + DEBUG_ECHOLNPAIR(" out of bounds in z_correction_for_x_on_horizontal_mesh_line(rx0=", rx0, ",x1_i=", x1_i, ",yi=", yi, ")"); + } - static bool g29_parameter_parsing() _O0; - static void shift_mesh_height(); - static void probe_entire_mesh(const xy_pos_t &near, const bool do_ubl_mesh_map, const bool stow_probe, const bool do_furthest) _O0; - static void tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3); - static void tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map); - static bool smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir); - static inline bool smart_fill_one(const xy_uint8_t &pos, const xy_uint8_t &dir) { - return smart_fill_one(pos.x, pos.y, dir.x, dir.y); + // The requested location is off the mesh. Return UBL_Z_RAISE_WHEN_OFF_MESH or NAN. + return _UBL_OUTER_Z_RAISE; } - static void smart_fill_mesh(); - - #if ENABLED(UBL_DEVEL_DEBUGGING) - static void g29_what_command(); - static void g29_eeprom_dump(); - static void g29_compare_current_mesh_to_stored_mesh(); - #endif - public: - - static void echo_name(); - static void report_current_mesh(); - static void report_state(); - static void save_ubl_active_state_and_disable(); - static void restore_ubl_active_state_and_leave(); - static void display_map(const int) _O0; - static mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType, const xy_pos_t&, const bool=false, MeshFlags *done_flags=nullptr) _O0; - static mesh_index_pair find_furthest_invalid_mesh_point() _O0; - static void reset(); - static void invalidate(); - static void set_all_mesh_points_to_value(const float value); - static void adjust_mesh_to_mean(const bool cflag, const float value); - static bool sanity_check(); - - static void G29() _O0; // O0 for no optimization - static void smart_fill_wlsf(const float &) _O2; // O2 gives smaller code than Os on A2560 - - static int8_t storage_slot; - - static bed_mesh_t z_values; - #if ENABLED(OPTIMIZED_MESH_STORAGE) - static void set_store_from_mesh(const bed_mesh_t &in_values, mesh_store_t &stored_values); - static void set_mesh_from_store(const mesh_store_t &stored_values, bed_mesh_t &out_values); - #endif - static const float _mesh_index_to_xpos[GRID_MAX_POINTS_X], - _mesh_index_to_ypos[GRID_MAX_POINTS_Y]; - - #if HAS_LCD_MENU - static bool lcd_map_control; - static void steppers_were_disabled(); - #else - static inline void steppers_were_disabled() {} - #endif - - static volatile int16_t encoder_diff; // Volatile because buttons may changed it at interrupt time + const float xratio = (rx0 - mesh_index_to_xpos(x1_i)) * RECIPROCAL(MESH_X_DIST), + z1 = z_values[x1_i][yi]; - unified_bed_leveling(); + return z1 + xratio * (z_values[_MIN(x1_i, GRID_MAX_POINTS_X - 2) + 1][yi] - z1); // Don't allow x1_i+1 to be past the end of the array + // If it is, it is clamped to the last element of the + // z_values[][] array and no correction is applied. + } - FORCE_INLINE static void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; } + // + // See comments above for z_correction_for_x_on_horizontal_mesh_line + // + static inline float z_correction_for_y_on_vertical_mesh_line(const float &ry0, const int xi, const int y1_i) { + if (!WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(y1_i, 0, GRID_MAX_POINTS_Y - 1)) { - static int8_t cell_index_x_raw(const float &x) { - return FLOOR((x - (MESH_MIN_X)) * RECIPROCAL(MESH_X_DIST)); - } - - static int8_t cell_index_y_raw(const float &y) { - return FLOOR((y - (MESH_MIN_Y)) * RECIPROCAL(MESH_Y_DIST)); - } - - static int8_t cell_index_x_valid(const float &x) { - return WITHIN(cell_index_x_raw(x), 0, (GRID_MAX_POINTS_X - 2)); - } + if (DEBUGGING(LEVELING)) { + if (WITHIN(xi, 0, GRID_MAX_POINTS_X - 1)) DEBUG_ECHOPGM("y1_i"); else DEBUG_ECHOPGM("xi"); + DEBUG_ECHOLNPAIR(" out of bounds in z_correction_for_y_on_vertical_mesh_line(ry0=", ry0, ", xi=", xi, ", y1_i=", y1_i, ")"); + } - static int8_t cell_index_y_valid(const float &y) { - return WITHIN(cell_index_y_raw(y), 0, (GRID_MAX_POINTS_Y - 2)); + // The requested location is off the mesh. Return UBL_Z_RAISE_WHEN_OFF_MESH or NAN. + return _UBL_OUTER_Z_RAISE; } - static int8_t cell_index_x(const float &x) { - return constrain(cell_index_x_raw(x), 0, (GRID_MAX_POINTS_X) - 2); - } + const float yratio = (ry0 - mesh_index_to_ypos(y1_i)) * RECIPROCAL(MESH_Y_DIST), + z1 = z_values[xi][y1_i]; - static int8_t cell_index_y(const float &y) { - return constrain(cell_index_y_raw(y), 0, (GRID_MAX_POINTS_Y) - 2); - } + return z1 + yratio * (z_values[xi][_MIN(y1_i, GRID_MAX_POINTS_Y - 2) + 1] - z1); // Don't allow y1_i+1 to be past the end of the array + // If it is, it is clamped to the last element of the + // z_values[][] array and no correction is applied. + } - static inline xy_int8_t cell_indexes(const float &x, const float &y) { - return { cell_index_x(x), cell_index_y(y) }; - } - static inline xy_int8_t cell_indexes(const xy_pos_t &xy) { return cell_indexes(xy.x, xy.y); } - - static int8_t closest_x_index(const float &x) { - const int8_t px = (x - (MESH_MIN_X) + (MESH_X_DIST) * 0.5) * RECIPROCAL(MESH_X_DIST); - return WITHIN(px, 0, GRID_MAX_POINTS_X - 1) ? px : -1; - } - static int8_t closest_y_index(const float &y) { - const int8_t py = (y - (MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * RECIPROCAL(MESH_Y_DIST); - return WITHIN(py, 0, GRID_MAX_POINTS_Y - 1) ? py : -1; - } - static inline xy_int8_t closest_indexes(const xy_pos_t &xy) { - return { closest_x_index(xy.x), closest_y_index(xy.y) }; - } + /** + * This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first + * does a linear interpolation along both of the bounding X-Mesh-Lines to find the + * Z-Height at both ends. Then it does a linear interpolation of these heights based + * on the Y position within the cell. + */ + static float get_z_correction(const float &rx0, const float &ry0) { + const int8_t cx = cell_index_x(rx0), cy = cell_index_y(ry0); // return values are clamped /** - * z2 --| - * z0 | | - * | | + (z2-z1) - * z1 | | | - * ---+-------------+--------+-- --| - * a1 a0 a2 - * |<---delta_a---------->| - * - * calc_z0 is the basis for all the Mesh Based correction. It is used to - * find the expected Z Height at a position between two known Z-Height locations. - * - * It is fairly expensive with its 4 floating point additions and 2 floating point - * multiplications. + * Check if the requested location is off the mesh. If so, and + * UBL_Z_RAISE_WHEN_OFF_MESH is specified, that value is returned. */ - FORCE_INLINE static float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) { - return z1 + (z2 - z1) * (a0 - a1) / (a2 - a1); - } - #ifdef UBL_Z_RAISE_WHEN_OFF_MESH - #define _UBL_OUTER_Z_RAISE UBL_Z_RAISE_WHEN_OFF_MESH - #else - #define _UBL_OUTER_Z_RAISE NAN + if (!WITHIN(rx0, MESH_MIN_X, MESH_MAX_X) || !WITHIN(ry0, MESH_MIN_Y, MESH_MAX_Y)) + return UBL_Z_RAISE_WHEN_OFF_MESH; #endif - /** - * z_correction_for_x_on_horizontal_mesh_line is an optimization for - * the case where the printer is making a vertical line that only crosses horizontal mesh lines. - */ - static inline float z_correction_for_x_on_horizontal_mesh_line(const float &rx0, const int x1_i, const int yi) { - if (!WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(yi, 0, GRID_MAX_POINTS_Y - 1)) { - - if (DEBUGGING(LEVELING)) { - if (WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1)) DEBUG_ECHOPGM("yi"); else DEBUG_ECHOPGM("x1_i"); - DEBUG_ECHOLNPAIR(" out of bounds in z_correction_for_x_on_horizontal_mesh_line(rx0=", rx0, ",x1_i=", x1_i, ",yi=", yi, ")"); - } + const float z1 = calc_z0(rx0, + mesh_index_to_xpos(cx), z_values[cx][cy], + mesh_index_to_xpos(cx + 1), z_values[_MIN(cx, GRID_MAX_POINTS_X - 2) + 1][cy]); - // The requested location is off the mesh. Return UBL_Z_RAISE_WHEN_OFF_MESH or NAN. - return _UBL_OUTER_Z_RAISE; - } + const float z2 = calc_z0(rx0, + mesh_index_to_xpos(cx), z_values[cx][_MIN(cy, GRID_MAX_POINTS_Y - 2) + 1], + mesh_index_to_xpos(cx + 1), z_values[_MIN(cx, GRID_MAX_POINTS_X - 2) + 1][_MIN(cy, GRID_MAX_POINTS_Y - 2) + 1]); - const float xratio = (rx0 - mesh_index_to_xpos(x1_i)) * RECIPROCAL(MESH_X_DIST), - z1 = z_values[x1_i][yi]; + float z0 = calc_z0(ry0, + mesh_index_to_ypos(cy), z1, + mesh_index_to_ypos(cy + 1), z2); - return z1 + xratio * (z_values[_MIN(x1_i, GRID_MAX_POINTS_X - 2) + 1][yi] - z1); // Don't allow x1_i+1 to be past the end of the array - // If it is, it is clamped to the last element of the - // z_values[][] array and no correction is applied. + if (DEBUGGING(MESH_ADJUST)) { + DEBUG_ECHOPAIR(" raw get_z_correction(", rx0); + DEBUG_CHAR(','); DEBUG_ECHO(ry0); + DEBUG_ECHOPAIR_F(") = ", z0, 6); + DEBUG_ECHOLNPAIR_F(" >>>---> ", z0, 6); } - // - // See comments above for z_correction_for_x_on_horizontal_mesh_line - // - static inline float z_correction_for_y_on_vertical_mesh_line(const float &ry0, const int xi, const int y1_i) { - if (!WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(y1_i, 0, GRID_MAX_POINTS_Y - 1)) { - - if (DEBUGGING(LEVELING)) { - if (WITHIN(xi, 0, GRID_MAX_POINTS_X - 1)) DEBUG_ECHOPGM("y1_i"); else DEBUG_ECHOPGM("xi"); - DEBUG_ECHOLNPAIR(" out of bounds in z_correction_for_y_on_vertical_mesh_line(ry0=", ry0, ", xi=", xi, ", y1_i=", y1_i, ")"); - } - - // The requested location is off the mesh. Return UBL_Z_RAISE_WHEN_OFF_MESH or NAN. - return _UBL_OUTER_Z_RAISE; - } - - const float yratio = (ry0 - mesh_index_to_ypos(y1_i)) * RECIPROCAL(MESH_Y_DIST), - z1 = z_values[xi][y1_i]; - - return z1 + yratio * (z_values[xi][_MIN(y1_i, GRID_MAX_POINTS_Y - 2) + 1] - z1); // Don't allow y1_i+1 to be past the end of the array - // If it is, it is clamped to the last element of the - // z_values[][] array and no correction is applied. - } - - /** - * This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first - * does a linear interpolation along both of the bounding X-Mesh-Lines to find the - * Z-Height at both ends. Then it does a linear interpolation of these heights based - * on the Y position within the cell. - */ - static float get_z_correction(const float &rx0, const float &ry0) { - const int8_t cx = cell_index_x(rx0), cy = cell_index_y(ry0); // return values are clamped - - /** - * Check if the requested location is off the mesh. If so, and - * UBL_Z_RAISE_WHEN_OFF_MESH is specified, that value is returned. - */ - #ifdef UBL_Z_RAISE_WHEN_OFF_MESH - if (!WITHIN(rx0, MESH_MIN_X, MESH_MAX_X) || !WITHIN(ry0, MESH_MIN_Y, MESH_MAX_Y)) - return UBL_Z_RAISE_WHEN_OFF_MESH; - #endif - - const float z1 = calc_z0(rx0, - mesh_index_to_xpos(cx), z_values[cx][cy], - mesh_index_to_xpos(cx + 1), z_values[_MIN(cx, GRID_MAX_POINTS_X - 2) + 1][cy]); - - const float z2 = calc_z0(rx0, - mesh_index_to_xpos(cx), z_values[cx][_MIN(cy, GRID_MAX_POINTS_Y - 2) + 1], - mesh_index_to_xpos(cx + 1), z_values[_MIN(cx, GRID_MAX_POINTS_X - 2) + 1][_MIN(cy, GRID_MAX_POINTS_Y - 2) + 1]); - - float z0 = calc_z0(ry0, - mesh_index_to_ypos(cy), z1, - mesh_index_to_ypos(cy + 1), z2); + if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN + z0 = 0.0; // in ubl.z_values[][] and propagate through the + // calculations. If our correction is NAN, we throw it out + // because part of the Mesh is undefined and we don't have the + // information we need to complete the height correction. if (DEBUGGING(MESH_ADJUST)) { - DEBUG_ECHOPAIR(" raw get_z_correction(", rx0); - DEBUG_CHAR(','); DEBUG_ECHO(ry0); - DEBUG_ECHOPAIR_F(") = ", z0, 6); - DEBUG_ECHOLNPAIR_F(" >>>---> ", z0, 6); - } - - if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN - z0 = 0.0; // in ubl.z_values[][] and propagate through the - // calculations. If our correction is NAN, we throw it out - // because part of the Mesh is undefined and we don't have the - // information we need to complete the height correction. - - if (DEBUGGING(MESH_ADJUST)) { - DEBUG_ECHOPAIR("??? Yikes! NAN in get_z_correction(", rx0); - DEBUG_CHAR(','); - DEBUG_ECHO(ry0); - DEBUG_CHAR(')'); - DEBUG_EOL(); - } + DEBUG_ECHOPAIR("??? Yikes! NAN in get_z_correction(", rx0); + DEBUG_CHAR(','); + DEBUG_ECHO(ry0); + DEBUG_CHAR(')'); + DEBUG_EOL(); } - return z0; - } - static inline float get_z_correction(const xy_pos_t &pos) { return get_z_correction(pos.x, pos.y); } - - static inline float mesh_index_to_xpos(const uint8_t i) { - return i < GRID_MAX_POINTS_X ? pgm_read_float(&_mesh_index_to_xpos[i]) : MESH_MIN_X + i * (MESH_X_DIST); - } - static inline float mesh_index_to_ypos(const uint8_t i) { - return i < GRID_MAX_POINTS_Y ? pgm_read_float(&_mesh_index_to_ypos[i]) : MESH_MIN_Y + i * (MESH_Y_DIST); - } - - #if UBL_SEGMENTED - static bool line_to_destination_segmented(const feedRate_t &scaled_fr_mm_s); - #else - static void line_to_destination_cartesian(const feedRate_t &scaled_fr_mm_s, const uint8_t e); - #endif - - static inline bool mesh_is_valid() { - GRID_LOOP(x, y) if (isnan(z_values[x][y])) return false; - return true; } + return z0; + } + static inline float get_z_correction(const xy_pos_t &pos) { return get_z_correction(pos.x, pos.y); } + + static inline float mesh_index_to_xpos(const uint8_t i) { + return i < GRID_MAX_POINTS_X ? pgm_read_float(&_mesh_index_to_xpos[i]) : MESH_MIN_X + i * (MESH_X_DIST); + } + static inline float mesh_index_to_ypos(const uint8_t i) { + return i < GRID_MAX_POINTS_Y ? pgm_read_float(&_mesh_index_to_ypos[i]) : MESH_MIN_Y + i * (MESH_Y_DIST); + } + + #if UBL_SEGMENTED + static bool line_to_destination_segmented(const feedRate_t &scaled_fr_mm_s); + #else + static void line_to_destination_cartesian(const feedRate_t &scaled_fr_mm_s, const uint8_t e); + #endif + + static inline bool mesh_is_valid() { + GRID_LOOP(x, y) if (isnan(z_values[x][y])) return false; + return true; + } }; // class unified_bed_leveling diff --git a/Marlin/src/feature/bedlevel/ubl/ubl_G29.cpp b/Marlin/src/feature/bedlevel/ubl/ubl_G29.cpp index 36acc96d6e..9bd7f63a7e 100644 --- a/Marlin/src/feature/bedlevel/ubl/ubl_G29.cpp +++ b/Marlin/src/feature/bedlevel/ubl/ubl_G29.cpp @@ -24,1760 +24,1760 @@ #if ENABLED(AUTO_BED_LEVELING_UBL) - #include "../bedlevel.h" - - #include "../../../MarlinCore.h" - #include "../../../HAL/shared/eeprom_api.h" - #include "../../../libs/hex_print.h" - #include "../../../module/settings.h" - #include "../../../lcd/marlinui.h" - #include "../../../module/stepper.h" - #include "../../../module/planner.h" - #include "../../../module/motion.h" - #include "../../../module/probe.h" - #include "../../../gcode/gcode.h" - #include "../../../libs/least_squares_fit.h" - - #if HAS_MULTI_HOTEND - #include "../../../module/tool_change.h" - #endif +#include "../bedlevel.h" - #define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE) - #include "../../../core/debug_out.h" +#include "../../../MarlinCore.h" +#include "../../../HAL/shared/eeprom_api.h" +#include "../../../libs/hex_print.h" +#include "../../../module/settings.h" +#include "../../../lcd/marlinui.h" +#include "../../../module/stepper.h" +#include "../../../module/planner.h" +#include "../../../module/motion.h" +#include "../../../module/probe.h" +#include "../../../gcode/gcode.h" +#include "../../../libs/least_squares_fit.h" - #if ENABLED(EXTENSIBLE_UI) - #include "../../../lcd/extui/ui_api.h" - #endif +#if HAS_MULTI_HOTEND + #include "../../../module/tool_change.h" +#endif - #include +#define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE) +#include "../../../core/debug_out.h" - #define UBL_G29_P31 +#if ENABLED(EXTENSIBLE_UI) + #include "../../../lcd/extui/ui_api.h" +#endif - #if HAS_LCD_MENU +#include - bool unified_bed_leveling::lcd_map_control = false; +#define UBL_G29_P31 - void unified_bed_leveling::steppers_were_disabled() { - if (lcd_map_control) { - lcd_map_control = false; - ui.defer_status_screen(false); - } +#if HAS_LCD_MENU + + bool unified_bed_leveling::lcd_map_control = false; + + void unified_bed_leveling::steppers_were_disabled() { + if (lcd_map_control) { + lcd_map_control = false; + ui.defer_status_screen(false); } + } - void ubl_map_screen(); + void ubl_map_screen(); - #endif +#endif - #define SIZE_OF_LITTLE_RAISE 1 - #define BIG_RAISE_NOT_NEEDED 0 +#define SIZE_OF_LITTLE_RAISE 1 +#define BIG_RAISE_NOT_NEEDED 0 - int unified_bed_leveling::g29_verbose_level, - unified_bed_leveling::g29_phase_value, - unified_bed_leveling::g29_repetition_cnt, - unified_bed_leveling::g29_storage_slot = 0, - unified_bed_leveling::g29_map_type; - bool unified_bed_leveling::g29_c_flag; - float unified_bed_leveling::g29_card_thickness = 0, - unified_bed_leveling::g29_constant = 0; - xy_bool_t unified_bed_leveling::xy_seen; - xy_pos_t unified_bed_leveling::g29_pos; +int unified_bed_leveling::g29_verbose_level, + unified_bed_leveling::g29_phase_value, + unified_bed_leveling::g29_repetition_cnt, + unified_bed_leveling::g29_storage_slot = 0, + unified_bed_leveling::g29_map_type; +bool unified_bed_leveling::g29_c_flag; +float unified_bed_leveling::g29_card_thickness = 0, + unified_bed_leveling::g29_constant = 0; +xy_bool_t unified_bed_leveling::xy_seen; +xy_pos_t unified_bed_leveling::g29_pos; - #if HAS_BED_PROBE - int unified_bed_leveling::g29_grid_size; - #endif +#if HAS_BED_PROBE + int unified_bed_leveling::g29_grid_size; +#endif - /** - * G29: Unified Bed Leveling by Roxy - * - * Parameters understood by this leveling system: - * - * A Activate Activate the Unified Bed Leveling system. - * - * B # Business Use the 'Business Card' mode of the Manual Probe subsystem with P2. - * Note: A non-compressible Spark Gap feeler gauge is recommended over a business card. - * In this mode of G29 P2, a business or index card is used as a shim that the nozzle can - * grab onto as it is lowered. In principle, the nozzle-bed distance is the same when the - * same resistance is felt in the shim. You can omit the numerical value on first invocation - * of G29 P2 B to measure shim thickness. Subsequent use of 'B' will apply the previously- - * measured thickness by default. - * - * C Continue G29 P1 C continues the generation of a partially-constructed Mesh without invalidating - * previous measurements. - * - * C G29 P2 C tells the Manual Probe subsystem to not use the current nozzle - * location in its search for the closest unmeasured Mesh Point. Instead, attempt to - * start at one end of the uprobed points and Continue sequentially. - * - * G29 P3 C specifies the Constant for the fill. Otherwise, uses a "reasonable" value. - * - * C Current G29 Z C uses the Current location (instead of bed center or nearest edge). - * - * D Disable Disable the Unified Bed Leveling system. - * - * E Stow_probe Stow the probe after each sampled point. - * - * F # Fade Fade the amount of Mesh Based Compensation over a specified height. At the - * specified height, no correction is applied and natural printer kenimatics take over. If no - * number is specified for the command, 10mm is assumed to be reasonable. - * - * H # Height With P2, 'H' specifies the Height to raise the nozzle after each manual probe of the bed. - * If omitted, the nozzle will raise by Z_CLEARANCE_BETWEEN_PROBES. - * - * H # Offset With P4, 'H' specifies the Offset above the mesh height to place the nozzle. - * If omitted, Z_CLEARANCE_BETWEEN_PROBES will be used. - * - * I # Invalidate Invalidate the specified number of Mesh Points near the given 'X' 'Y'. If X or Y are omitted, - * the nozzle location is used. If no 'I' value is given, only the point nearest to the location - * is invalidated. Use 'T' to produce a map afterward. This command is useful to invalidate a - * portion of the Mesh so it can be adjusted using other UBL tools. When attempting to invalidate - * an isolated bad mesh point, the 'T' option shows the nozzle position in the Mesh with (#). You - * can move the nozzle around and use this feature to select the center of the area (or cell) to - * invalidate. - * - * J # Grid Perform a Grid Based Leveling of the current Mesh using a grid with n points on a side. - * Not specifying a grid size will invoke the 3-Point leveling function. - * - * L Load Load Mesh from the previously activated location in the EEPROM. - * - * L # Load Load Mesh from the specified location in the EEPROM. Set this location as activated - * for subsequent Load and Store operations. - * - * The P or Phase commands are used for the bulk of the work to setup a Mesh. In general, your Mesh will - * start off being initialized with a G29 P0 or a G29 P1. Further refinement of the Mesh happens with - * each additional Phase that processes it. - * - * P0 Phase 0 Zero Mesh Data and turn off the Mesh Compensation System. This reverts the - * 3D Printer to the same state it was in before the Unified Bed Leveling Compensation - * was turned on. Setting the entire Mesh to Zero is a special case that allows - * a subsequent G or T leveling operation for backward compatibility. - * - * P1 Phase 1 Invalidate entire Mesh and continue with automatic generation of the Mesh data using - * the Z-Probe. Usually the probe can't reach all areas that the nozzle can reach. For delta - * printers only the areas where the probe and nozzle can both reach will be automatically probed. - * - * Unreachable points will be handled in Phase 2 and Phase 3. - * - * Use 'C' to leave the previous mesh intact and automatically probe needed points. This allows you - * to invalidate parts of the Mesh but still use Automatic Probing. - * - * The 'X' and 'Y' parameters prioritize where to try and measure points. If omitted, the current - * probe position is used. - * - * Use 'T' (Topology) to generate a report of mesh generation. - * - * P1 will suspend Mesh generation if the controller button is held down. Note that you may need - * to press and hold the switch for several seconds if moves are underway. - * - * P2 Phase 2 Probe unreachable points. - * - * Use 'H' to set the height between Mesh points. If omitted, Z_CLEARANCE_BETWEEN_PROBES is used. - * Smaller values will be quicker. Move the nozzle down till it barely touches the bed. Make sure the - * nozzle is clean and unobstructed. Use caution and move slowly. This can damage your printer! - * (Uses SIZE_OF_LITTLE_RAISE mm if the nozzle is moving less than BIG_RAISE_NOT_NEEDED mm.) - * - * The 'H' value can be negative if the Mesh dips in a large area. Press and hold the - * controller button to terminate the current Phase 2 command. You can then re-issue "G29 P 2" - * with an 'H' parameter more suitable for the area you're manually probing. Note that the command - * tries to start in a corner of the bed where movement will be predictable. Override the distance - * calculation location with the X and Y parameters. You can print a Mesh Map (G29 T) to see where - * the mesh is invalidated and where the nozzle needs to move to complete the command. Use 'C' to - * indicate that the search should be based on the current position. - * - * The 'B' parameter for this command is described above. It places the manual probe subsystem into - * Business Card mode where the thickness of a business card is measured and then used to accurately - * set the nozzle height in all manual probing for the duration of the command. A Business card can - * be used, but you'll get better results with a flexible Shim that doesn't compress. This makes it - * easier to produce similar amounts of force and get more accurate measurements. Google if you're - * not sure how to use a shim. - * - * The 'T' (Map) parameter helps track Mesh building progress. - * - * NOTE: P2 requires an LCD controller! - * - * P3 Phase 3 Fill the unpopulated regions of the Mesh with a fixed value. There are two different paths to - * go down: - * - * - If a 'C' constant is specified, the closest invalid mesh points to the nozzle will be filled, - * and a repeat count can then also be specified with 'R'. - * - * - Leaving out 'C' invokes Smart Fill, which scans the mesh from the edges inward looking for - * invalid mesh points. Adjacent points are used to determine the bed slope. If the bed is sloped - * upward from the invalid point, it takes the value of the nearest point. If sloped downward, it's - * replaced by a value that puts all three points in a line. This version of G29 P3 is a quick, easy - * and (usually) safe way to populate unprobed mesh regions before continuing to G26 Mesh Validation - * Pattern. Note that this populates the mesh with unverified values. Pay attention and use caution. - * - * P4 Phase 4 Fine tune the Mesh. The Delta Mesh Compensation System assumes the existence of - * an LCD Panel. It is possible to fine tune the mesh without an LCD Panel using - * G42 and M421. See the UBL documentation for further details. - * - * Phase 4 is meant to be used with G26 Mesh Validation to fine tune the mesh by direct editing - * of Mesh Points. Raise and lower points to fine tune the mesh until it gives consistently reliable - * adhesion. - * - * P4 moves to the closest Mesh Point (and/or the given X Y), raises the nozzle above the mesh height - * by the given 'H' offset (or default 0), and waits while the controller is used to adjust the nozzle - * height. On click the displayed height is saved in the mesh. - * - * Start Phase 4 at a specific location with X and Y. Adjust a specific number of Mesh Points with - * the 'R' (Repeat) parameter. (If 'R' is left out, the whole matrix is assumed.) This command can be - * terminated early (e.g., after editing the area of interest) by pressing and holding the encoder button. - * - * The general form is G29 P4 [R points] [X position] [Y position] - * - * The H [offset] parameter is useful if a shim is used to fine-tune the mesh. For a 0.4mm shim the - * command would be G29 P4 H0.4. The nozzle is moved to the shim height, you adjust height to the shim, - * and on click the height minus the shim thickness will be saved in the mesh. - * - * !!Use with caution, as a very poor mesh could cause the nozzle to crash into the bed!! - * - * NOTE: P4 is not available unless you have LCD support enabled! - * - * P5 Phase 5 Find Mean Mesh Height and Standard Deviation. Typically, it is easier to use and - * work with the Mesh if it is Mean Adjusted. You can specify a C parameter to - * Correct the Mesh to a 0.00 Mean Height. Adding a C parameter will automatically - * execute a G29 P6 C . - * - * P6 Phase 6 Shift Mesh height. The entire Mesh's height is adjusted by the height specified - * with the C parameter. Being able to adjust the height of a Mesh is useful tool. It - * can be used to compensate for poorly calibrated Z-Probes and other errors. Ideally, - * you should have the Mesh adjusted for a Mean Height of 0.00 and the Z-Probe measuring - * 0.000 at the Z Home location. - * - * Q Test Load specified Test Pattern to assist in checking correct operation of system. This - * command is not anticipated to be of much value to the typical user. It is intended - * for developers to help them verify correct operation of the Unified Bed Leveling System. - * - * R # Repeat Repeat this command the specified number of times. If no number is specified the - * command will be repeated GRID_MAX_POINTS_X * GRID_MAX_POINTS_Y times. - * - * S Store Store the current Mesh in the Activated area of the EEPROM. It will also store the - * current state of the Unified Bed Leveling system in the EEPROM. - * - * S # Store Store the current Mesh at the specified location in EEPROM. Activate this location - * for subsequent Load and Store operations. Valid storage slot numbers begin at 0 and - * extend to a limit related to the available EEPROM storage. - * - * S -1 Store Print the current Mesh as G-code that can be used to restore the mesh anytime. - * - * T Topology Display the Mesh Map Topology. - * 'T' can be used alone (e.g., G29 T) or in combination with most of the other commands. - * This option works with all Phase commands (e.g., G29 P4 R 5 T X 50 Y100 C -.1 O) - * This parameter can also specify a Map Type. T0 (the default) is user-readable. T1 - * is suitable to paste into a spreadsheet for a 3D graph of the mesh. - * - * U Unlevel Perform a probe of the outer perimeter to assist in physically leveling unlevel beds. - * Only used for G29 P1 T U. This speeds up the probing of the edge of the bed. Useful - * when the entire bed doesn't need to be probed because it will be adjusted. - * - * V # Verbosity Set the verbosity level (0-4) for extra details. (Default 0) - * - * X # X Location for this command - * - * Y # Y Location for this command - * - * With UBL_DEVEL_DEBUGGING: - * - * K # Kompare Kompare current Mesh with stored Mesh #, replacing current Mesh with the result. - * This command literally performs a diff between two Meshes. - * - * Q-1 Dump EEPROM Dump the UBL contents stored in EEPROM as HEX format. Useful for developers to help - * verify correct operation of the UBL. - * - * W What? Display valuable UBL data. - * - * - * Release Notes: - * You MUST do M502, M500 to initialize the storage. Failure to do this will cause all - * kinds of problems. Enabling EEPROM Storage is required. - * - * When you do a G28 and G29 P1 to automatically build your first mesh, you are going to notice that - * UBL probes points increasingly further from the starting location. (The starting location defaults - * to the center of the bed.) In contrast, ABL and MBL follow a zigzag pattern. The spiral pattern is - * especially better for Delta printers, since it populates the center of the mesh first, allowing for - * a quicker test print to verify settings. You don't need to populate the entire mesh to use it. - * After all, you don't want to spend a lot of time generating a mesh only to realize the resolution - * or probe offsets are incorrect. Mesh-generation gathers points starting closest to the nozzle unless - * an (X,Y) coordinate pair is given. - * - * Unified Bed Leveling uses a lot of EEPROM storage to hold its data, and it takes some effort to get - * the mesh just right. To prevent this valuable data from being destroyed as the EEPROM structure - * evolves, UBL stores all mesh data at the end of EEPROM. - * - * UBL is founded on Edward Patel's Mesh Bed Leveling code. A big 'Thanks!' to him and the creators of - * 3-Point and Grid Based leveling. Combining their contributions we now have the functionality and - * features of all three systems combined. - */ +/** + * G29: Unified Bed Leveling by Roxy + * + * Parameters understood by this leveling system: + * + * A Activate Activate the Unified Bed Leveling system. + * + * B # Business Use the 'Business Card' mode of the Manual Probe subsystem with P2. + * Note: A non-compressible Spark Gap feeler gauge is recommended over a business card. + * In this mode of G29 P2, a business or index card is used as a shim that the nozzle can + * grab onto as it is lowered. In principle, the nozzle-bed distance is the same when the + * same resistance is felt in the shim. You can omit the numerical value on first invocation + * of G29 P2 B to measure shim thickness. Subsequent use of 'B' will apply the previously- + * measured thickness by default. + * + * C Continue G29 P1 C continues the generation of a partially-constructed Mesh without invalidating + * previous measurements. + * + * C G29 P2 C tells the Manual Probe subsystem to not use the current nozzle + * location in its search for the closest unmeasured Mesh Point. Instead, attempt to + * start at one end of the uprobed points and Continue sequentially. + * + * G29 P3 C specifies the Constant for the fill. Otherwise, uses a "reasonable" value. + * + * C Current G29 Z C uses the Current location (instead of bed center or nearest edge). + * + * D Disable Disable the Unified Bed Leveling system. + * + * E Stow_probe Stow the probe after each sampled point. + * + * F # Fade Fade the amount of Mesh Based Compensation over a specified height. At the + * specified height, no correction is applied and natural printer kenimatics take over. If no + * number is specified for the command, 10mm is assumed to be reasonable. + * + * H # Height With P2, 'H' specifies the Height to raise the nozzle after each manual probe of the bed. + * If omitted, the nozzle will raise by Z_CLEARANCE_BETWEEN_PROBES. + * + * H # Offset With P4, 'H' specifies the Offset above the mesh height to place the nozzle. + * If omitted, Z_CLEARANCE_BETWEEN_PROBES will be used. + * + * I # Invalidate Invalidate the specified number of Mesh Points near the given 'X' 'Y'. If X or Y are omitted, + * the nozzle location is used. If no 'I' value is given, only the point nearest to the location + * is invalidated. Use 'T' to produce a map afterward. This command is useful to invalidate a + * portion of the Mesh so it can be adjusted using other UBL tools. When attempting to invalidate + * an isolated bad mesh point, the 'T' option shows the nozzle position in the Mesh with (#). You + * can move the nozzle around and use this feature to select the center of the area (or cell) to + * invalidate. + * + * J # Grid Perform a Grid Based Leveling of the current Mesh using a grid with n points on a side. + * Not specifying a grid size will invoke the 3-Point leveling function. + * + * L Load Load Mesh from the previously activated location in the EEPROM. + * + * L # Load Load Mesh from the specified location in the EEPROM. Set this location as activated + * for subsequent Load and Store operations. + * + * The P or Phase commands are used for the bulk of the work to setup a Mesh. In general, your Mesh will + * start off being initialized with a G29 P0 or a G29 P1. Further refinement of the Mesh happens with + * each additional Phase that processes it. + * + * P0 Phase 0 Zero Mesh Data and turn off the Mesh Compensation System. This reverts the + * 3D Printer to the same state it was in before the Unified Bed Leveling Compensation + * was turned on. Setting the entire Mesh to Zero is a special case that allows + * a subsequent G or T leveling operation for backward compatibility. + * + * P1 Phase 1 Invalidate entire Mesh and continue with automatic generation of the Mesh data using + * the Z-Probe. Usually the probe can't reach all areas that the nozzle can reach. For delta + * printers only the areas where the probe and nozzle can both reach will be automatically probed. + * + * Unreachable points will be handled in Phase 2 and Phase 3. + * + * Use 'C' to leave the previous mesh intact and automatically probe needed points. This allows you + * to invalidate parts of the Mesh but still use Automatic Probing. + * + * The 'X' and 'Y' parameters prioritize where to try and measure points. If omitted, the current + * probe position is used. + * + * Use 'T' (Topology) to generate a report of mesh generation. + * + * P1 will suspend Mesh generation if the controller button is held down. Note that you may need + * to press and hold the switch for several seconds if moves are underway. + * + * P2 Phase 2 Probe unreachable points. + * + * Use 'H' to set the height between Mesh points. If omitted, Z_CLEARANCE_BETWEEN_PROBES is used. + * Smaller values will be quicker. Move the nozzle down till it barely touches the bed. Make sure the + * nozzle is clean and unobstructed. Use caution and move slowly. This can damage your printer! + * (Uses SIZE_OF_LITTLE_RAISE mm if the nozzle is moving less than BIG_RAISE_NOT_NEEDED mm.) + * + * The 'H' value can be negative if the Mesh dips in a large area. Press and hold the + * controller button to terminate the current Phase 2 command. You can then re-issue "G29 P 2" + * with an 'H' parameter more suitable for the area you're manually probing. Note that the command + * tries to start in a corner of the bed where movement will be predictable. Override the distance + * calculation location with the X and Y parameters. You can print a Mesh Map (G29 T) to see where + * the mesh is invalidated and where the nozzle needs to move to complete the command. Use 'C' to + * indicate that the search should be based on the current position. + * + * The 'B' parameter for this command is described above. It places the manual probe subsystem into + * Business Card mode where the thickness of a business card is measured and then used to accurately + * set the nozzle height in all manual probing for the duration of the command. A Business card can + * be used, but you'll get better results with a flexible Shim that doesn't compress. This makes it + * easier to produce similar amounts of force and get more accurate measurements. Google if you're + * not sure how to use a shim. + * + * The 'T' (Map) parameter helps track Mesh building progress. + * + * NOTE: P2 requires an LCD controller! + * + * P3 Phase 3 Fill the unpopulated regions of the Mesh with a fixed value. There are two different paths to + * go down: + * + * - If a 'C' constant is specified, the closest invalid mesh points to the nozzle will be filled, + * and a repeat count can then also be specified with 'R'. + * + * - Leaving out 'C' invokes Smart Fill, which scans the mesh from the edges inward looking for + * invalid mesh points. Adjacent points are used to determine the bed slope. If the bed is sloped + * upward from the invalid point, it takes the value of the nearest point. If sloped downward, it's + * replaced by a value that puts all three points in a line. This version of G29 P3 is a quick, easy + * and (usually) safe way to populate unprobed mesh regions before continuing to G26 Mesh Validation + * Pattern. Note that this populates the mesh with unverified values. Pay attention and use caution. + * + * P4 Phase 4 Fine tune the Mesh. The Delta Mesh Compensation System assumes the existence of + * an LCD Panel. It is possible to fine tune the mesh without an LCD Panel using + * G42 and M421. See the UBL documentation for further details. + * + * Phase 4 is meant to be used with G26 Mesh Validation to fine tune the mesh by direct editing + * of Mesh Points. Raise and lower points to fine tune the mesh until it gives consistently reliable + * adhesion. + * + * P4 moves to the closest Mesh Point (and/or the given X Y), raises the nozzle above the mesh height + * by the given 'H' offset (or default 0), and waits while the controller is used to adjust the nozzle + * height. On click the displayed height is saved in the mesh. + * + * Start Phase 4 at a specific location with X and Y. Adjust a specific number of Mesh Points with + * the 'R' (Repeat) parameter. (If 'R' is left out, the whole matrix is assumed.) This command can be + * terminated early (e.g., after editing the area of interest) by pressing and holding the encoder button. + * + * The general form is G29 P4 [R points] [X position] [Y position] + * + * The H [offset] parameter is useful if a shim is used to fine-tune the mesh. For a 0.4mm shim the + * command would be G29 P4 H0.4. The nozzle is moved to the shim height, you adjust height to the shim, + * and on click the height minus the shim thickness will be saved in the mesh. + * + * !!Use with caution, as a very poor mesh could cause the nozzle to crash into the bed!! + * + * NOTE: P4 is not available unless you have LCD support enabled! + * + * P5 Phase 5 Find Mean Mesh Height and Standard Deviation. Typically, it is easier to use and + * work with the Mesh if it is Mean Adjusted. You can specify a C parameter to + * Correct the Mesh to a 0.00 Mean Height. Adding a C parameter will automatically + * execute a G29 P6 C . + * + * P6 Phase 6 Shift Mesh height. The entire Mesh's height is adjusted by the height specified + * with the C parameter. Being able to adjust the height of a Mesh is useful tool. It + * can be used to compensate for poorly calibrated Z-Probes and other errors. Ideally, + * you should have the Mesh adjusted for a Mean Height of 0.00 and the Z-Probe measuring + * 0.000 at the Z Home location. + * + * Q Test Load specified Test Pattern to assist in checking correct operation of system. This + * command is not anticipated to be of much value to the typical user. It is intended + * for developers to help them verify correct operation of the Unified Bed Leveling System. + * + * R # Repeat Repeat this command the specified number of times. If no number is specified the + * command will be repeated GRID_MAX_POINTS_X * GRID_MAX_POINTS_Y times. + * + * S Store Store the current Mesh in the Activated area of the EEPROM. It will also store the + * current state of the Unified Bed Leveling system in the EEPROM. + * + * S # Store Store the current Mesh at the specified location in EEPROM. Activate this location + * for subsequent Load and Store operations. Valid storage slot numbers begin at 0 and + * extend to a limit related to the available EEPROM storage. + * + * S -1 Store Print the current Mesh as G-code that can be used to restore the mesh anytime. + * + * T Topology Display the Mesh Map Topology. + * 'T' can be used alone (e.g., G29 T) or in combination with most of the other commands. + * This option works with all Phase commands (e.g., G29 P4 R 5 T X 50 Y100 C -.1 O) + * This parameter can also specify a Map Type. T0 (the default) is user-readable. T1 + * is suitable to paste into a spreadsheet for a 3D graph of the mesh. + * + * U Unlevel Perform a probe of the outer perimeter to assist in physically leveling unlevel beds. + * Only used for G29 P1 T U. This speeds up the probing of the edge of the bed. Useful + * when the entire bed doesn't need to be probed because it will be adjusted. + * + * V # Verbosity Set the verbosity level (0-4) for extra details. (Default 0) + * + * X # X Location for this command + * + * Y # Y Location for this command + * + * With UBL_DEVEL_DEBUGGING: + * + * K # Kompare Kompare current Mesh with stored Mesh #, replacing current Mesh with the result. + * This command literally performs a diff between two Meshes. + * + * Q-1 Dump EEPROM Dump the UBL contents stored in EEPROM as HEX format. Useful for developers to help + * verify correct operation of the UBL. + * + * W What? Display valuable UBL data. + * + * + * Release Notes: + * You MUST do M502, M500 to initialize the storage. Failure to do this will cause all + * kinds of problems. Enabling EEPROM Storage is required. + * + * When you do a G28 and G29 P1 to automatically build your first mesh, you are going to notice that + * UBL probes points increasingly further from the starting location. (The starting location defaults + * to the center of the bed.) In contrast, ABL and MBL follow a zigzag pattern. The spiral pattern is + * especially better for Delta printers, since it populates the center of the mesh first, allowing for + * a quicker test print to verify settings. You don't need to populate the entire mesh to use it. + * After all, you don't want to spend a lot of time generating a mesh only to realize the resolution + * or probe offsets are incorrect. Mesh-generation gathers points starting closest to the nozzle unless + * an (X,Y) coordinate pair is given. + * + * Unified Bed Leveling uses a lot of EEPROM storage to hold its data, and it takes some effort to get + * the mesh just right. To prevent this valuable data from being destroyed as the EEPROM structure + * evolves, UBL stores all mesh data at the end of EEPROM. + * + * UBL is founded on Edward Patel's Mesh Bed Leveling code. A big 'Thanks!' to him and the creators of + * 3-Point and Grid Based leveling. Combining their contributions we now have the functionality and + * features of all three systems combined. + */ - void unified_bed_leveling::G29() { +void unified_bed_leveling::G29() { - bool probe_deployed = false; - if (g29_parameter_parsing()) return; // Abort on parameter error + bool probe_deployed = false; + if (g29_parameter_parsing()) return; // Abort on parameter error - const int8_t p_val = parser.intval('P', -1); - const bool may_move = p_val == 1 || p_val == 2 || p_val == 4 || parser.seen('J'); - TERN_(HAS_MULTI_HOTEND, const uint8_t old_tool_index = active_extruder); + const int8_t p_val = parser.intval('P', -1); + const bool may_move = p_val == 1 || p_val == 2 || p_val == 4 || parser.seen('J'); + TERN_(HAS_MULTI_HOTEND, const uint8_t old_tool_index = active_extruder); - // Check for commands that require the printer to be homed - if (may_move) { - planner.synchronize(); - // Send 'N' to force homing before G29 (internal only) - if (axes_should_home() || parser.seen('N')) gcode.home_all_axes(); - TERN_(HAS_MULTI_HOTEND, if (active_extruder) tool_change(0)); - } + // Check for commands that require the printer to be homed + if (may_move) { + planner.synchronize(); + // Send 'N' to force homing before G29 (internal only) + if (axes_should_home() || parser.seen('N')) gcode.home_all_axes(); + TERN_(HAS_MULTI_HOTEND, if (active_extruder) tool_change(0)); + } - // Invalidate Mesh Points. This command is a little bit asymmetrical because - // it directly specifies the repetition count and does not use the 'R' parameter. - if (parser.seen('I')) { - uint8_t cnt = 0; - g29_repetition_cnt = parser.has_value() ? parser.value_int() : 1; - if (g29_repetition_cnt >= GRID_MAX_POINTS) { - set_all_mesh_points_to_value(NAN); - } - else { - while (g29_repetition_cnt--) { - if (cnt > 20) { cnt = 0; idle(); } - const mesh_index_pair closest = find_closest_mesh_point_of_type(REAL, g29_pos); - const xy_int8_t &cpos = closest.pos; - if (cpos.x < 0) { - // No more REAL mesh points to invalidate, so we ASSUME the user - // meant to invalidate the ENTIRE mesh, which cannot be done with - // find_closest_mesh_point loop which only returns REAL points. - set_all_mesh_points_to_value(NAN); - SERIAL_ECHOLNPGM("Entire Mesh invalidated.\n"); - break; // No more invalid Mesh Points to populate - } - z_values[cpos.x][cpos.y] = NAN; - TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(cpos, 0.0f)); - cnt++; + // Invalidate Mesh Points. This command is a little bit asymmetrical because + // it directly specifies the repetition count and does not use the 'R' parameter. + if (parser.seen('I')) { + uint8_t cnt = 0; + g29_repetition_cnt = parser.has_value() ? parser.value_int() : 1; + if (g29_repetition_cnt >= GRID_MAX_POINTS) { + set_all_mesh_points_to_value(NAN); + } + else { + while (g29_repetition_cnt--) { + if (cnt > 20) { cnt = 0; idle(); } + const mesh_index_pair closest = find_closest_mesh_point_of_type(REAL, g29_pos); + const xy_int8_t &cpos = closest.pos; + if (cpos.x < 0) { + // No more REAL mesh points to invalidate, so we ASSUME the user + // meant to invalidate the ENTIRE mesh, which cannot be done with + // find_closest_mesh_point loop which only returns REAL points. + set_all_mesh_points_to_value(NAN); + SERIAL_ECHOLNPGM("Entire Mesh invalidated.\n"); + break; // No more invalid Mesh Points to populate } + z_values[cpos.x][cpos.y] = NAN; + TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(cpos, 0.0f)); + cnt++; } - SERIAL_ECHOLNPGM("Locations invalidated.\n"); } + SERIAL_ECHOLNPGM("Locations invalidated.\n"); + } - if (parser.seen('Q')) { - const int test_pattern = parser.has_value() ? parser.value_int() : -99; - if (!WITHIN(test_pattern, -1, 2)) { - SERIAL_ECHOLNPGM("Invalid test_pattern value. (-1 to 2)\n"); - return; - } - SERIAL_ECHOLNPGM("Loading test_pattern values.\n"); - switch (test_pattern) { - - #if ENABLED(UBL_DEVEL_DEBUGGING) - case -1: - g29_eeprom_dump(); - break; - #endif + if (parser.seen('Q')) { + const int test_pattern = parser.has_value() ? parser.value_int() : -99; + if (!WITHIN(test_pattern, -1, 2)) { + SERIAL_ECHOLNPGM("Invalid test_pattern value. (-1 to 2)\n"); + return; + } + SERIAL_ECHOLNPGM("Loading test_pattern values.\n"); + switch (test_pattern) { - case 0: - GRID_LOOP(x, y) { // Create a bowl shape similar to a poorly-calibrated Delta - const float p1 = 0.5f * (GRID_MAX_POINTS_X) - x, - p2 = 0.5f * (GRID_MAX_POINTS_Y) - y; - z_values[x][y] += 2.0f * HYPOT(p1, p2); - TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(x, y, z_values[x][y])); - } + #if ENABLED(UBL_DEVEL_DEBUGGING) + case -1: + g29_eeprom_dump(); break; + #endif - case 1: - LOOP_L_N(x, GRID_MAX_POINTS_X) { // Create a diagonal line several Mesh cells thick that is raised - z_values[x][x] += 9.999f; - z_values[x][x + (x < (GRID_MAX_POINTS_Y) - 1) ? 1 : -1] += 9.999f; // We want the altered line several mesh points thick - #if ENABLED(EXTENSIBLE_UI) - ExtUI::onMeshUpdate(x, x, z_values[x][x]); - ExtUI::onMeshUpdate(x, (x + (x < (GRID_MAX_POINTS_Y) - 1) ? 1 : -1), z_values[x][x + (x < (GRID_MAX_POINTS_Y) - 1) ? 1 : -1]); - #endif + case 0: + GRID_LOOP(x, y) { // Create a bowl shape similar to a poorly-calibrated Delta + const float p1 = 0.5f * (GRID_MAX_POINTS_X) - x, + p2 = 0.5f * (GRID_MAX_POINTS_Y) - y; + z_values[x][y] += 2.0f * HYPOT(p1, p2); + TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(x, y, z_values[x][y])); + } + break; + + case 1: + LOOP_L_N(x, GRID_MAX_POINTS_X) { // Create a diagonal line several Mesh cells thick that is raised + z_values[x][x] += 9.999f; + z_values[x][x + (x < (GRID_MAX_POINTS_Y) - 1) ? 1 : -1] += 9.999f; // We want the altered line several mesh points thick + #if ENABLED(EXTENSIBLE_UI) + ExtUI::onMeshUpdate(x, x, z_values[x][x]); + ExtUI::onMeshUpdate(x, (x + (x < (GRID_MAX_POINTS_Y) - 1) ? 1 : -1), z_values[x][x + (x < (GRID_MAX_POINTS_Y) - 1) ? 1 : -1]); + #endif + } + break; + + case 2: + // Allow the user to specify the height because 10mm is a little extreme in some cases. + for (uint8_t x = (GRID_MAX_POINTS_X) / 3; x < 2 * (GRID_MAX_POINTS_X) / 3; x++) // Create a rectangular raised area in + for (uint8_t y = (GRID_MAX_POINTS_Y) / 3; y < 2 * (GRID_MAX_POINTS_Y) / 3; y++) { // the center of the bed + z_values[x][y] += parser.seen('C') ? g29_constant : 9.99f; + TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(x, y, z_values[x][y])); } - break; + break; + } + } - case 2: - // Allow the user to specify the height because 10mm is a little extreme in some cases. - for (uint8_t x = (GRID_MAX_POINTS_X) / 3; x < 2 * (GRID_MAX_POINTS_X) / 3; x++) // Create a rectangular raised area in - for (uint8_t y = (GRID_MAX_POINTS_Y) / 3; y < 2 * (GRID_MAX_POINTS_Y) / 3; y++) { // the center of the bed - z_values[x][y] += parser.seen('C') ? g29_constant : 9.99f; - TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(x, y, z_values[x][y])); - } - break; - } + #if HAS_BED_PROBE + + if (parser.seen('J')) { + save_ubl_active_state_and_disable(); + tilt_mesh_based_on_probed_grid(g29_grid_size == 0); // Zero size does 3-Point + restore_ubl_active_state_and_leave(); + #if ENABLED(UBL_G29_J_RECENTER) + do_blocking_move_to_xy(0.5f * ((MESH_MIN_X) + (MESH_MAX_X)), 0.5f * ((MESH_MIN_Y) + (MESH_MAX_Y))); + #endif + report_current_position(); + probe_deployed = true; } - #if HAS_BED_PROBE + #endif // HAS_BED_PROBE - if (parser.seen('J')) { - save_ubl_active_state_and_disable(); - tilt_mesh_based_on_probed_grid(g29_grid_size == 0); // Zero size does 3-Point - restore_ubl_active_state_and_leave(); - #if ENABLED(UBL_G29_J_RECENTER) - do_blocking_move_to_xy(0.5f * ((MESH_MIN_X) + (MESH_MAX_X)), 0.5f * ((MESH_MIN_Y) + (MESH_MAX_Y))); - #endif - report_current_position(); - probe_deployed = true; - } + if (parser.seen('P')) { + if (WITHIN(g29_phase_value, 0, 1) && storage_slot == -1) { + storage_slot = 0; + SERIAL_ECHOLNPGM("Default storage slot 0 selected."); + } - #endif // HAS_BED_PROBE + switch (g29_phase_value) { + case 0: + // + // Zero Mesh Data + // + reset(); + SERIAL_ECHOLNPGM("Mesh zeroed."); + break; - if (parser.seen('P')) { - if (WITHIN(g29_phase_value, 0, 1) && storage_slot == -1) { - storage_slot = 0; - SERIAL_ECHOLNPGM("Default storage slot 0 selected."); - } + #if HAS_BED_PROBE - switch (g29_phase_value) { - case 0: + case 1: { // - // Zero Mesh Data + // Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe // - reset(); - SERIAL_ECHOLNPGM("Mesh zeroed."); - break; - - #if HAS_BED_PROBE + if (!parser.seen('C')) { + invalidate(); + SERIAL_ECHOLNPGM("Mesh invalidated. Probing mesh."); + } + if (g29_verbose_level > 1) { + SERIAL_ECHOPAIR("Probing around (", g29_pos.x); + SERIAL_CHAR(','); + SERIAL_DECIMAL(g29_pos.y); + SERIAL_ECHOLNPGM(").\n"); + } + const xy_pos_t near_probe_xy = g29_pos + probe.offset_xy; + probe_entire_mesh(near_probe_xy, parser.seen('T'), parser.seen('E'), parser.seen('U')); - case 1: { - // - // Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe - // - if (!parser.seen('C')) { - invalidate(); - SERIAL_ECHOLNPGM("Mesh invalidated. Probing mesh."); - } - if (g29_verbose_level > 1) { - SERIAL_ECHOPAIR("Probing around (", g29_pos.x); - SERIAL_CHAR(','); - SERIAL_DECIMAL(g29_pos.y); - SERIAL_ECHOLNPGM(").\n"); - } - const xy_pos_t near_probe_xy = g29_pos + probe.offset_xy; - probe_entire_mesh(near_probe_xy, parser.seen('T'), parser.seen('E'), parser.seen('U')); + report_current_position(); + probe_deployed = true; + } break; - report_current_position(); - probe_deployed = true; - } break; - - #endif // HAS_BED_PROBE - - case 2: { - #if HAS_LCD_MENU - // - // Manually Probe Mesh in areas that can't be reached by the probe - // - SERIAL_ECHOLNPGM("Manually probing unreachable points."); - do_z_clearance(Z_CLEARANCE_BETWEEN_PROBES); - - if (parser.seen('C') && !xy_seen) { - - /** - * Use a good default location for the path. - * The flipped > and < operators in these comparisons is intentional. - * It should cause the probed points to follow a nice path on Cartesian printers. - * It may make sense to have Delta printers default to the center of the bed. - * Until that is decided, this can be forced with the X and Y parameters. - */ - g29_pos.set( - #if IS_KINEMATIC - X_HOME_POS, Y_HOME_POS - #else - probe.offset_xy.x > 0 ? X_BED_SIZE : 0, - probe.offset_xy.y < 0 ? Y_BED_SIZE : 0 - #endif - ); - } + #endif // HAS_BED_PROBE - if (parser.seen('B')) { - g29_card_thickness = parser.has_value() ? parser.value_float() : measure_business_card_thickness(); - if (ABS(g29_card_thickness) > 1.5f) { - SERIAL_ECHOLNPGM("?Error in Business Card measurement."); - return; - } - probe_deployed = true; - } + case 2: { + #if HAS_LCD_MENU + // + // Manually Probe Mesh in areas that can't be reached by the probe + // + SERIAL_ECHOLNPGM("Manually probing unreachable points."); + do_z_clearance(Z_CLEARANCE_BETWEEN_PROBES); + + if (parser.seen('C') && !xy_seen) { + + /** + * Use a good default location for the path. + * The flipped > and < operators in these comparisons is intentional. + * It should cause the probed points to follow a nice path on Cartesian printers. + * It may make sense to have Delta printers default to the center of the bed. + * Until that is decided, this can be forced with the X and Y parameters. + */ + g29_pos.set( + #if IS_KINEMATIC + X_HOME_POS, Y_HOME_POS + #else + probe.offset_xy.x > 0 ? X_BED_SIZE : 0, + probe.offset_xy.y < 0 ? Y_BED_SIZE : 0 + #endif + ); + } - if (!position_is_reachable(g29_pos)) { - SERIAL_ECHOLNPGM("XY outside printable radius."); + if (parser.seen('B')) { + g29_card_thickness = parser.has_value() ? parser.value_float() : measure_business_card_thickness(); + if (ABS(g29_card_thickness) > 1.5f) { + SERIAL_ECHOLNPGM("?Error in Business Card measurement."); return; } + probe_deployed = true; + } - const float height = parser.floatval('H', Z_CLEARANCE_BETWEEN_PROBES); - manually_probe_remaining_mesh(g29_pos, height, g29_card_thickness, parser.seen('T')); + if (!position_is_reachable(g29_pos)) { + SERIAL_ECHOLNPGM("XY outside printable radius."); + return; + } - SERIAL_ECHOLNPGM("G29 P2 finished."); + const float height = parser.floatval('H', Z_CLEARANCE_BETWEEN_PROBES); + manually_probe_remaining_mesh(g29_pos, height, g29_card_thickness, parser.seen('T')); - report_current_position(); + SERIAL_ECHOLNPGM("G29 P2 finished."); - #else + report_current_position(); - SERIAL_ECHOLNPGM("?P2 is only available when an LCD is present."); - return; + #else - #endif - } break; + SERIAL_ECHOLNPGM("?P2 is only available when an LCD is present."); + return; - case 3: { - /** - * Populate invalid mesh areas. Proceed with caution. - * Two choices are available: - * - Specify a constant with the 'C' parameter. - * - Allow 'G29 P3' to choose a 'reasonable' constant. - */ - - if (g29_c_flag) { - if (g29_repetition_cnt >= GRID_MAX_POINTS) { - set_all_mesh_points_to_value(g29_constant); - } - else { - while (g29_repetition_cnt--) { // this only populates reachable mesh points near - const mesh_index_pair closest = find_closest_mesh_point_of_type(INVALID, g29_pos); - const xy_int8_t &cpos = closest.pos; - if (cpos.x < 0) { - // No more REAL INVALID mesh points to populate, so we ASSUME - // user meant to populate ALL INVALID mesh points to value - GRID_LOOP(x, y) if (isnan(z_values[x][y])) z_values[x][y] = g29_constant; - break; // No more invalid Mesh Points to populate - } - else { - z_values[cpos.x][cpos.y] = g29_constant; - TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(cpos, g29_constant)); - } - } - } + #endif + } break; + + case 3: { + /** + * Populate invalid mesh areas. Proceed with caution. + * Two choices are available: + * - Specify a constant with the 'C' parameter. + * - Allow 'G29 P3' to choose a 'reasonable' constant. + */ + + if (g29_c_flag) { + if (g29_repetition_cnt >= GRID_MAX_POINTS) { + set_all_mesh_points_to_value(g29_constant); } else { - const float cvf = parser.value_float(); - switch ((int)TRUNC(cvf * 10.0f) - 30) { // 3.1 -> 1 - #if ENABLED(UBL_G29_P31) - case 1: { - - // P3.1 use least squares fit to fill missing mesh values - // P3.10 zero weighting for distance, all grid points equal, best fit tilted plane - // P3.11 10X weighting for nearest grid points versus farthest grid points - // P3.12 100X distance weighting - // P3.13 1000X distance weighting, approaches simple average of nearest points - - const float weight_power = (cvf - 3.10f) * 100.0f, // 3.12345 -> 2.345 - weight_factor = weight_power ? POW(10.0f, weight_power) : 0; - smart_fill_wlsf(weight_factor); - } - break; - #endif - case 0: // P3 or P3.0 - default: // and anything P3.x that's not P3.1 - smart_fill_mesh(); // Do a 'Smart' fill using nearby known values - break; + while (g29_repetition_cnt--) { // this only populates reachable mesh points near + const mesh_index_pair closest = find_closest_mesh_point_of_type(INVALID, g29_pos); + const xy_int8_t &cpos = closest.pos; + if (cpos.x < 0) { + // No more REAL INVALID mesh points to populate, so we ASSUME + // user meant to populate ALL INVALID mesh points to value + GRID_LOOP(x, y) if (isnan(z_values[x][y])) z_values[x][y] = g29_constant; + break; // No more invalid Mesh Points to populate + } + else { + z_values[cpos.x][cpos.y] = g29_constant; + TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(cpos, g29_constant)); + } } } - break; } - - case 4: // Fine Tune (i.e., Edit) the Mesh - #if HAS_LCD_MENU - fine_tune_mesh(g29_pos, parser.seen('T')); - #else - SERIAL_ECHOLNPGM("?P4 is only available when an LCD is present."); - return; - #endif - break; - - case 5: adjust_mesh_to_mean(g29_c_flag, g29_constant); break; - - case 6: shift_mesh_height(); break; + else { + const float cvf = parser.value_float(); + switch ((int)TRUNC(cvf * 10.0f) - 30) { // 3.1 -> 1 + #if ENABLED(UBL_G29_P31) + case 1: { + + // P3.1 use least squares fit to fill missing mesh values + // P3.10 zero weighting for distance, all grid points equal, best fit tilted plane + // P3.11 10X weighting for nearest grid points versus farthest grid points + // P3.12 100X distance weighting + // P3.13 1000X distance weighting, approaches simple average of nearest points + + const float weight_power = (cvf - 3.10f) * 100.0f, // 3.12345 -> 2.345 + weight_factor = weight_power ? POW(10.0f, weight_power) : 0; + smart_fill_wlsf(weight_factor); + } + break; + #endif + case 0: // P3 or P3.0 + default: // and anything P3.x that's not P3.1 + smart_fill_mesh(); // Do a 'Smart' fill using nearby known values + break; + } + } + break; } - } - - #if ENABLED(UBL_DEVEL_DEBUGGING) - // - // Much of the 'What?' command can be eliminated. But until we are fully debugged, it is - // good to have the extra information. Soon... we prune this to just a few items - // - if (parser.seen('W')) g29_what_command(); + case 4: // Fine Tune (i.e., Edit) the Mesh + #if HAS_LCD_MENU + fine_tune_mesh(g29_pos, parser.seen('T')); + #else + SERIAL_ECHOLNPGM("?P4 is only available when an LCD is present."); + return; + #endif + break; - // - // When we are fully debugged, this may go away. But there are some valid - // use cases for the users. So we can wait and see what to do with it. - // + case 5: adjust_mesh_to_mean(g29_c_flag, g29_constant); break; - if (parser.seen('K')) // Kompare Current Mesh Data to Specified Stored Mesh - g29_compare_current_mesh_to_stored_mesh(); + case 6: shift_mesh_height(); break; + } + } - #endif // UBL_DEVEL_DEBUGGING + #if ENABLED(UBL_DEVEL_DEBUGGING) + // + // Much of the 'What?' command can be eliminated. But until we are fully debugged, it is + // good to have the extra information. Soon... we prune this to just a few items + // + if (parser.seen('W')) g29_what_command(); // - // Load a Mesh from the EEPROM + // When we are fully debugged, this may go away. But there are some valid + // use cases for the users. So we can wait and see what to do with it. // - if (parser.seen('L')) { // Load Current Mesh Data - g29_storage_slot = parser.has_value() ? parser.value_int() : storage_slot; + if (parser.seen('K')) // Kompare Current Mesh Data to Specified Stored Mesh + g29_compare_current_mesh_to_stored_mesh(); - int16_t a = settings.calc_num_meshes(); + #endif // UBL_DEVEL_DEBUGGING - if (!a) { - SERIAL_ECHOLNPGM("?EEPROM storage not available."); - return; - } - if (!WITHIN(g29_storage_slot, 0, a - 1)) { - SERIAL_ECHOLNPAIR("?Invalid storage slot.\n?Use 0 to ", a - 1); - return; - } + // + // Load a Mesh from the EEPROM + // + + if (parser.seen('L')) { // Load Current Mesh Data + g29_storage_slot = parser.has_value() ? parser.value_int() : storage_slot; - settings.load_mesh(g29_storage_slot); - storage_slot = g29_storage_slot; + int16_t a = settings.calc_num_meshes(); - SERIAL_ECHOLNPGM("Done."); + if (!a) { + SERIAL_ECHOLNPGM("?EEPROM storage not available."); + return; } - // - // Store a Mesh in the EEPROM - // + if (!WITHIN(g29_storage_slot, 0, a - 1)) { + SERIAL_ECHOLNPAIR("?Invalid storage slot.\n?Use 0 to ", a - 1); + return; + } - if (parser.seen('S')) { // Store (or Save) Current Mesh Data - g29_storage_slot = parser.has_value() ? parser.value_int() : storage_slot; + settings.load_mesh(g29_storage_slot); + storage_slot = g29_storage_slot; - if (g29_storage_slot == -1) // Special case, the user wants to 'Export' the mesh to the - return report_current_mesh(); // host program to be saved on the user's computer + SERIAL_ECHOLNPGM("Done."); + } - int16_t a = settings.calc_num_meshes(); + // + // Store a Mesh in the EEPROM + // - if (!a) { - SERIAL_ECHOLNPGM("?EEPROM storage not available."); - goto LEAVE; - } + if (parser.seen('S')) { // Store (or Save) Current Mesh Data + g29_storage_slot = parser.has_value() ? parser.value_int() : storage_slot; - if (!WITHIN(g29_storage_slot, 0, a - 1)) { - SERIAL_ECHOLNPAIR("?Invalid storage slot.\n?Use 0 to ", a - 1); - goto LEAVE; - } + if (g29_storage_slot == -1) // Special case, the user wants to 'Export' the mesh to the + return report_current_mesh(); // host program to be saved on the user's computer - settings.store_mesh(g29_storage_slot); - storage_slot = g29_storage_slot; + int16_t a = settings.calc_num_meshes(); - SERIAL_ECHOLNPGM("Done."); + if (!a) { + SERIAL_ECHOLNPGM("?EEPROM storage not available."); + goto LEAVE; } - if (parser.seen('T')) - display_map(g29_map_type); + if (!WITHIN(g29_storage_slot, 0, a - 1)) { + SERIAL_ECHOLNPAIR("?Invalid storage slot.\n?Use 0 to ", a - 1); + goto LEAVE; + } - LEAVE: + settings.store_mesh(g29_storage_slot); + storage_slot = g29_storage_slot; - #if HAS_LCD_MENU - ui.reset_alert_level(); - ui.quick_feedback(); - ui.reset_status(); - ui.release(); - #endif + SERIAL_ECHOLNPGM("Done."); + } - #ifdef Z_PROBE_END_SCRIPT - if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT); - if (probe_deployed) { - planner.synchronize(); - gcode.process_subcommands_now_P(PSTR(Z_PROBE_END_SCRIPT)); - } - #else - UNUSED(probe_deployed); - #endif + if (parser.seen('T')) + display_map(g29_map_type); - TERN_(HAS_MULTI_HOTEND, tool_change(old_tool_index)); - return; - } + LEAVE: - void unified_bed_leveling::adjust_mesh_to_mean(const bool cflag, const float value) { - float sum = 0; - int n = 0; - GRID_LOOP(x, y) - if (!isnan(z_values[x][y])) { - sum += z_values[x][y]; - n++; - } + #if HAS_LCD_MENU + ui.reset_alert_level(); + ui.quick_feedback(); + ui.reset_status(); + ui.release(); + #endif + + #ifdef Z_PROBE_END_SCRIPT + if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT); + if (probe_deployed) { + planner.synchronize(); + gcode.process_subcommands_now_P(PSTR(Z_PROBE_END_SCRIPT)); + } + #else + UNUSED(probe_deployed); + #endif - const float mean = sum / n; + TERN_(HAS_MULTI_HOTEND, tool_change(old_tool_index)); + return; +} + +void unified_bed_leveling::adjust_mesh_to_mean(const bool cflag, const float value) { + float sum = 0; + int n = 0; + GRID_LOOP(x, y) + if (!isnan(z_values[x][y])) { + sum += z_values[x][y]; + n++; + } - // - // Sum the squares of difference from mean - // - float sum_of_diff_squared = 0; - GRID_LOOP(x, y) - if (!isnan(z_values[x][y])) - sum_of_diff_squared += sq(z_values[x][y] - mean); + const float mean = sum / n; - SERIAL_ECHOLNPAIR("# of samples: ", n); - SERIAL_ECHOLNPAIR_F("Mean Mesh Height: ", mean, 6); + // + // Sum the squares of difference from mean + // + float sum_of_diff_squared = 0; + GRID_LOOP(x, y) + if (!isnan(z_values[x][y])) + sum_of_diff_squared += sq(z_values[x][y] - mean); - const float sigma = SQRT(sum_of_diff_squared / (n + 1)); - SERIAL_ECHOLNPAIR_F("Standard Deviation: ", sigma, 6); + SERIAL_ECHOLNPAIR("# of samples: ", n); + SERIAL_ECHOLNPAIR_F("Mean Mesh Height: ", mean, 6); - if (cflag) - GRID_LOOP(x, y) - if (!isnan(z_values[x][y])) { - z_values[x][y] -= mean + value; - TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(x, y, z_values[x][y])); - } - } + const float sigma = SQRT(sum_of_diff_squared / (n + 1)); + SERIAL_ECHOLNPAIR_F("Standard Deviation: ", sigma, 6); - void unified_bed_leveling::shift_mesh_height() { + if (cflag) GRID_LOOP(x, y) if (!isnan(z_values[x][y])) { - z_values[x][y] += g29_constant; + z_values[x][y] -= mean + value; TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(x, y, z_values[x][y])); } - } +} - #if HAS_BED_PROBE - /** - * Probe all invalidated locations of the mesh that can be reached by the probe. - * This attempts to fill in locations closest to the nozzle's start location first. - */ - void unified_bed_leveling::probe_entire_mesh(const xy_pos_t &nearby, const bool do_ubl_mesh_map, const bool stow_probe, const bool do_furthest) { - probe.deploy(); // Deploy before ui.capture() to allow for PAUSE_BEFORE_DEPLOY_STOW +void unified_bed_leveling::shift_mesh_height() { + GRID_LOOP(x, y) + if (!isnan(z_values[x][y])) { + z_values[x][y] += g29_constant; + TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(x, y, z_values[x][y])); + } +} - TERN_(HAS_LCD_MENU, ui.capture()); +#if HAS_BED_PROBE + /** + * Probe all invalidated locations of the mesh that can be reached by the probe. + * This attempts to fill in locations closest to the nozzle's start location first. + */ + void unified_bed_leveling::probe_entire_mesh(const xy_pos_t &nearby, const bool do_ubl_mesh_map, const bool stow_probe, const bool do_furthest) { + probe.deploy(); // Deploy before ui.capture() to allow for PAUSE_BEFORE_DEPLOY_STOW - save_ubl_active_state_and_disable(); // No bed level correction so only raw data is obtained - uint8_t count = GRID_MAX_POINTS; + TERN_(HAS_LCD_MENU, ui.capture()); - mesh_index_pair best; - TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(best.pos, ExtUI::MESH_START)); - do { - if (do_ubl_mesh_map) display_map(g29_map_type); + save_ubl_active_state_and_disable(); // No bed level correction so only raw data is obtained + uint8_t count = GRID_MAX_POINTS; - const int point_num = (GRID_MAX_POINTS) - count + 1; - SERIAL_ECHOLNPAIR("Probing mesh point ", point_num, "/", GRID_MAX_POINTS, "."); - TERN_(HAS_DISPLAY, ui.status_printf_P(0, PSTR(S_FMT " %i/%i"), GET_TEXT(MSG_PROBING_MESH), point_num, int(GRID_MAX_POINTS))); + mesh_index_pair best; + TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(best.pos, ExtUI::MESH_START)); + do { + if (do_ubl_mesh_map) display_map(g29_map_type); - #if HAS_LCD_MENU - if (ui.button_pressed()) { - ui.quick_feedback(false); // Preserve button state for click-and-hold - SERIAL_ECHOLNPGM("\nMesh only partially populated.\n"); - ui.wait_for_release(); - ui.quick_feedback(); - ui.release(); - probe.stow(); // Release UI before stow to allow for PAUSE_BEFORE_DEPLOY_STOW - return restore_ubl_active_state_and_leave(); - } + const int point_num = (GRID_MAX_POINTS) - count + 1; + SERIAL_ECHOLNPAIR("Probing mesh point ", point_num, "/", GRID_MAX_POINTS, "."); + TERN_(HAS_DISPLAY, ui.status_printf_P(0, PSTR(S_FMT " %i/%i"), GET_TEXT(MSG_PROBING_MESH), point_num, int(GRID_MAX_POINTS))); + + #if HAS_LCD_MENU + if (ui.button_pressed()) { + ui.quick_feedback(false); // Preserve button state for click-and-hold + SERIAL_ECHOLNPGM("\nMesh only partially populated.\n"); + ui.wait_for_release(); + ui.quick_feedback(); + ui.release(); + probe.stow(); // Release UI before stow to allow for PAUSE_BEFORE_DEPLOY_STOW + return restore_ubl_active_state_and_leave(); + } + #endif + + best = do_furthest + ? find_furthest_invalid_mesh_point() + : find_closest_mesh_point_of_type(INVALID, nearby, true); + + if (best.pos.x >= 0) { // mesh point found and is reachable by probe + TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(best.pos, ExtUI::PROBE_START)); + const float measured_z = probe.probe_at_point( + best.meshpos(), + stow_probe ? PROBE_PT_STOW : PROBE_PT_RAISE, g29_verbose_level + ); + z_values[best.pos.x][best.pos.y] = measured_z; + #if ENABLED(EXTENSIBLE_UI) + ExtUI::onMeshUpdate(best.pos, ExtUI::PROBE_FINISH); + ExtUI::onMeshUpdate(best.pos, measured_z); #endif + } + SERIAL_FLUSH(); // Prevent host M105 buffer overrun. - best = do_furthest - ? find_furthest_invalid_mesh_point() - : find_closest_mesh_point_of_type(INVALID, nearby, true); - - if (best.pos.x >= 0) { // mesh point found and is reachable by probe - TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(best.pos, ExtUI::PROBE_START)); - const float measured_z = probe.probe_at_point( - best.meshpos(), - stow_probe ? PROBE_PT_STOW : PROBE_PT_RAISE, g29_verbose_level - ); - z_values[best.pos.x][best.pos.y] = measured_z; - #if ENABLED(EXTENSIBLE_UI) - ExtUI::onMeshUpdate(best.pos, ExtUI::PROBE_FINISH); - ExtUI::onMeshUpdate(best.pos, measured_z); - #endif - } - SERIAL_FLUSH(); // Prevent host M105 buffer overrun. + } while (best.pos.x >= 0 && --count); - } while (best.pos.x >= 0 && --count); + TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(best.pos, ExtUI::MESH_FINISH)); - TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(best.pos, ExtUI::MESH_FINISH)); + // Release UI during stow to allow for PAUSE_BEFORE_DEPLOY_STOW + TERN_(HAS_LCD_MENU, ui.release()); + probe.stow(); + TERN_(HAS_LCD_MENU, ui.capture()); - // Release UI during stow to allow for PAUSE_BEFORE_DEPLOY_STOW - TERN_(HAS_LCD_MENU, ui.release()); - probe.stow(); - TERN_(HAS_LCD_MENU, ui.capture()); + probe.move_z_after_probing(); - probe.move_z_after_probing(); + restore_ubl_active_state_and_leave(); - restore_ubl_active_state_and_leave(); + do_blocking_move_to_xy( + constrain(nearby.x - probe.offset_xy.x, MESH_MIN_X, MESH_MAX_X), + constrain(nearby.y - probe.offset_xy.y, MESH_MIN_Y, MESH_MAX_Y) + ); + } - do_blocking_move_to_xy( - constrain(nearby.x - probe.offset_xy.x, MESH_MIN_X, MESH_MAX_X), - constrain(nearby.y - probe.offset_xy.y, MESH_MIN_Y, MESH_MAX_Y) - ); - } +#endif // HAS_BED_PROBE - #endif // HAS_BED_PROBE +#if HAS_LCD_MENU - #if HAS_LCD_MENU + typedef void (*clickFunc_t)(); - typedef void (*clickFunc_t)(); - - bool click_and_hold(const clickFunc_t func=nullptr) { - if (ui.button_pressed()) { - ui.quick_feedback(false); // Preserve button state for click-and-hold - const millis_t nxt = millis() + 1500UL; - while (ui.button_pressed()) { // Loop while the encoder is pressed. Uses hardware flag! - idle(); // idle, of course - if (ELAPSED(millis(), nxt)) { // After 1.5 seconds - ui.quick_feedback(); - if (func) (*func)(); - ui.wait_for_release(); - return true; - } + bool click_and_hold(const clickFunc_t func=nullptr) { + if (ui.button_pressed()) { + ui.quick_feedback(false); // Preserve button state for click-and-hold + const millis_t nxt = millis() + 1500UL; + while (ui.button_pressed()) { // Loop while the encoder is pressed. Uses hardware flag! + idle(); // idle, of course + if (ELAPSED(millis(), nxt)) { // After 1.5 seconds + ui.quick_feedback(); + if (func) (*func)(); + ui.wait_for_release(); + return true; } } - serial_delay(15); - return false; } + serial_delay(15); + return false; + } - void unified_bed_leveling::move_z_with_encoder(const float &multiplier) { - ui.wait_for_release(); - while (!ui.button_pressed()) { - idle(); - gcode.reset_stepper_timeout(); // Keep steppers powered - if (encoder_diff) { - do_blocking_move_to_z(current_position.z + float(encoder_diff) * multiplier); - encoder_diff = 0; - } + void unified_bed_leveling::move_z_with_encoder(const float &multiplier) { + ui.wait_for_release(); + while (!ui.button_pressed()) { + idle(); + gcode.reset_stepper_timeout(); // Keep steppers powered + if (encoder_diff) { + do_blocking_move_to_z(current_position.z + float(encoder_diff) * multiplier); + encoder_diff = 0; } } + } - float unified_bed_leveling::measure_point_with_encoder() { - KEEPALIVE_STATE(PAUSED_FOR_USER); - move_z_with_encoder(0.01f); - return current_position.z; - } - - static void echo_and_take_a_measurement() { SERIAL_ECHOLNPGM(" and take a measurement."); } - - float unified_bed_leveling::measure_business_card_thickness() { - ui.capture(); - save_ubl_active_state_and_disable(); // Disable bed level correction for probing + float unified_bed_leveling::measure_point_with_encoder() { + KEEPALIVE_STATE(PAUSED_FOR_USER); + move_z_with_encoder(0.01f); + return current_position.z; + } - do_blocking_move_to(0.5f * (MESH_MAX_X - (MESH_MIN_X)), 0.5f * (MESH_MAX_Y - (MESH_MIN_Y)), MANUAL_PROBE_START_Z); - //, _MIN(planner.settings.max_feedrate_mm_s[X_AXIS], planner.settings.max_feedrate_mm_s[Y_AXIS]) * 0.5f); - planner.synchronize(); + static void echo_and_take_a_measurement() { SERIAL_ECHOLNPGM(" and take a measurement."); } - SERIAL_ECHOPGM("Place shim under nozzle"); - LCD_MESSAGEPGM(MSG_UBL_BC_INSERT); - ui.return_to_status(); - echo_and_take_a_measurement(); + float unified_bed_leveling::measure_business_card_thickness() { + ui.capture(); + save_ubl_active_state_and_disable(); // Disable bed level correction for probing - const float z1 = measure_point_with_encoder(); - do_blocking_move_to_z(current_position.z + SIZE_OF_LITTLE_RAISE); - planner.synchronize(); + do_blocking_move_to(0.5f * (MESH_MAX_X - (MESH_MIN_X)), 0.5f * (MESH_MAX_Y - (MESH_MIN_Y)), MANUAL_PROBE_START_Z); + //, _MIN(planner.settings.max_feedrate_mm_s[X_AXIS], planner.settings.max_feedrate_mm_s[Y_AXIS]) * 0.5f); + planner.synchronize(); - SERIAL_ECHOPGM("Remove shim"); - LCD_MESSAGEPGM(MSG_UBL_BC_REMOVE); - echo_and_take_a_measurement(); + SERIAL_ECHOPGM("Place shim under nozzle"); + LCD_MESSAGEPGM(MSG_UBL_BC_INSERT); + ui.return_to_status(); + echo_and_take_a_measurement(); - const float z2 = measure_point_with_encoder(); - do_blocking_move_to_z(current_position.z + Z_CLEARANCE_BETWEEN_PROBES); + const float z1 = measure_point_with_encoder(); + do_blocking_move_to_z(current_position.z + SIZE_OF_LITTLE_RAISE); + planner.synchronize(); - const float thickness = ABS(z1 - z2); + SERIAL_ECHOPGM("Remove shim"); + LCD_MESSAGEPGM(MSG_UBL_BC_REMOVE); + echo_and_take_a_measurement(); - if (g29_verbose_level > 1) { - SERIAL_ECHOPAIR_F("Business Card is ", thickness, 4); - SERIAL_ECHOLNPGM("mm thick."); - } + const float z2 = measure_point_with_encoder(); + do_blocking_move_to_z(current_position.z + Z_CLEARANCE_BETWEEN_PROBES); - restore_ubl_active_state_and_leave(); + const float thickness = ABS(z1 - z2); - return thickness; + if (g29_verbose_level > 1) { + SERIAL_ECHOPAIR_F("Business Card is ", thickness, 4); + SERIAL_ECHOLNPGM("mm thick."); } - void unified_bed_leveling::manually_probe_remaining_mesh(const xy_pos_t &pos, const float &z_clearance, const float &thick, const bool do_ubl_mesh_map) { - ui.capture(); + restore_ubl_active_state_and_leave(); - save_ubl_active_state_and_disable(); // No bed level correction so only raw data is obtained - do_blocking_move_to_xy_z(current_position, z_clearance); + return thickness; + } - ui.return_to_status(); + void unified_bed_leveling::manually_probe_remaining_mesh(const xy_pos_t &pos, const float &z_clearance, const float &thick, const bool do_ubl_mesh_map) { + ui.capture(); - mesh_index_pair location; - const xy_int8_t &lpos = location.pos; - do { - location = find_closest_mesh_point_of_type(INVALID, pos); - // It doesn't matter if the probe can't reach the NAN location. This is a manual probe. - if (!location.valid()) continue; - - const xyz_pos_t ppos = { - mesh_index_to_xpos(lpos.x), - mesh_index_to_ypos(lpos.y), - Z_CLEARANCE_BETWEEN_PROBES - }; + save_ubl_active_state_and_disable(); // No bed level correction so only raw data is obtained + do_blocking_move_to_xy_z(current_position, z_clearance); - if (!position_is_reachable(ppos)) break; // SHOULD NOT OCCUR (find_closest_mesh_point only returns reachable points) + ui.return_to_status(); - LCD_MESSAGEPGM(MSG_UBL_MOVING_TO_NEXT); + mesh_index_pair location; + const xy_int8_t &lpos = location.pos; + do { + location = find_closest_mesh_point_of_type(INVALID, pos); + // It doesn't matter if the probe can't reach the NAN location. This is a manual probe. + if (!location.valid()) continue; - do_blocking_move_to(ppos); - do_z_clearance(z_clearance); + const xyz_pos_t ppos = { + mesh_index_to_xpos(lpos.x), + mesh_index_to_ypos(lpos.y), + Z_CLEARANCE_BETWEEN_PROBES + }; - KEEPALIVE_STATE(PAUSED_FOR_USER); - ui.capture(); + if (!position_is_reachable(ppos)) break; // SHOULD NOT OCCUR (find_closest_mesh_point only returns reachable points) - if (do_ubl_mesh_map) display_map(g29_map_type); // show user where we're probing + LCD_MESSAGEPGM(MSG_UBL_MOVING_TO_NEXT); - serialprintPGM(parser.seen('B') ? GET_TEXT(MSG_UBL_BC_INSERT) : GET_TEXT(MSG_UBL_BC_INSERT2)); + do_blocking_move_to(ppos); + do_z_clearance(z_clearance); - const float z_step = 0.01f; // existing behavior: 0.01mm per click, occasionally step - //const float z_step = planner.steps_to_mm[Z_AXIS]; // approx one step each click + KEEPALIVE_STATE(PAUSED_FOR_USER); + ui.capture(); - move_z_with_encoder(z_step); + if (do_ubl_mesh_map) display_map(g29_map_type); // show user where we're probing - if (click_and_hold()) { - SERIAL_ECHOLNPGM("\nMesh only partially populated."); - do_z_clearance(Z_CLEARANCE_DEPLOY_PROBE); - return restore_ubl_active_state_and_leave(); - } + serialprintPGM(parser.seen('B') ? GET_TEXT(MSG_UBL_BC_INSERT) : GET_TEXT(MSG_UBL_BC_INSERT2)); - z_values[lpos.x][lpos.y] = current_position.z - thick; - TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(location, z_values[lpos.x][lpos.y])); + const float z_step = 0.01f; // existing behavior: 0.01mm per click, occasionally step + //const float z_step = planner.steps_to_mm[Z_AXIS]; // approx one step each click - if (g29_verbose_level > 2) - SERIAL_ECHOLNPAIR_F("Mesh Point Measured at: ", z_values[lpos.x][lpos.y], 6); - SERIAL_FLUSH(); // Prevent host M105 buffer overrun. - } while (location.valid()); + move_z_with_encoder(z_step); - if (do_ubl_mesh_map) display_map(g29_map_type); // show user where we're probing + if (click_and_hold()) { + SERIAL_ECHOLNPGM("\nMesh only partially populated."); + do_z_clearance(Z_CLEARANCE_DEPLOY_PROBE); + return restore_ubl_active_state_and_leave(); + } - restore_ubl_active_state_and_leave(); - do_blocking_move_to_xy_z(pos, Z_CLEARANCE_DEPLOY_PROBE); - } + z_values[lpos.x][lpos.y] = current_position.z - thick; + TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(location, z_values[lpos.x][lpos.y])); - inline void set_message_with_feedback(PGM_P const msg_P) { - ui.set_status_P(msg_P); - ui.quick_feedback(); - } + if (g29_verbose_level > 2) + SERIAL_ECHOLNPAIR_F("Mesh Point Measured at: ", z_values[lpos.x][lpos.y], 6); + SERIAL_FLUSH(); // Prevent host M105 buffer overrun. + } while (location.valid()); - void abort_fine_tune() { - ui.return_to_status(); - do_z_clearance(Z_CLEARANCE_BETWEEN_PROBES); - set_message_with_feedback(GET_TEXT(MSG_EDITING_STOPPED)); - } + if (do_ubl_mesh_map) display_map(g29_map_type); // show user where we're probing - void unified_bed_leveling::fine_tune_mesh(const xy_pos_t &pos, const bool do_ubl_mesh_map) { - if (!parser.seen('R')) // fine_tune_mesh() is special. If no repetition count flag is specified - g29_repetition_cnt = 1; // do exactly one mesh location. Otherwise use what the parser decided. + restore_ubl_active_state_and_leave(); + do_blocking_move_to_xy_z(pos, Z_CLEARANCE_DEPLOY_PROBE); + } - #if ENABLED(UBL_MESH_EDIT_MOVES_Z) - const float h_offset = parser.seenval('H') ? parser.value_linear_units() : MANUAL_PROBE_START_Z; - if (!WITHIN(h_offset, 0, 10)) { - SERIAL_ECHOLNPGM("Offset out of bounds. (0 to 10mm)\n"); - return; - } - #endif + inline void set_message_with_feedback(PGM_P const msg_P) { + ui.set_status_P(msg_P); + ui.quick_feedback(); + } + + void abort_fine_tune() { + ui.return_to_status(); + do_z_clearance(Z_CLEARANCE_BETWEEN_PROBES); + set_message_with_feedback(GET_TEXT(MSG_EDITING_STOPPED)); + } - mesh_index_pair location; + void unified_bed_leveling::fine_tune_mesh(const xy_pos_t &pos, const bool do_ubl_mesh_map) { + if (!parser.seen('R')) // fine_tune_mesh() is special. If no repetition count flag is specified + g29_repetition_cnt = 1; // do exactly one mesh location. Otherwise use what the parser decided. - if (!position_is_reachable(pos)) { - SERIAL_ECHOLNPGM("(X,Y) outside printable radius."); + #if ENABLED(UBL_MESH_EDIT_MOVES_Z) + const float h_offset = parser.seenval('H') ? parser.value_linear_units() : MANUAL_PROBE_START_Z; + if (!WITHIN(h_offset, 0, 10)) { + SERIAL_ECHOLNPGM("Offset out of bounds. (0 to 10mm)\n"); return; } + #endif + + mesh_index_pair location; + + if (!position_is_reachable(pos)) { + SERIAL_ECHOLNPGM("(X,Y) outside printable radius."); + return; + } - save_ubl_active_state_and_disable(); + save_ubl_active_state_and_disable(); - LCD_MESSAGEPGM(MSG_UBL_FINE_TUNE_MESH); - ui.capture(); // Take over control of the LCD encoder + LCD_MESSAGEPGM(MSG_UBL_FINE_TUNE_MESH); + ui.capture(); // Take over control of the LCD encoder - do_blocking_move_to_xy_z(pos, Z_CLEARANCE_BETWEEN_PROBES); // Move to the given XY with probe clearance + do_blocking_move_to_xy_z(pos, Z_CLEARANCE_BETWEEN_PROBES); // Move to the given XY with probe clearance - MeshFlags done_flags{0}; - const xy_int8_t &lpos = location.pos; + MeshFlags done_flags{0}; + const xy_int8_t &lpos = location.pos; - #if IS_TFTGLCD_PANEL - lcd_mesh_edit_setup(0); // Change current screen before calling ui.ubl_plot - safe_delay(50); - #endif + #if IS_TFTGLCD_PANEL + lcd_mesh_edit_setup(0); // Change current screen before calling ui.ubl_plot + safe_delay(50); + #endif - do { - location = find_closest_mesh_point_of_type(SET_IN_BITMAP, pos, false, &done_flags); + do { + location = find_closest_mesh_point_of_type(SET_IN_BITMAP, pos, false, &done_flags); - if (lpos.x < 0) break; // Stop when there are no more reachable points + if (lpos.x < 0) break; // Stop when there are no more reachable points - done_flags.mark(lpos); // Mark this location as 'adjusted' so a new - // location is used on the next loop - const xyz_pos_t raw = { - mesh_index_to_xpos(lpos.x), - mesh_index_to_ypos(lpos.y), - Z_CLEARANCE_BETWEEN_PROBES - }; + done_flags.mark(lpos); // Mark this location as 'adjusted' so a new + // location is used on the next loop + const xyz_pos_t raw = { + mesh_index_to_xpos(lpos.x), + mesh_index_to_ypos(lpos.y), + Z_CLEARANCE_BETWEEN_PROBES + }; - if (!position_is_reachable(raw)) break; // SHOULD NOT OCCUR (find_closest_mesh_point_of_type only returns reachable) + if (!position_is_reachable(raw)) break; // SHOULD NOT OCCUR (find_closest_mesh_point_of_type only returns reachable) - do_blocking_move_to(raw); // Move the nozzle to the edit point with probe clearance + do_blocking_move_to(raw); // Move the nozzle to the edit point with probe clearance - TERN_(UBL_MESH_EDIT_MOVES_Z, do_blocking_move_to_z(h_offset)); // Move Z to the given 'H' offset before editing + TERN_(UBL_MESH_EDIT_MOVES_Z, do_blocking_move_to_z(h_offset)); // Move Z to the given 'H' offset before editing - KEEPALIVE_STATE(PAUSED_FOR_USER); + KEEPALIVE_STATE(PAUSED_FOR_USER); - if (do_ubl_mesh_map) display_map(g29_map_type); // Display the current point + if (do_ubl_mesh_map) display_map(g29_map_type); // Display the current point - #if IS_TFTGLCD_PANEL - ui.ubl_plot(lpos.x, lpos.y); // update plot screen - #endif + #if IS_TFTGLCD_PANEL + ui.ubl_plot(lpos.x, lpos.y); // update plot screen + #endif - ui.refresh(); + ui.refresh(); - float new_z = z_values[lpos.x][lpos.y]; - if (isnan(new_z)) new_z = 0; // Invalid points begin at 0 - new_z = FLOOR(new_z * 1000) * 0.001f; // Chop off digits after the 1000ths place + float new_z = z_values[lpos.x][lpos.y]; + if (isnan(new_z)) new_z = 0; // Invalid points begin at 0 + new_z = FLOOR(new_z * 1000) * 0.001f; // Chop off digits after the 1000ths place - lcd_mesh_edit_setup(new_z); + lcd_mesh_edit_setup(new_z); - SET_SOFT_ENDSTOP_LOOSE(true); + SET_SOFT_ENDSTOP_LOOSE(true); - do { - idle(); - new_z = lcd_mesh_edit(); - TERN_(UBL_MESH_EDIT_MOVES_Z, do_blocking_move_to_z(h_offset + new_z)); // Move the nozzle as the point is edited - SERIAL_FLUSH(); // Prevent host M105 buffer overrun. - } while (!ui.button_pressed()); + do { + idle(); + new_z = lcd_mesh_edit(); + TERN_(UBL_MESH_EDIT_MOVES_Z, do_blocking_move_to_z(h_offset + new_z)); // Move the nozzle as the point is edited + SERIAL_FLUSH(); // Prevent host M105 buffer overrun. + } while (!ui.button_pressed()); - SET_SOFT_ENDSTOP_LOOSE(false); + SET_SOFT_ENDSTOP_LOOSE(false); - if (!lcd_map_control) ui.return_to_status(); // Just editing a single point? Return to status + if (!lcd_map_control) ui.return_to_status(); // Just editing a single point? Return to status - if (click_and_hold(abort_fine_tune)) break; // Button held down? Abort editing + if (click_and_hold(abort_fine_tune)) break; // Button held down? Abort editing - z_values[lpos.x][lpos.y] = new_z; // Save the updated Z value - TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(location, new_z)); + z_values[lpos.x][lpos.y] = new_z; // Save the updated Z value + TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(location, new_z)); - serial_delay(20); // No switch noise - ui.refresh(); + serial_delay(20); // No switch noise + ui.refresh(); - } while (lpos.x >= 0 && --g29_repetition_cnt > 0); + } while (lpos.x >= 0 && --g29_repetition_cnt > 0); - if (do_ubl_mesh_map) display_map(g29_map_type); - restore_ubl_active_state_and_leave(); + if (do_ubl_mesh_map) display_map(g29_map_type); + restore_ubl_active_state_and_leave(); - do_blocking_move_to_xy_z(pos, Z_CLEARANCE_BETWEEN_PROBES); + do_blocking_move_to_xy_z(pos, Z_CLEARANCE_BETWEEN_PROBES); - LCD_MESSAGEPGM(MSG_UBL_DONE_EDITING_MESH); - SERIAL_ECHOLNPGM("Done Editing Mesh"); + LCD_MESSAGEPGM(MSG_UBL_DONE_EDITING_MESH); + SERIAL_ECHOLNPGM("Done Editing Mesh"); - if (lcd_map_control) - ui.goto_screen(ubl_map_screen); - else - ui.return_to_status(); - } + if (lcd_map_control) + ui.goto_screen(ubl_map_screen); + else + ui.return_to_status(); + } - #endif // HAS_LCD_MENU +#endif // HAS_LCD_MENU - bool unified_bed_leveling::g29_parameter_parsing() { - bool err_flag = false; +bool unified_bed_leveling::g29_parameter_parsing() { + bool err_flag = false; - TERN_(HAS_LCD_MENU, set_message_with_feedback(GET_TEXT(MSG_UBL_DOING_G29))); + TERN_(HAS_LCD_MENU, set_message_with_feedback(GET_TEXT(MSG_UBL_DOING_G29))); - g29_constant = 0; - g29_repetition_cnt = 0; + g29_constant = 0; + g29_repetition_cnt = 0; - if (parser.seen('R')) { - g29_repetition_cnt = parser.has_value() ? parser.value_int() : GRID_MAX_POINTS; - NOMORE(g29_repetition_cnt, GRID_MAX_POINTS); - if (g29_repetition_cnt < 1) { - SERIAL_ECHOLNPGM("?(R)epetition count invalid (1+).\n"); - return UBL_ERR; - } + if (parser.seen('R')) { + g29_repetition_cnt = parser.has_value() ? parser.value_int() : GRID_MAX_POINTS; + NOMORE(g29_repetition_cnt, GRID_MAX_POINTS); + if (g29_repetition_cnt < 1) { + SERIAL_ECHOLNPGM("?(R)epetition count invalid (1+).\n"); + return UBL_ERR; } + } - g29_verbose_level = parser.seen('V') ? parser.value_int() : 0; - if (!WITHIN(g29_verbose_level, 0, 4)) { - SERIAL_ECHOLNPGM("?(V)erbose level implausible (0-4).\n"); - err_flag = true; - } + g29_verbose_level = parser.seen('V') ? parser.value_int() : 0; + if (!WITHIN(g29_verbose_level, 0, 4)) { + SERIAL_ECHOLNPGM("?(V)erbose level implausible (0-4).\n"); + err_flag = true; + } - if (parser.seen('P')) { - const int pv = parser.value_int(); - #if !HAS_BED_PROBE - if (pv == 1) { - SERIAL_ECHOLNPGM("G29 P1 requires a probe.\n"); + if (parser.seen('P')) { + const int pv = parser.value_int(); + #if !HAS_BED_PROBE + if (pv == 1) { + SERIAL_ECHOLNPGM("G29 P1 requires a probe.\n"); + err_flag = true; + } + else + #endif + { + g29_phase_value = pv; + if (!WITHIN(g29_phase_value, 0, 6)) { + SERIAL_ECHOLNPGM("?(P)hase value invalid (0-6).\n"); err_flag = true; } - else - #endif - { - g29_phase_value = pv; - if (!WITHIN(g29_phase_value, 0, 6)) { - SERIAL_ECHOLNPGM("?(P)hase value invalid (0-6).\n"); - err_flag = true; - } - } - } + } + } - if (parser.seen('J')) { - #if HAS_BED_PROBE - g29_grid_size = parser.has_value() ? parser.value_int() : 0; - if (g29_grid_size && !WITHIN(g29_grid_size, 2, 9)) { - SERIAL_ECHOLNPGM("?Invalid grid size (J) specified (2-9).\n"); - err_flag = true; - } - #else - SERIAL_ECHOLNPGM("G29 J action requires a probe.\n"); + if (parser.seen('J')) { + #if HAS_BED_PROBE + g29_grid_size = parser.has_value() ? parser.value_int() : 0; + if (g29_grid_size && !WITHIN(g29_grid_size, 2, 9)) { + SERIAL_ECHOLNPGM("?Invalid grid size (J) specified (2-9).\n"); err_flag = true; - #endif - } - - xy_seen.x = parser.seenval('X'); - float sx = xy_seen.x ? parser.value_float() : current_position.x; - xy_seen.y = parser.seenval('Y'); - float sy = xy_seen.y ? parser.value_float() : current_position.y; - - if (xy_seen.x != xy_seen.y) { - SERIAL_ECHOLNPGM("Both X & Y locations must be specified.\n"); + } + #else + SERIAL_ECHOLNPGM("G29 J action requires a probe.\n"); err_flag = true; - } - - // If X or Y are not valid, use center of the bed values - if (!WITHIN(sx, X_MIN_BED, X_MAX_BED)) sx = X_CENTER; - if (!WITHIN(sy, Y_MIN_BED, Y_MAX_BED)) sy = Y_CENTER; + #endif + } - if (err_flag) return UBL_ERR; + xy_seen.x = parser.seenval('X'); + float sx = xy_seen.x ? parser.value_float() : current_position.x; + xy_seen.y = parser.seenval('Y'); + float sy = xy_seen.y ? parser.value_float() : current_position.y; - g29_pos.set(sx, sy); + if (xy_seen.x != xy_seen.y) { + SERIAL_ECHOLNPGM("Both X & Y locations must be specified.\n"); + err_flag = true; + } - /** - * Activate or deactivate UBL - * Note: UBL's G29 restores the state set here when done. - * Leveling is being enabled here with old data, possibly - * none. Error handling should disable for safety... - */ - if (parser.seen('A')) { - if (parser.seen('D')) { - SERIAL_ECHOLNPGM("?Can't activate and deactivate at the same time.\n"); - return UBL_ERR; - } - set_bed_leveling_enabled(true); - report_state(); - } - else if (parser.seen('D')) { - set_bed_leveling_enabled(false); - report_state(); - } + // If X or Y are not valid, use center of the bed values + if (!WITHIN(sx, X_MIN_BED, X_MAX_BED)) sx = X_CENTER; + if (!WITHIN(sy, Y_MIN_BED, Y_MAX_BED)) sy = Y_CENTER; - // Set global 'C' flag and its value - if ((g29_c_flag = parser.seen('C'))) - g29_constant = parser.value_float(); + if (err_flag) return UBL_ERR; - #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) - if (parser.seenval('F')) { - const float fh = parser.value_float(); - if (!WITHIN(fh, 0, 100)) { - SERIAL_ECHOLNPGM("?(F)ade height for Bed Level Correction not plausible.\n"); - return UBL_ERR; - } - set_z_fade_height(fh); - } - #endif + g29_pos.set(sx, sy); - g29_map_type = parser.intval('T'); - if (!WITHIN(g29_map_type, 0, 2)) { - SERIAL_ECHOLNPGM("Invalid map type.\n"); + /** + * Activate or deactivate UBL + * Note: UBL's G29 restores the state set here when done. + * Leveling is being enabled here with old data, possibly + * none. Error handling should disable for safety... + */ + if (parser.seen('A')) { + if (parser.seen('D')) { + SERIAL_ECHOLNPGM("?Can't activate and deactivate at the same time.\n"); return UBL_ERR; } - return UBL_OK; + set_bed_leveling_enabled(true); + report_state(); + } + else if (parser.seen('D')) { + set_bed_leveling_enabled(false); + report_state(); } - static uint8_t ubl_state_at_invocation = 0; + // Set global 'C' flag and its value + if ((g29_c_flag = parser.seen('C'))) + g29_constant = parser.value_float(); - #if ENABLED(UBL_DEVEL_DEBUGGING) - static uint8_t ubl_state_recursion_chk = 0; + #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) + if (parser.seenval('F')) { + const float fh = parser.value_float(); + if (!WITHIN(fh, 0, 100)) { + SERIAL_ECHOLNPGM("?(F)ade height for Bed Level Correction not plausible.\n"); + return UBL_ERR; + } + set_z_fade_height(fh); + } #endif - void unified_bed_leveling::save_ubl_active_state_and_disable() { - #if ENABLED(UBL_DEVEL_DEBUGGING) - ubl_state_recursion_chk++; - if (ubl_state_recursion_chk != 1) { - SERIAL_ECHOLNPGM("save_ubl_active_state_and_disabled() called multiple times in a row."); - TERN_(HAS_LCD_MENU, set_message_with_feedback(GET_TEXT(MSG_UBL_SAVE_ERROR))); - return; - } - #endif - ubl_state_at_invocation = planner.leveling_active; - set_bed_leveling_enabled(false); + g29_map_type = parser.intval('T'); + if (!WITHIN(g29_map_type, 0, 2)) { + SERIAL_ECHOLNPGM("Invalid map type.\n"); + return UBL_ERR; } + return UBL_OK; +} - void unified_bed_leveling::restore_ubl_active_state_and_leave() { - TERN_(HAS_LCD_MENU, ui.release()); - #if ENABLED(UBL_DEVEL_DEBUGGING) - if (--ubl_state_recursion_chk) { - SERIAL_ECHOLNPGM("restore_ubl_active_state_and_leave() called too many times."); - TERN_(HAS_LCD_MENU, set_message_with_feedback(GET_TEXT(MSG_UBL_RESTORE_ERROR))); - return; - } - #endif - set_bed_leveling_enabled(ubl_state_at_invocation); - } +static uint8_t ubl_state_at_invocation = 0; - mesh_index_pair unified_bed_leveling::find_furthest_invalid_mesh_point() { +#if ENABLED(UBL_DEVEL_DEBUGGING) + static uint8_t ubl_state_recursion_chk = 0; +#endif + +void unified_bed_leveling::save_ubl_active_state_and_disable() { + #if ENABLED(UBL_DEVEL_DEBUGGING) + ubl_state_recursion_chk++; + if (ubl_state_recursion_chk != 1) { + SERIAL_ECHOLNPGM("save_ubl_active_state_and_disabled() called multiple times in a row."); + TERN_(HAS_LCD_MENU, set_message_with_feedback(GET_TEXT(MSG_UBL_SAVE_ERROR))); + return; + } + #endif + ubl_state_at_invocation = planner.leveling_active; + set_bed_leveling_enabled(false); +} - bool found_a_NAN = false, found_a_real = false; +void unified_bed_leveling::restore_ubl_active_state_and_leave() { + TERN_(HAS_LCD_MENU, ui.release()); + #if ENABLED(UBL_DEVEL_DEBUGGING) + if (--ubl_state_recursion_chk) { + SERIAL_ECHOLNPGM("restore_ubl_active_state_and_leave() called too many times."); + TERN_(HAS_LCD_MENU, set_message_with_feedback(GET_TEXT(MSG_UBL_RESTORE_ERROR))); + return; + } + #endif + set_bed_leveling_enabled(ubl_state_at_invocation); +} - mesh_index_pair farthest { -1, -1, -99999.99 }; +mesh_index_pair unified_bed_leveling::find_furthest_invalid_mesh_point() { - GRID_LOOP(i, j) { - if (!isnan(z_values[i][j])) continue; // Skip valid mesh points + bool found_a_NAN = false, found_a_real = false; - // Skip unreachable points - if (!probe.can_reach(mesh_index_to_xpos(i), mesh_index_to_ypos(j))) - continue; + mesh_index_pair farthest { -1, -1, -99999.99 }; - found_a_NAN = true; + GRID_LOOP(i, j) { + if (!isnan(z_values[i][j])) continue; // Skip valid mesh points - xy_int8_t nearby { -1, -1 }; - float d1, d2 = 99999.9f; - GRID_LOOP(k, l) { - if (isnan(z_values[k][l])) continue; + // Skip unreachable points + if (!probe.can_reach(mesh_index_to_xpos(i), mesh_index_to_ypos(j))) + continue; - found_a_real = true; + found_a_NAN = true; - // Add in a random weighting factor that scrambles the probing of the - // last half of the mesh (when every unprobed mesh point is one index - // from a probed location). + xy_int8_t nearby { -1, -1 }; + float d1, d2 = 99999.9f; + GRID_LOOP(k, l) { + if (isnan(z_values[k][l])) continue; - d1 = HYPOT(i - k, j - l) + (1.0f / ((millis() % 47) + 13)); + found_a_real = true; - if (d1 < d2) { // Invalid mesh point (i,j) is closer to the defined point (k,l) - d2 = d1; - nearby.set(i, j); - } - } + // Add in a random weighting factor that scrambles the probing of the + // last half of the mesh (when every unprobed mesh point is one index + // from a probed location). - // - // At this point d2 should have the near defined mesh point to invalid mesh point (i,j) - // + d1 = HYPOT(i - k, j - l) + (1.0f / ((millis() % 47) + 13)); - if (found_a_real && nearby.x >= 0 && d2 > farthest.distance) { - farthest.pos = nearby; // Found an invalid location farther from the defined mesh point - farthest.distance = d2; + if (d1 < d2) { // Invalid mesh point (i,j) is closer to the defined point (k,l) + d2 = d1; + nearby.set(i, j); } - } // GRID_LOOP + } + + // + // At this point d2 should have the near defined mesh point to invalid mesh point (i,j) + // - if (!found_a_real && found_a_NAN) { // if the mesh is totally unpopulated, start the probing - farthest.pos.set((GRID_MAX_POINTS_X) / 2, (GRID_MAX_POINTS_Y) / 2); - farthest.distance = 1; + if (found_a_real && nearby.x >= 0 && d2 > farthest.distance) { + farthest.pos = nearby; // Found an invalid location farther from the defined mesh point + farthest.distance = d2; } - return farthest; + } // GRID_LOOP + + if (!found_a_real && found_a_NAN) { // if the mesh is totally unpopulated, start the probing + farthest.pos.set((GRID_MAX_POINTS_X) / 2, (GRID_MAX_POINTS_Y) / 2); + farthest.distance = 1; } + return farthest; +} - mesh_index_pair unified_bed_leveling::find_closest_mesh_point_of_type(const MeshPointType type, const xy_pos_t &pos, const bool probe_relative/*=false*/, MeshFlags *done_flags/*=nullptr*/) { - mesh_index_pair closest; - closest.invalidate(); - closest.distance = -99999.9f; +mesh_index_pair unified_bed_leveling::find_closest_mesh_point_of_type(const MeshPointType type, const xy_pos_t &pos, const bool probe_relative/*=false*/, MeshFlags *done_flags/*=nullptr*/) { + mesh_index_pair closest; + closest.invalidate(); + closest.distance = -99999.9f; - // Get the reference position, either nozzle or probe - const xy_pos_t ref = probe_relative ? pos + probe.offset_xy : pos; + // Get the reference position, either nozzle or probe + const xy_pos_t ref = probe_relative ? pos + probe.offset_xy : pos; - float best_so_far = 99999.99f; + float best_so_far = 99999.99f; - GRID_LOOP(i, j) { - if ( (type == (isnan(z_values[i][j]) ? INVALID : REAL)) - || (type == SET_IN_BITMAP && !done_flags->marked(i, j)) - ) { - // Found a Mesh Point of the specified type! - const xy_pos_t mpos = { mesh_index_to_xpos(i), mesh_index_to_ypos(j) }; - - // If using the probe as the reference there are some unreachable locations. - // Also for round beds, there are grid points outside the bed the nozzle can't reach. - // Prune them from the list and ignore them till the next Phase (manual nozzle probing). - - if (!(probe_relative ? probe.can_reach(mpos) : position_is_reachable(mpos))) - continue; - - // Reachable. Check if it's the best_so_far location to the nozzle. - - const xy_pos_t diff = current_position - mpos; - const float distance = (ref - mpos).magnitude() + diff.magnitude() * 0.1f; - - // factor in the distance from the current location for the normal case - // so the nozzle isn't running all over the bed. - if (distance < best_so_far) { - best_so_far = distance; // Found a closer location with the desired value type. - closest.pos.set(i, j); - closest.distance = best_so_far; - } - } - } // GRID_LOOP + GRID_LOOP(i, j) { + if ( (type == (isnan(z_values[i][j]) ? INVALID : REAL)) + || (type == SET_IN_BITMAP && !done_flags->marked(i, j)) + ) { + // Found a Mesh Point of the specified type! + const xy_pos_t mpos = { mesh_index_to_xpos(i), mesh_index_to_ypos(j) }; - return closest; - } + // If using the probe as the reference there are some unreachable locations. + // Also for round beds, there are grid points outside the bed the nozzle can't reach. + // Prune them from the list and ignore them till the next Phase (manual nozzle probing). - /** - * 'Smart Fill': Scan from the outward edges of the mesh towards the center. - * If an invalid location is found, use the next two points (if valid) to - * calculate a 'reasonable' value for the unprobed mesh point. - */ + if (!(probe_relative ? probe.can_reach(mpos) : position_is_reachable(mpos))) + continue; - bool unified_bed_leveling::smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) { - const float v = z_values[x][y]; - if (isnan(v)) { // A NAN... - const int8_t dx = x + xdir, dy = y + ydir; - const float v1 = z_values[dx][dy]; - if (!isnan(v1)) { // ...next to a pair of real values? - const float v2 = z_values[dx + xdir][dy + ydir]; - if (!isnan(v2)) { - z_values[x][y] = v1 < v2 ? v1 : v1 + v1 - v2; - TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(x, y, z_values[x][y])); - return true; - } + // Reachable. Check if it's the best_so_far location to the nozzle. + + const xy_pos_t diff = current_position - mpos; + const float distance = (ref - mpos).magnitude() + diff.magnitude() * 0.1f; + + // factor in the distance from the current location for the normal case + // so the nozzle isn't running all over the bed. + if (distance < best_so_far) { + best_so_far = distance; // Found a closer location with the desired value type. + closest.pos.set(i, j); + closest.distance = best_so_far; } } - return false; - } + } // GRID_LOOP - typedef struct { uint8_t sx, ex, sy, ey; bool yfirst; } smart_fill_info; - - void unified_bed_leveling::smart_fill_mesh() { - static const smart_fill_info - info0 PROGMEM = { 0, GRID_MAX_POINTS_X, 0, GRID_MAX_POINTS_Y - 2, false }, // Bottom of the mesh looking up - info1 PROGMEM = { 0, GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y - 1, 0, false }, // Top of the mesh looking down - info2 PROGMEM = { 0, GRID_MAX_POINTS_X - 2, 0, GRID_MAX_POINTS_Y, true }, // Left side of the mesh looking right - info3 PROGMEM = { GRID_MAX_POINTS_X - 1, 0, 0, GRID_MAX_POINTS_Y, true }; // Right side of the mesh looking left - static const smart_fill_info * const info[] PROGMEM = { &info0, &info1, &info2, &info3 }; - - LOOP_L_N(i, COUNT(info)) { - const smart_fill_info *f = (smart_fill_info*)pgm_read_ptr(&info[i]); - const int8_t sx = pgm_read_byte(&f->sx), sy = pgm_read_byte(&f->sy), - ex = pgm_read_byte(&f->ex), ey = pgm_read_byte(&f->ey); - if (pgm_read_byte(&f->yfirst)) { - const int8_t dir = ex > sx ? 1 : -1; - for (uint8_t y = sy; y != ey; ++y) - for (uint8_t x = sx; x != ex; x += dir) - if (smart_fill_one(x, y, dir, 0)) break; - } - else { - const int8_t dir = ey > sy ? 1 : -1; - for (uint8_t x = sx; x != ex; ++x) - for (uint8_t y = sy; y != ey; y += dir) - if (smart_fill_one(x, y, 0, dir)) break; + return closest; +} + +/** + * 'Smart Fill': Scan from the outward edges of the mesh towards the center. + * If an invalid location is found, use the next two points (if valid) to + * calculate a 'reasonable' value for the unprobed mesh point. + */ + +bool unified_bed_leveling::smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) { + const float v = z_values[x][y]; + if (isnan(v)) { // A NAN... + const int8_t dx = x + xdir, dy = y + ydir; + const float v1 = z_values[dx][dy]; + if (!isnan(v1)) { // ...next to a pair of real values? + const float v2 = z_values[dx + xdir][dy + ydir]; + if (!isnan(v2)) { + z_values[x][y] = v1 < v2 ? v1 : v1 + v1 - v2; + TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(x, y, z_values[x][y])); + return true; } } } + return false; +} + +typedef struct { uint8_t sx, ex, sy, ey; bool yfirst; } smart_fill_info; + +void unified_bed_leveling::smart_fill_mesh() { + static const smart_fill_info + info0 PROGMEM = { 0, GRID_MAX_POINTS_X, 0, GRID_MAX_POINTS_Y - 2, false }, // Bottom of the mesh looking up + info1 PROGMEM = { 0, GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y - 1, 0, false }, // Top of the mesh looking down + info2 PROGMEM = { 0, GRID_MAX_POINTS_X - 2, 0, GRID_MAX_POINTS_Y, true }, // Left side of the mesh looking right + info3 PROGMEM = { GRID_MAX_POINTS_X - 1, 0, 0, GRID_MAX_POINTS_Y, true }; // Right side of the mesh looking left + static const smart_fill_info * const info[] PROGMEM = { &info0, &info1, &info2, &info3 }; + + LOOP_L_N(i, COUNT(info)) { + const smart_fill_info *f = (smart_fill_info*)pgm_read_ptr(&info[i]); + const int8_t sx = pgm_read_byte(&f->sx), sy = pgm_read_byte(&f->sy), + ex = pgm_read_byte(&f->ex), ey = pgm_read_byte(&f->ey); + if (pgm_read_byte(&f->yfirst)) { + const int8_t dir = ex > sx ? 1 : -1; + for (uint8_t y = sy; y != ey; ++y) + for (uint8_t x = sx; x != ex; x += dir) + if (smart_fill_one(x, y, dir, 0)) break; + } + else { + const int8_t dir = ey > sy ? 1 : -1; + for (uint8_t x = sx; x != ex; ++x) + for (uint8_t y = sy; y != ey; y += dir) + if (smart_fill_one(x, y, 0, dir)) break; + } + } +} - #if HAS_BED_PROBE +#if HAS_BED_PROBE - //#define VALIDATE_MESH_TILT + //#define VALIDATE_MESH_TILT - #include "../../../libs/vector_3.h" + #include "../../../libs/vector_3.h" - void unified_bed_leveling::tilt_mesh_based_on_probed_grid(const bool do_3_pt_leveling) { - const float x_min = probe.min_x(), x_max = probe.max_x(), - y_min = probe.min_y(), y_max = probe.max_y(), - dx = (x_max - x_min) / (g29_grid_size - 1), - dy = (y_max - y_min) / (g29_grid_size - 1); + void unified_bed_leveling::tilt_mesh_based_on_probed_grid(const bool do_3_pt_leveling) { + const float x_min = probe.min_x(), x_max = probe.max_x(), + y_min = probe.min_y(), y_max = probe.max_y(), + dx = (x_max - x_min) / (g29_grid_size - 1), + dy = (y_max - y_min) / (g29_grid_size - 1); - xy_float_t points[3]; - probe.get_three_points(points); + xy_float_t points[3]; + probe.get_three_points(points); - float measured_z; - bool abort_flag = false; + float measured_z; + bool abort_flag = false; - #ifdef VALIDATE_MESH_TILT - float z1, z2, z3; // Needed for algorithm validation below - #endif + #ifdef VALIDATE_MESH_TILT + float z1, z2, z3; // Needed for algorithm validation below + #endif + + struct linear_fit_data lsf_results; + incremental_LSF_reset(&lsf_results); + + if (do_3_pt_leveling) { + SERIAL_ECHOLNPGM("Tilting mesh (1/3)"); + TERN_(HAS_DISPLAY, ui.status_printf_P(0, PSTR(S_FMT " 1/3"), GET_TEXT(MSG_LCD_TILTING_MESH))); - struct linear_fit_data lsf_results; - incremental_LSF_reset(&lsf_results); + measured_z = probe.probe_at_point(points[0], PROBE_PT_RAISE, g29_verbose_level); + if (isnan(measured_z)) + abort_flag = true; + else { + measured_z -= get_z_correction(points[0]); + #ifdef VALIDATE_MESH_TILT + z1 = measured_z; + #endif + if (g29_verbose_level > 3) { + serial_spaces(16); + SERIAL_ECHOLNPAIR("Corrected_Z=", measured_z); + } + incremental_LSF(&lsf_results, points[0], measured_z); + } - if (do_3_pt_leveling) { - SERIAL_ECHOLNPGM("Tilting mesh (1/3)"); - TERN_(HAS_DISPLAY, ui.status_printf_P(0, PSTR(S_FMT " 1/3"), GET_TEXT(MSG_LCD_TILTING_MESH))); + if (!abort_flag) { + SERIAL_ECHOLNPGM("Tilting mesh (2/3)"); + TERN_(HAS_DISPLAY, ui.status_printf_P(0, PSTR(S_FMT " 2/3"), GET_TEXT(MSG_LCD_TILTING_MESH))); - measured_z = probe.probe_at_point(points[0], PROBE_PT_RAISE, g29_verbose_level); + measured_z = probe.probe_at_point(points[1], PROBE_PT_RAISE, g29_verbose_level); + #ifdef VALIDATE_MESH_TILT + z2 = measured_z; + #endif if (isnan(measured_z)) abort_flag = true; else { - measured_z -= get_z_correction(points[0]); - #ifdef VALIDATE_MESH_TILT - z1 = measured_z; - #endif + measured_z -= get_z_correction(points[1]); if (g29_verbose_level > 3) { serial_spaces(16); SERIAL_ECHOLNPAIR("Corrected_Z=", measured_z); } - incremental_LSF(&lsf_results, points[0], measured_z); - } - - if (!abort_flag) { - SERIAL_ECHOLNPGM("Tilting mesh (2/3)"); - TERN_(HAS_DISPLAY, ui.status_printf_P(0, PSTR(S_FMT " 2/3"), GET_TEXT(MSG_LCD_TILTING_MESH))); - - measured_z = probe.probe_at_point(points[1], PROBE_PT_RAISE, g29_verbose_level); - #ifdef VALIDATE_MESH_TILT - z2 = measured_z; - #endif - if (isnan(measured_z)) - abort_flag = true; - else { - measured_z -= get_z_correction(points[1]); - if (g29_verbose_level > 3) { - serial_spaces(16); - SERIAL_ECHOLNPAIR("Corrected_Z=", measured_z); - } - incremental_LSF(&lsf_results, points[1], measured_z); - } + incremental_LSF(&lsf_results, points[1], measured_z); } + } - if (!abort_flag) { - SERIAL_ECHOLNPGM("Tilting mesh (3/3)"); - TERN_(HAS_DISPLAY, ui.status_printf_P(0, PSTR(S_FMT " 3/3"), GET_TEXT(MSG_LCD_TILTING_MESH))); + if (!abort_flag) { + SERIAL_ECHOLNPGM("Tilting mesh (3/3)"); + TERN_(HAS_DISPLAY, ui.status_printf_P(0, PSTR(S_FMT " 3/3"), GET_TEXT(MSG_LCD_TILTING_MESH))); - measured_z = probe.probe_at_point(points[2], PROBE_PT_STOW, g29_verbose_level); - #ifdef VALIDATE_MESH_TILT - z3 = measured_z; - #endif - if (isnan(measured_z)) - abort_flag = true; - else { - measured_z -= get_z_correction(points[2]); - if (g29_verbose_level > 3) { - serial_spaces(16); - SERIAL_ECHOLNPAIR("Corrected_Z=", measured_z); - } - incremental_LSF(&lsf_results, points[2], measured_z); + measured_z = probe.probe_at_point(points[2], PROBE_PT_STOW, g29_verbose_level); + #ifdef VALIDATE_MESH_TILT + z3 = measured_z; + #endif + if (isnan(measured_z)) + abort_flag = true; + else { + measured_z -= get_z_correction(points[2]); + if (g29_verbose_level > 3) { + serial_spaces(16); + SERIAL_ECHOLNPAIR("Corrected_Z=", measured_z); } + incremental_LSF(&lsf_results, points[2], measured_z); } + } - probe.stow(); - probe.move_z_after_probing(); + probe.stow(); + probe.move_z_after_probing(); - if (abort_flag) { - SERIAL_ECHOLNPGM("?Error probing point. Aborting operation."); - return; - } + if (abort_flag) { + SERIAL_ECHOLNPGM("?Error probing point. Aborting operation."); + return; } - else { // !do_3_pt_leveling - - bool zig_zag = false; - - const uint16_t total_points = sq(g29_grid_size); - uint16_t point_num = 1; - - xy_pos_t rpos; - LOOP_L_N(ix, g29_grid_size) { - rpos.x = x_min + ix * dx; - LOOP_L_N(iy, g29_grid_size) { - rpos.y = y_min + dy * (zig_zag ? g29_grid_size - 1 - iy : iy); - - if (!abort_flag) { - SERIAL_ECHOLNPAIR("Tilting mesh point ", point_num, "/", total_points, "\n"); - TERN_(HAS_DISPLAY, ui.status_printf_P(0, PSTR(S_FMT " %i/%i"), GET_TEXT(MSG_LCD_TILTING_MESH), point_num, total_points)); - - measured_z = probe.probe_at_point(rpos, parser.seen('E') ? PROBE_PT_STOW : PROBE_PT_RAISE, g29_verbose_level); // TODO: Needs error handling - - abort_flag = isnan(measured_z); - - #if ENABLED(DEBUG_LEVELING_FEATURE) - if (DEBUGGING(LEVELING)) { - const xy_pos_t lpos = rpos.asLogical(); - DEBUG_CHAR('('); - DEBUG_ECHO_F(rpos.x, 7); - DEBUG_CHAR(','); - DEBUG_ECHO_F(rpos.y, 7); - DEBUG_ECHOPAIR_F(") logical: (", lpos.x, 7); - DEBUG_CHAR(','); - DEBUG_ECHO_F(lpos.y, 7); - DEBUG_ECHOPAIR_F(") measured: ", measured_z, 7); - DEBUG_ECHOPAIR_F(" correction: ", get_z_correction(rpos), 7); - } - #endif + } + else { // !do_3_pt_leveling + + bool zig_zag = false; + + const uint16_t total_points = sq(g29_grid_size); + uint16_t point_num = 1; + + xy_pos_t rpos; + LOOP_L_N(ix, g29_grid_size) { + rpos.x = x_min + ix * dx; + LOOP_L_N(iy, g29_grid_size) { + rpos.y = y_min + dy * (zig_zag ? g29_grid_size - 1 - iy : iy); + + if (!abort_flag) { + SERIAL_ECHOLNPAIR("Tilting mesh point ", point_num, "/", total_points, "\n"); + TERN_(HAS_DISPLAY, ui.status_printf_P(0, PSTR(S_FMT " %i/%i"), GET_TEXT(MSG_LCD_TILTING_MESH), point_num, total_points)); + + measured_z = probe.probe_at_point(rpos, parser.seen('E') ? PROBE_PT_STOW : PROBE_PT_RAISE, g29_verbose_level); // TODO: Needs error handling + + abort_flag = isnan(measured_z); + + #if ENABLED(DEBUG_LEVELING_FEATURE) + if (DEBUGGING(LEVELING)) { + const xy_pos_t lpos = rpos.asLogical(); + DEBUG_CHAR('('); + DEBUG_ECHO_F(rpos.x, 7); + DEBUG_CHAR(','); + DEBUG_ECHO_F(rpos.y, 7); + DEBUG_ECHOPAIR_F(") logical: (", lpos.x, 7); + DEBUG_CHAR(','); + DEBUG_ECHO_F(lpos.y, 7); + DEBUG_ECHOPAIR_F(") measured: ", measured_z, 7); + DEBUG_ECHOPAIR_F(" correction: ", get_z_correction(rpos), 7); + } + #endif - measured_z -= get_z_correction(rpos) /* + probe.offset.z */ ; + measured_z -= get_z_correction(rpos) /* + probe.offset.z */ ; - if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR_F(" final >>>---> ", measured_z, 7); + if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR_F(" final >>>---> ", measured_z, 7); - if (g29_verbose_level > 3) { - serial_spaces(16); - SERIAL_ECHOLNPAIR("Corrected_Z=", measured_z); - } - incremental_LSF(&lsf_results, rpos, measured_z); + if (g29_verbose_level > 3) { + serial_spaces(16); + SERIAL_ECHOLNPAIR("Corrected_Z=", measured_z); } - - point_num++; + incremental_LSF(&lsf_results, rpos, measured_z); } - zig_zag ^= true; + point_num++; } - } - probe.stow(); - probe.move_z_after_probing(); - if (abort_flag || finish_incremental_LSF(&lsf_results)) { - SERIAL_ECHOPGM("Could not complete LSF!"); - return; + zig_zag ^= true; } + } + probe.stow(); + probe.move_z_after_probing(); - vector_3 normal = vector_3(lsf_results.A, lsf_results.B, 1).get_normal(); + if (abort_flag || finish_incremental_LSF(&lsf_results)) { + SERIAL_ECHOPGM("Could not complete LSF!"); + return; + } - if (g29_verbose_level > 2) { - SERIAL_ECHOPAIR_F("bed plane normal = [", normal.x, 7); - SERIAL_CHAR(','); - SERIAL_ECHO_F(normal.y, 7); - SERIAL_CHAR(','); - SERIAL_ECHO_F(normal.z, 7); - SERIAL_ECHOLNPGM("]"); - } + vector_3 normal = vector_3(lsf_results.A, lsf_results.B, 1).get_normal(); - matrix_3x3 rotation = matrix_3x3::create_look_at(vector_3(lsf_results.A, lsf_results.B, 1)); - - GRID_LOOP(i, j) { - float mx = mesh_index_to_xpos(i), - my = mesh_index_to_ypos(j), - mz = z_values[i][j]; - - if (DEBUGGING(LEVELING)) { - DEBUG_ECHOPAIR_F("before rotation = [", mx, 7); - DEBUG_CHAR(','); - DEBUG_ECHO_F(my, 7); - DEBUG_CHAR(','); - DEBUG_ECHO_F(mz, 7); - DEBUG_ECHOPGM("] ---> "); - DEBUG_DELAY(20); - } + if (g29_verbose_level > 2) { + SERIAL_ECHOPAIR_F("bed plane normal = [", normal.x, 7); + SERIAL_CHAR(','); + SERIAL_ECHO_F(normal.y, 7); + SERIAL_CHAR(','); + SERIAL_ECHO_F(normal.z, 7); + SERIAL_ECHOLNPGM("]"); + } - apply_rotation_xyz(rotation, mx, my, mz); + matrix_3x3 rotation = matrix_3x3::create_look_at(vector_3(lsf_results.A, lsf_results.B, 1)); - if (DEBUGGING(LEVELING)) { - DEBUG_ECHOPAIR_F("after rotation = [", mx, 7); - DEBUG_CHAR(','); - DEBUG_ECHO_F(my, 7); - DEBUG_CHAR(','); - DEBUG_ECHO_F(mz, 7); - DEBUG_ECHOLNPGM("]"); - DEBUG_DELAY(20); - } + GRID_LOOP(i, j) { + float mx = mesh_index_to_xpos(i), + my = mesh_index_to_ypos(j), + mz = z_values[i][j]; - z_values[i][j] = mz - lsf_results.D; - TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(i, j, z_values[i][j])); + if (DEBUGGING(LEVELING)) { + DEBUG_ECHOPAIR_F("before rotation = [", mx, 7); + DEBUG_CHAR(','); + DEBUG_ECHO_F(my, 7); + DEBUG_CHAR(','); + DEBUG_ECHO_F(mz, 7); + DEBUG_ECHOPGM("] ---> "); + DEBUG_DELAY(20); } - if (DEBUGGING(LEVELING)) { - rotation.debug(PSTR("rotation matrix:\n")); - DEBUG_ECHOPAIR_F("LSF Results A=", lsf_results.A, 7); - DEBUG_ECHOPAIR_F(" B=", lsf_results.B, 7); - DEBUG_ECHOLNPAIR_F(" D=", lsf_results.D, 7); - DEBUG_DELAY(55); + apply_rotation_xyz(rotation, mx, my, mz); - DEBUG_ECHOPAIR_F("bed plane normal = [", normal.x, 7); + if (DEBUGGING(LEVELING)) { + DEBUG_ECHOPAIR_F("after rotation = [", mx, 7); DEBUG_CHAR(','); - DEBUG_ECHO_F(normal.y, 7); + DEBUG_ECHO_F(my, 7); DEBUG_CHAR(','); - DEBUG_ECHO_F(normal.z, 7); + DEBUG_ECHO_F(mz, 7); DEBUG_ECHOLNPGM("]"); - DEBUG_EOL(); - - /** - * Use the code below to check the validity of the mesh tilting algorithm. - * 3-Point Mesh Tilt uses the same algorithm as grid-based tilting, but only - * three points are used in the calculation. This guarantees that each probed point - * has an exact match when get_z_correction() for that location is calculated. - * The Z error between the probed point locations and the get_z_correction() - * numbers for those locations should be 0. - */ - #ifdef VALIDATE_MESH_TILT - auto d_from = []{ DEBUG_ECHOPGM("D from "); }; - auto normed = [&](const xy_pos_t &pos, const float &zadd) { - return normal.x * pos.x + normal.y * pos.y + zadd; - }; - auto debug_pt = [](PGM_P const pre, const xy_pos_t &pos, const float &zadd) { - d_from(); serialprintPGM(pre); - DEBUG_ECHO_F(normed(pos, zadd), 6); - DEBUG_ECHOLNPAIR_F(" Z error = ", zadd - get_z_correction(pos), 6); - }; - debug_pt(PSTR("1st point: "), probe_pt[0], normal.z * z1); - debug_pt(PSTR("2nd point: "), probe_pt[1], normal.z * z2); - debug_pt(PSTR("3rd point: "), probe_pt[2], normal.z * z3); - d_from(); DEBUG_ECHOPGM("safe home with Z="); - DEBUG_ECHOLNPAIR_F("0 : ", normed(safe_homing_xy, 0), 6); - d_from(); DEBUG_ECHOPGM("safe home with Z="); - DEBUG_ECHOLNPAIR_F("mesh value ", normed(safe_homing_xy, get_z_correction(safe_homing_xy)), 6); - DEBUG_ECHOPAIR(" Z error = (", Z_SAFE_HOMING_X_POINT, ",", Z_SAFE_HOMING_Y_POINT); - DEBUG_ECHOLNPAIR_F(") = ", get_z_correction(safe_homing_xy), 6); - #endif - } // DEBUGGING(LEVELING) + DEBUG_DELAY(20); + } + z_values[i][j] = mz - lsf_results.D; + TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(i, j, z_values[i][j])); } - #endif // HAS_BED_PROBE + if (DEBUGGING(LEVELING)) { + rotation.debug(PSTR("rotation matrix:\n")); + DEBUG_ECHOPAIR_F("LSF Results A=", lsf_results.A, 7); + DEBUG_ECHOPAIR_F(" B=", lsf_results.B, 7); + DEBUG_ECHOLNPAIR_F(" D=", lsf_results.D, 7); + DEBUG_DELAY(55); + + DEBUG_ECHOPAIR_F("bed plane normal = [", normal.x, 7); + DEBUG_CHAR(','); + DEBUG_ECHO_F(normal.y, 7); + DEBUG_CHAR(','); + DEBUG_ECHO_F(normal.z, 7); + DEBUG_ECHOLNPGM("]"); + DEBUG_EOL(); + + /** + * Use the code below to check the validity of the mesh tilting algorithm. + * 3-Point Mesh Tilt uses the same algorithm as grid-based tilting, but only + * three points are used in the calculation. This guarantees that each probed point + * has an exact match when get_z_correction() for that location is calculated. + * The Z error between the probed point locations and the get_z_correction() + * numbers for those locations should be 0. + */ + #ifdef VALIDATE_MESH_TILT + auto d_from = []{ DEBUG_ECHOPGM("D from "); }; + auto normed = [&](const xy_pos_t &pos, const float &zadd) { + return normal.x * pos.x + normal.y * pos.y + zadd; + }; + auto debug_pt = [](PGM_P const pre, const xy_pos_t &pos, const float &zadd) { + d_from(); serialprintPGM(pre); + DEBUG_ECHO_F(normed(pos, zadd), 6); + DEBUG_ECHOLNPAIR_F(" Z error = ", zadd - get_z_correction(pos), 6); + }; + debug_pt(PSTR("1st point: "), probe_pt[0], normal.z * z1); + debug_pt(PSTR("2nd point: "), probe_pt[1], normal.z * z2); + debug_pt(PSTR("3rd point: "), probe_pt[2], normal.z * z3); + d_from(); DEBUG_ECHOPGM("safe home with Z="); + DEBUG_ECHOLNPAIR_F("0 : ", normed(safe_homing_xy, 0), 6); + d_from(); DEBUG_ECHOPGM("safe home with Z="); + DEBUG_ECHOLNPAIR_F("mesh value ", normed(safe_homing_xy, get_z_correction(safe_homing_xy)), 6); + DEBUG_ECHOPAIR(" Z error = (", Z_SAFE_HOMING_X_POINT, ",", Z_SAFE_HOMING_Y_POINT); + DEBUG_ECHOLNPAIR_F(") = ", get_z_correction(safe_homing_xy), 6); + #endif + } // DEBUGGING(LEVELING) + + } - #if ENABLED(UBL_G29_P31) - void unified_bed_leveling::smart_fill_wlsf(const float &weight_factor) { - - // For each undefined mesh point, compute a distance-weighted least squares fit - // from all the originally populated mesh points, weighted toward the point - // being extrapolated so that nearby points will have greater influence on - // the point being extrapolated. Then extrapolate the mesh point from WLSF. - - static_assert((GRID_MAX_POINTS_Y) <= 16, "GRID_MAX_POINTS_Y too big"); - uint16_t bitmap[GRID_MAX_POINTS_X] = { 0 }; - struct linear_fit_data lsf_results; - - SERIAL_ECHOPGM("Extrapolating mesh..."); - - const float weight_scaled = weight_factor * _MAX(MESH_X_DIST, MESH_Y_DIST); - - GRID_LOOP(jx, jy) if (!isnan(z_values[jx][jy])) SBI(bitmap[jx], jy); - - xy_pos_t ppos; - LOOP_L_N(ix, GRID_MAX_POINTS_X) { - ppos.x = mesh_index_to_xpos(ix); - LOOP_L_N(iy, GRID_MAX_POINTS_Y) { - ppos.y = mesh_index_to_ypos(iy); - if (isnan(z_values[ix][iy])) { - // undefined mesh point at (ppos.x,ppos.y), compute weighted LSF from original valid mesh points. - incremental_LSF_reset(&lsf_results); - xy_pos_t rpos; - LOOP_L_N(jx, GRID_MAX_POINTS_X) { - rpos.x = mesh_index_to_xpos(jx); - LOOP_L_N(jy, GRID_MAX_POINTS_Y) { - if (TEST(bitmap[jx], jy)) { - rpos.y = mesh_index_to_ypos(jy); - const float rz = z_values[jx][jy], - w = 1.0f + weight_scaled / (rpos - ppos).magnitude(); - incremental_WLSF(&lsf_results, rpos, rz, w); - } +#endif // HAS_BED_PROBE + +#if ENABLED(UBL_G29_P31) + void unified_bed_leveling::smart_fill_wlsf(const float &weight_factor) { + + // For each undefined mesh point, compute a distance-weighted least squares fit + // from all the originally populated mesh points, weighted toward the point + // being extrapolated so that nearby points will have greater influence on + // the point being extrapolated. Then extrapolate the mesh point from WLSF. + + static_assert((GRID_MAX_POINTS_Y) <= 16, "GRID_MAX_POINTS_Y too big"); + uint16_t bitmap[GRID_MAX_POINTS_X] = { 0 }; + struct linear_fit_data lsf_results; + + SERIAL_ECHOPGM("Extrapolating mesh..."); + + const float weight_scaled = weight_factor * _MAX(MESH_X_DIST, MESH_Y_DIST); + + GRID_LOOP(jx, jy) if (!isnan(z_values[jx][jy])) SBI(bitmap[jx], jy); + + xy_pos_t ppos; + LOOP_L_N(ix, GRID_MAX_POINTS_X) { + ppos.x = mesh_index_to_xpos(ix); + LOOP_L_N(iy, GRID_MAX_POINTS_Y) { + ppos.y = mesh_index_to_ypos(iy); + if (isnan(z_values[ix][iy])) { + // undefined mesh point at (ppos.x,ppos.y), compute weighted LSF from original valid mesh points. + incremental_LSF_reset(&lsf_results); + xy_pos_t rpos; + LOOP_L_N(jx, GRID_MAX_POINTS_X) { + rpos.x = mesh_index_to_xpos(jx); + LOOP_L_N(jy, GRID_MAX_POINTS_Y) { + if (TEST(bitmap[jx], jy)) { + rpos.y = mesh_index_to_ypos(jy); + const float rz = z_values[jx][jy], + w = 1.0f + weight_scaled / (rpos - ppos).magnitude(); + incremental_WLSF(&lsf_results, rpos, rz, w); } } - if (finish_incremental_LSF(&lsf_results)) { - SERIAL_ECHOLNPGM("Insufficient data"); - return; - } - const float ez = -lsf_results.D - lsf_results.A * ppos.x - lsf_results.B * ppos.y; - z_values[ix][iy] = ez; - TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(ix, iy, z_values[ix][iy])); - idle(); // housekeeping } + if (finish_incremental_LSF(&lsf_results)) { + SERIAL_ECHOLNPGM("Insufficient data"); + return; + } + const float ez = -lsf_results.D - lsf_results.A * ppos.x - lsf_results.B * ppos.y; + z_values[ix][iy] = ez; + TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(ix, iy, z_values[ix][iy])); + idle(); // housekeeping } } - - SERIAL_ECHOLNPGM("done"); } - #endif // UBL_G29_P31 - #if ENABLED(UBL_DEVEL_DEBUGGING) - /** - * Much of the 'What?' command can be eliminated. But until we are fully debugged, it is - * good to have the extra information. Soon... we prune this to just a few items - */ - void unified_bed_leveling::g29_what_command() { - report_state(); - - if (storage_slot == -1) - SERIAL_ECHOPGM("No Mesh Loaded."); - else - SERIAL_ECHOPAIR("Mesh ", storage_slot, " Loaded."); - SERIAL_EOL(); - serial_delay(50); + SERIAL_ECHOLNPGM("done"); + } +#endif // UBL_G29_P31 - #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) - SERIAL_ECHOLNPAIR_F("Fade Height M420 Z", planner.z_fade_height, 4); - #endif +#if ENABLED(UBL_DEVEL_DEBUGGING) + /** + * Much of the 'What?' command can be eliminated. But until we are fully debugged, it is + * good to have the extra information. Soon... we prune this to just a few items + */ + void unified_bed_leveling::g29_what_command() { + report_state(); - adjust_mesh_to_mean(g29_c_flag, g29_constant); + if (storage_slot == -1) + SERIAL_ECHOPGM("No Mesh Loaded."); + else + SERIAL_ECHOPAIR("Mesh ", storage_slot, " Loaded."); + SERIAL_EOL(); + serial_delay(50); - #if HAS_BED_PROBE - SERIAL_ECHOLNPAIR_F("Probe Offset M851 Z", probe.offset.z, 7); - #endif + #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) + SERIAL_ECHOLNPAIR_F("Fade Height M420 Z", planner.z_fade_height, 4); + #endif - SERIAL_ECHOLNPAIR("MESH_MIN_X " STRINGIFY(MESH_MIN_X) "=", MESH_MIN_X); serial_delay(50); - SERIAL_ECHOLNPAIR("MESH_MIN_Y " STRINGIFY(MESH_MIN_Y) "=", MESH_MIN_Y); serial_delay(50); - SERIAL_ECHOLNPAIR("MESH_MAX_X " STRINGIFY(MESH_MAX_X) "=", MESH_MAX_X); serial_delay(50); - SERIAL_ECHOLNPAIR("MESH_MAX_Y " STRINGIFY(MESH_MAX_Y) "=", MESH_MAX_Y); serial_delay(50); - SERIAL_ECHOLNPAIR("GRID_MAX_POINTS_X ", GRID_MAX_POINTS_X); serial_delay(50); - SERIAL_ECHOLNPAIR("GRID_MAX_POINTS_Y ", GRID_MAX_POINTS_Y); serial_delay(50); - SERIAL_ECHOLNPAIR("MESH_X_DIST ", MESH_X_DIST); - SERIAL_ECHOLNPAIR("MESH_Y_DIST ", MESH_Y_DIST); serial_delay(50); - - SERIAL_ECHOPGM("X-Axis Mesh Points at: "); - LOOP_L_N(i, GRID_MAX_POINTS_X) { - SERIAL_ECHO_F(LOGICAL_X_POSITION(mesh_index_to_xpos(i)), 3); - SERIAL_ECHOPGM(" "); - serial_delay(25); - } - SERIAL_EOL(); + adjust_mesh_to_mean(g29_c_flag, g29_constant); - SERIAL_ECHOPGM("Y-Axis Mesh Points at: "); - LOOP_L_N(i, GRID_MAX_POINTS_Y) { - SERIAL_ECHO_F(LOGICAL_Y_POSITION(mesh_index_to_ypos(i)), 3); - SERIAL_ECHOPGM(" "); - serial_delay(25); - } - SERIAL_EOL(); + #if HAS_BED_PROBE + SERIAL_ECHOLNPAIR_F("Probe Offset M851 Z", probe.offset.z, 7); + #endif - #if HAS_KILL - SERIAL_ECHOLNPAIR("Kill pin on :", KILL_PIN, " state:", kill_state()); - #endif + SERIAL_ECHOLNPAIR("MESH_MIN_X " STRINGIFY(MESH_MIN_X) "=", MESH_MIN_X); serial_delay(50); + SERIAL_ECHOLNPAIR("MESH_MIN_Y " STRINGIFY(MESH_MIN_Y) "=", MESH_MIN_Y); serial_delay(50); + SERIAL_ECHOLNPAIR("MESH_MAX_X " STRINGIFY(MESH_MAX_X) "=", MESH_MAX_X); serial_delay(50); + SERIAL_ECHOLNPAIR("MESH_MAX_Y " STRINGIFY(MESH_MAX_Y) "=", MESH_MAX_Y); serial_delay(50); + SERIAL_ECHOLNPAIR("GRID_MAX_POINTS_X ", GRID_MAX_POINTS_X); serial_delay(50); + SERIAL_ECHOLNPAIR("GRID_MAX_POINTS_Y ", GRID_MAX_POINTS_Y); serial_delay(50); + SERIAL_ECHOLNPAIR("MESH_X_DIST ", MESH_X_DIST); + SERIAL_ECHOLNPAIR("MESH_Y_DIST ", MESH_Y_DIST); serial_delay(50); + + SERIAL_ECHOPGM("X-Axis Mesh Points at: "); + LOOP_L_N(i, GRID_MAX_POINTS_X) { + SERIAL_ECHO_F(LOGICAL_X_POSITION(mesh_index_to_xpos(i)), 3); + SERIAL_ECHOPGM(" "); + serial_delay(25); + } + SERIAL_EOL(); - SERIAL_EOL(); - serial_delay(50); + SERIAL_ECHOPGM("Y-Axis Mesh Points at: "); + LOOP_L_N(i, GRID_MAX_POINTS_Y) { + SERIAL_ECHO_F(LOGICAL_Y_POSITION(mesh_index_to_ypos(i)), 3); + SERIAL_ECHOPGM(" "); + serial_delay(25); + } + SERIAL_EOL(); - #if ENABLED(UBL_DEVEL_DEBUGGING) - SERIAL_ECHOLNPAIR("ubl_state_at_invocation :", ubl_state_at_invocation, "\nubl_state_recursion_chk :", ubl_state_recursion_chk); - serial_delay(50); + #if HAS_KILL + SERIAL_ECHOLNPAIR("Kill pin on :", KILL_PIN, " state:", kill_state()); + #endif + + SERIAL_EOL(); + serial_delay(50); - SERIAL_ECHOLNPAIR("Meshes go from ", hex_address((void*)settings.meshes_start_index()), " to ", hex_address((void*)settings.meshes_end_index())); - serial_delay(50); + #if ENABLED(UBL_DEVEL_DEBUGGING) + SERIAL_ECHOLNPAIR("ubl_state_at_invocation :", ubl_state_at_invocation, "\nubl_state_recursion_chk :", ubl_state_recursion_chk); + serial_delay(50); + + SERIAL_ECHOLNPAIR("Meshes go from ", hex_address((void*)settings.meshes_start_index()), " to ", hex_address((void*)settings.meshes_end_index())); + serial_delay(50); - SERIAL_ECHOLNPAIR("sizeof(ubl) : ", sizeof(ubl)); SERIAL_EOL(); - SERIAL_ECHOLNPAIR("z_value[][] size: ", sizeof(z_values)); SERIAL_EOL(); - serial_delay(25); + SERIAL_ECHOLNPAIR("sizeof(ubl) : ", sizeof(ubl)); SERIAL_EOL(); + SERIAL_ECHOLNPAIR("z_value[][] size: ", sizeof(z_values)); SERIAL_EOL(); + serial_delay(25); - SERIAL_ECHOLNPAIR("EEPROM free for UBL: ", hex_address((void*)(settings.meshes_end_index() - settings.meshes_start_index()))); - serial_delay(50); + SERIAL_ECHOLNPAIR("EEPROM free for UBL: ", hex_address((void*)(settings.meshes_end_index() - settings.meshes_start_index()))); + serial_delay(50); - SERIAL_ECHOLNPAIR("EEPROM can hold ", settings.calc_num_meshes(), " meshes.\n"); - serial_delay(25); - #endif // UBL_DEVEL_DEBUGGING + SERIAL_ECHOLNPAIR("EEPROM can hold ", settings.calc_num_meshes(), " meshes.\n"); + serial_delay(25); + #endif // UBL_DEVEL_DEBUGGING - if (!sanity_check()) { - echo_name(); - SERIAL_ECHOLNPGM(" sanity checks passed."); - } + if (!sanity_check()) { + echo_name(); + SERIAL_ECHOLNPGM(" sanity checks passed."); } + } - /** - * When we are fully debugged, the EEPROM dump command will get deleted also. But - * right now, it is good to have the extra information. Soon... we prune this. - */ - void unified_bed_leveling::g29_eeprom_dump() { - uint8_t cccc; - - SERIAL_ECHO_MSG("EEPROM Dump:"); - persistentStore.access_start(); - for (uint16_t i = 0; i < persistentStore.capacity(); i += 16) { - if (!(i & 0x3)) idle(); - print_hex_word(i); - SERIAL_ECHOPGM(": "); - for (uint16_t j = 0; j < 16; j++) { - persistentStore.read_data(i + j, &cccc, sizeof(uint8_t)); - print_hex_byte(cccc); - SERIAL_CHAR(' '); - } - SERIAL_EOL(); + /** + * When we are fully debugged, the EEPROM dump command will get deleted also. But + * right now, it is good to have the extra information. Soon... we prune this. + */ + void unified_bed_leveling::g29_eeprom_dump() { + uint8_t cccc; + + SERIAL_ECHO_MSG("EEPROM Dump:"); + persistentStore.access_start(); + for (uint16_t i = 0; i < persistentStore.capacity(); i += 16) { + if (!(i & 0x3)) idle(); + print_hex_word(i); + SERIAL_ECHOPGM(": "); + for (uint16_t j = 0; j < 16; j++) { + persistentStore.read_data(i + j, &cccc, sizeof(uint8_t)); + print_hex_byte(cccc); + SERIAL_CHAR(' '); } SERIAL_EOL(); - persistentStore.access_finish(); } + SERIAL_EOL(); + persistentStore.access_finish(); + } - /** - * When we are fully debugged, this may go away. But there are some valid - * use cases for the users. So we can wait and see what to do with it. - */ - void unified_bed_leveling::g29_compare_current_mesh_to_stored_mesh() { - const int16_t a = settings.calc_num_meshes(); + /** + * When we are fully debugged, this may go away. But there are some valid + * use cases for the users. So we can wait and see what to do with it. + */ + void unified_bed_leveling::g29_compare_current_mesh_to_stored_mesh() { + const int16_t a = settings.calc_num_meshes(); - if (!a) { - SERIAL_ECHOLNPGM("?EEPROM storage not available."); - return; - } + if (!a) { + SERIAL_ECHOLNPGM("?EEPROM storage not available."); + return; + } - if (!parser.has_value() || !WITHIN(g29_storage_slot, 0, a - 1)) { - SERIAL_ECHOLNPAIR("?Invalid storage slot.\n?Use 0 to ", a - 1); - return; - } + if (!parser.has_value() || !WITHIN(g29_storage_slot, 0, a - 1)) { + SERIAL_ECHOLNPAIR("?Invalid storage slot.\n?Use 0 to ", a - 1); + return; + } - g29_storage_slot = parser.value_int(); + g29_storage_slot = parser.value_int(); - float tmp_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; - settings.load_mesh(g29_storage_slot, &tmp_z_values); + float tmp_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; + settings.load_mesh(g29_storage_slot, &tmp_z_values); - SERIAL_ECHOLNPAIR("Subtracting mesh in slot ", g29_storage_slot, " from current mesh."); + SERIAL_ECHOLNPAIR("Subtracting mesh in slot ", g29_storage_slot, " from current mesh."); - GRID_LOOP(x, y) { - z_values[x][y] -= tmp_z_values[x][y]; - TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(x, y, z_values[x][y])); - } + GRID_LOOP(x, y) { + z_values[x][y] -= tmp_z_values[x][y]; + TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(x, y, z_values[x][y])); } + } - #endif // UBL_DEVEL_DEBUGGING +#endif // UBL_DEVEL_DEBUGGING #endif // AUTO_BED_LEVELING_UBL