|
|
@ -111,10 +111,10 @@ inline static float dist1(float x1, float y1, float x2, float y2) { return FABS( |
|
|
|
*/ |
|
|
|
void cubic_b_spline(const float position[NUM_AXIS], const float target[NUM_AXIS], const float offset[4], float fr_mm_s, uint8_t extruder) { |
|
|
|
// Absolute first and second control points are recovered.
|
|
|
|
float first0 = position[X_AXIS] + offset[0]; |
|
|
|
float first1 = position[Y_AXIS] + offset[1]; |
|
|
|
float second0 = target[X_AXIS] + offset[2]; |
|
|
|
float second1 = target[Y_AXIS] + offset[3]; |
|
|
|
const float first0 = position[X_AXIS] + offset[0], |
|
|
|
first1 = position[Y_AXIS] + offset[1], |
|
|
|
second0 = target[X_AXIS] + offset[2], |
|
|
|
second1 = target[Y_AXIS] + offset[3]; |
|
|
|
float t = 0.0; |
|
|
|
|
|
|
|
float bez_target[4]; |
|
|
@ -138,15 +138,15 @@ void cubic_b_spline(const float position[NUM_AXIS], const float target[NUM_AXIS] |
|
|
|
bool did_reduce = false; |
|
|
|
float new_t = t + step; |
|
|
|
NOMORE(new_t, 1.0); |
|
|
|
float new_pos0 = eval_bezier(position[X_AXIS], first0, second0, target[X_AXIS], new_t); |
|
|
|
float new_pos1 = eval_bezier(position[Y_AXIS], first1, second1, target[Y_AXIS], new_t); |
|
|
|
float new_pos0 = eval_bezier(position[X_AXIS], first0, second0, target[X_AXIS], new_t), |
|
|
|
new_pos1 = eval_bezier(position[Y_AXIS], first1, second1, target[Y_AXIS], new_t); |
|
|
|
for (;;) { |
|
|
|
if (new_t - t < (MIN_STEP)) break; |
|
|
|
float candidate_t = 0.5 * (t + new_t); |
|
|
|
float candidate_pos0 = eval_bezier(position[X_AXIS], first0, second0, target[X_AXIS], candidate_t); |
|
|
|
float candidate_pos1 = eval_bezier(position[Y_AXIS], first1, second1, target[Y_AXIS], candidate_t); |
|
|
|
float interp_pos0 = 0.5 * (bez_target[X_AXIS] + new_pos0); |
|
|
|
float interp_pos1 = 0.5 * (bez_target[Y_AXIS] + new_pos1); |
|
|
|
const float candidate_t = 0.5 * (t + new_t), |
|
|
|
candidate_pos0 = eval_bezier(position[X_AXIS], first0, second0, target[X_AXIS], candidate_t), |
|
|
|
candidate_pos1 = eval_bezier(position[Y_AXIS], first1, second1, target[Y_AXIS], candidate_t), |
|
|
|
interp_pos0 = 0.5 * (bez_target[X_AXIS] + new_pos0), |
|
|
|
interp_pos1 = 0.5 * (bez_target[Y_AXIS] + new_pos1); |
|
|
|
if (dist1(candidate_pos0, candidate_pos1, interp_pos0, interp_pos1) <= (SIGMA)) break; |
|
|
|
new_t = candidate_t; |
|
|
|
new_pos0 = candidate_pos0; |
|
|
@ -157,12 +157,12 @@ void cubic_b_spline(const float position[NUM_AXIS], const float target[NUM_AXIS] |
|
|
|
// If we did not reduce the step, maybe we should enlarge it.
|
|
|
|
if (!did_reduce) for (;;) { |
|
|
|
if (new_t - t > MAX_STEP) break; |
|
|
|
float candidate_t = t + 2.0 * (new_t - t); |
|
|
|
const float candidate_t = t + 2.0 * (new_t - t); |
|
|
|
if (candidate_t >= 1.0) break; |
|
|
|
float candidate_pos0 = eval_bezier(position[X_AXIS], first0, second0, target[X_AXIS], candidate_t); |
|
|
|
float candidate_pos1 = eval_bezier(position[Y_AXIS], first1, second1, target[Y_AXIS], candidate_t); |
|
|
|
float interp_pos0 = 0.5 * (bez_target[X_AXIS] + candidate_pos0); |
|
|
|
float interp_pos1 = 0.5 * (bez_target[Y_AXIS] + candidate_pos1); |
|
|
|
const float candidate_pos0 = eval_bezier(position[X_AXIS], first0, second0, target[X_AXIS], candidate_t), |
|
|
|
candidate_pos1 = eval_bezier(position[Y_AXIS], first1, second1, target[Y_AXIS], candidate_t), |
|
|
|
interp_pos0 = 0.5 * (bez_target[X_AXIS] + candidate_pos0), |
|
|
|
interp_pos1 = 0.5 * (bez_target[Y_AXIS] + candidate_pos1); |
|
|
|
if (dist1(new_pos0, new_pos1, interp_pos0, interp_pos1) > (SIGMA)) break; |
|
|
|
new_t = candidate_t; |
|
|
|
new_pos0 = candidate_pos0; |
|
|
|