From d90e8fcad91ef0205137b4439995366fe2335e78 Mon Sep 17 00:00:00 2001 From: etagle Date: Tue, 5 Jun 2018 21:12:08 -0300 Subject: [PATCH] Fix XON/XOFF implementation Pointed out by @GMagician --- Marlin/src/HAL/HAL_AVR/MarlinSerial.cpp | 419 ++++++++++++-------- Marlin/src/HAL/HAL_AVR/MarlinSerial.h | 13 +- Marlin/src/HAL/HAL_DUE/MarlinSerial_Due.cpp | 400 ++++++++++++------- Marlin/src/HAL/HAL_DUE/MarlinSerial_Due.h | 4 +- 4 files changed, 521 insertions(+), 315 deletions(-) diff --git a/Marlin/src/HAL/HAL_AVR/MarlinSerial.cpp b/Marlin/src/HAL/HAL_AVR/MarlinSerial.cpp index 5a2a767384..35735802be 100644 --- a/Marlin/src/HAL/HAL_AVR/MarlinSerial.cpp +++ b/Marlin/src/HAL/HAL_AVR/MarlinSerial.cpp @@ -56,16 +56,15 @@ ring_buffer_r rx_buffer = { { 0 }, 0, 0 }; #if TX_BUFFER_SIZE > 0 ring_buffer_t tx_buffer = { { 0 }, 0, 0 }; - static bool _written; #endif + static bool _written; #endif #if ENABLED(SERIAL_XON_XOFF) - constexpr uint8_t XON_XOFF_CHAR_SENT = 0x80; // XON / XOFF Character was sent - constexpr uint8_t XON_XOFF_CHAR_MASK = 0x1F; // XON / XOFF character to send + constexpr uint8_t XON_XOFF_CHAR_SENT = 0x80, // XON / XOFF Character was sent + XON_XOFF_CHAR_MASK = 0x1F; // XON / XOFF character to send // XON / XOFF character definitions - constexpr uint8_t XON_CHAR = 17; - constexpr uint8_t XOFF_CHAR = 19; + constexpr uint8_t XON_CHAR = 17, XOFF_CHAR = 19; uint8_t xon_xoff_state = XON_XOFF_CHAR_SENT | XON_CHAR; #endif @@ -91,125 +90,196 @@ static EmergencyParser::State emergency_state; // = EP_RESET #endif - const ring_buffer_pos_t h = rx_buffer.head, - i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); + // Get the tail - Nothing can alter its value while we are at this ISR + const ring_buffer_pos_t t = rx_buffer.tail; - // Read the character - const uint8_t c = M_UDRx; + // Get the head pointer + ring_buffer_pos_t h = rx_buffer.head; + + // Get the next element + ring_buffer_pos_t i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); + + // Read the character from the USART + uint8_t c = M_UDRx; + + #if ENABLED(EMERGENCY_PARSER) + emergency_parser.update(emergency_state, c); + #endif // If the character is to be stored at the index just before the tail - // (such that the head would advance to the current tail), the buffer is - // critical, so don't write the character or advance the head. - if (i != rx_buffer.tail) { + // (such that the head would advance to the current tail), the RX FIFO is + // full, so don't write the character or advance the head. + if (i != t) { rx_buffer.buffer[h] = c; - rx_buffer.head = i; - } - else { - #if ENABLED(SERIAL_STATS_DROPPED_RX) - if (!++rx_dropped_bytes) ++rx_dropped_bytes; - #endif + h = i; } + #if ENABLED(SERIAL_STATS_DROPPED_RX) + else if (!++rx_dropped_bytes) --rx_dropped_bytes; + #endif #if ENABLED(SERIAL_STATS_MAX_RX_QUEUED) - // calculate count of bytes stored into the RX buffer - ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(rx_buffer.head - rx_buffer.tail) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); + // Calculate count of bytes stored into the RX buffer + const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); + // Keep track of the maximum count of enqueued bytes NOLESS(rx_max_enqueued, rx_count); #endif #if ENABLED(SERIAL_XON_XOFF) - - // for high speed transfers, we can use XON/XOFF protocol to do - // software handshake and avoid overruns. + // If the last char that was sent was an XON if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XON_CHAR) { - // calculate count of bytes stored into the RX buffer - ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(rx_buffer.head - rx_buffer.tail) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); + // Bytes stored into the RX buffer + const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); - // if we are above 12.5% of RX buffer capacity, send XOFF before - // we run out of RX buffer space .. We need 325 bytes @ 250kbits/s to - // let the host react and stop sending bytes. This translates to 13mS - // propagation time. + // If over 12.5% of RX buffer capacity, send XOFF before running out of + // RX buffer space .. 325 bytes @ 250kbits/s needed to let the host react + // and stop sending bytes. This translates to 13mS propagation time. if (rx_count >= (RX_BUFFER_SIZE) / 8) { - // If TX interrupts are disabled and data register is empty, - // just write the byte to the data register and be done. This - // shortcut helps significantly improve the effective datarate - // at high (>500kbit/s) bitrates, where interrupt overhead - // becomes a slowdown. - if (!TEST(M_UCSRxB, M_UDRIEx) && TEST(M_UCSRxA, M_UDREx)) { - - // Send an XOFF character - M_UDRx = XOFF_CHAR; - - // clear the TXC bit -- "can be cleared by writing a one to its bit - // location". This makes sure flush() won't return until the bytes - // actually got written - SBI(M_UCSRxA, M_TXCx); - - // And remember it was sent - xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT; + // At this point, definitely no TX interrupt was executing, since the TX isr can't be preempted. + // Don't enable the TX interrupt here as a means to trigger the XOFF char, because if it happens + // to be in the middle of trying to disable the RX interrupt in the main program, eventually the + // enabling of the TX interrupt could be undone. The ONLY reliable thing this can do to ensure + // the sending of the XOFF char is to send it HERE AND NOW. + + // About to send the XOFF char + xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT; + + // Wait until the TX register becomes empty and send it - Here there could be a problem + // - While waiting for the TX register to empty, the RX register could receive a new + // character. This must also handle that situation! + while (!TEST(M_UCSRxA, M_UDREx)) { + + if (TEST(M_UCSRxA,M_RXCx)) { + // A char arrived while waiting for the TX buffer to be empty - Receive and process it! + + i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); + + // Read the character from the USART + c = M_UDRx; + + #if ENABLED(EMERGENCY_PARSER) + emergency_parser.update(emergency_state, c); + #endif + + // If the character is to be stored at the index just before the tail + // (such that the head would advance to the current tail), the FIFO is + // full, so don't write the character or advance the head. + if (i != t) { + rx_buffer.buffer[h] = c; + h = i; + } + #if ENABLED(SERIAL_STATS_DROPPED_RX) + else if (!++rx_dropped_bytes) --rx_dropped_bytes; + #endif + } + sw_barrier(); } - else { - // TX interrupts disabled, but buffer still not empty ... or - // TX interrupts enabled. Reenable TX ints and schedule XOFF - // character to be sent - #if TX_BUFFER_SIZE > 0 - SBI(M_UCSRxB, M_UDRIEx); - xon_xoff_state = XOFF_CHAR; - #else - // We are not using TX interrupts, we will have to send this manually - while (!TEST(M_UCSRxA, M_UDREx)) sw_barrier(); - M_UDRx = XOFF_CHAR; - - // clear the TXC bit -- "can be cleared by writing a one to its bit - // location". This makes sure flush() won't return until the bytes - // actually got written - SBI(M_UCSRxA, M_TXCx); - - // And remember we already sent it - xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT; - #endif + + M_UDRx = XOFF_CHAR; + + // Clear the TXC bit -- "can be cleared by writing a one to its bit + // location". This makes sure flush() won't return until the bytes + // actually got written + SBI(M_UCSRxA, M_TXCx); + + // At this point there could be a race condition between the write() function + // and this sending of the XOFF char. This interrupt could happen between the + // wait to be empty TX buffer loop and the actual write of the character. Since + // the TX buffer is full because it's sending the XOFF char, the only way to be + // sure the write() function will succeed is to wait for the XOFF char to be + // completely sent. Since an extra character could be received during the wait + // it must also be handled! + while (!TEST(M_UCSRxA, M_UDREx)) { + + if (TEST(M_UCSRxA,M_RXCx)) { + // A char arrived while waiting for the TX buffer to be empty - Receive and process it! + + i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); + + // Read the character from the USART + c = M_UDRx; + + #if ENABLED(EMERGENCY_PARSER) + emergency_parser.update(emergency_state, c); + #endif + + // If the character is to be stored at the index just before the tail + // (such that the head would advance to the current tail), the FIFO is + // full, so don't write the character or advance the head. + if (i != t) { + rx_buffer.buffer[h] = c; + h = i; + } + #if ENABLED(SERIAL_STATS_DROPPED_RX) + else if (!++rx_dropped_bytes) --rx_dropped_bytes; + #endif + } + sw_barrier(); } + + // At this point everything is ready. The write() function won't + // have any issues writing to the UART TX register if it needs to! } } #endif // SERIAL_XON_XOFF - #if ENABLED(EMERGENCY_PARSER) - emergency_parser.update(emergency_state, c); - #endif + // Store the new head value + rx_buffer.head = h; } #if TX_BUFFER_SIZE > 0 // (called with TX irqs disabled) FORCE_INLINE void _tx_udr_empty_irq(void) { - // If interrupts are enabled, there must be more data in the output - // buffer. + + // Read positions + uint8_t t = tx_buffer.tail; + const uint8_t h = tx_buffer.head; #if ENABLED(SERIAL_XON_XOFF) - // Do a priority insertion of an XON/XOFF char, if needed. - const uint8_t state = xon_xoff_state; - if (!(state & XON_XOFF_CHAR_SENT)) { - M_UDRx = state & XON_XOFF_CHAR_MASK; - xon_xoff_state = state | XON_XOFF_CHAR_SENT; + // If an XON char is pending to be sent, do it now + if (xon_xoff_state == XON_CHAR) { + + // Send the character + M_UDRx = XON_CHAR; + + // clear the TXC bit -- "can be cleared by writing a one to its bit + // location". This makes sure flush() won't return until the bytes + // actually got written + SBI(M_UCSRxA, M_TXCx); + + // Remember we sent it. + xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT; + + // If nothing else to transmit, just disable TX interrupts. + if (h == t) CBI(M_UCSRxB, M_UDRIEx); // (Non-atomic, could be reenabled by the main program, but eventually this will succeed) + + return; } - else #endif - { // Send the next byte - const uint8_t t = tx_buffer.tail, c = tx_buffer.buffer[t]; - tx_buffer.tail = (t + 1) & (TX_BUFFER_SIZE - 1); - M_UDRx = c; + + // If nothing to transmit, just disable TX interrupts. This could + // happen as the result of the non atomicity of the disabling of RX + // interrupts that could end reenabling TX interrupts as a side effect. + if (h == t) { + CBI(M_UCSRxB, M_UDRIEx); // (Non-atomic, could be reenabled by the main program, but eventually this will succeed) + return; } - // clear the TXC bit -- "can be cleared by writing a one to its bit - // location". This makes sure flush() won't return until the bytes - // actually got written + // There is something to TX, Send the next byte + const uint8_t c = tx_buffer.buffer[t]; + t = (t + 1) & (TX_BUFFER_SIZE - 1); + M_UDRx = c; + tx_buffer.tail = t; + + // Clear the TXC bit (by writing a one to its bit location). + // Ensures flush() won't return until the bytes are actually written/ SBI(M_UCSRxA, M_TXCx); - // Disable interrupts if the buffer is empty - if (tx_buffer.head == tx_buffer.tail) - CBI(M_UCSRxB, M_UDRIEx); + // Disable interrupts if there is nothing to transmit following this byte + if (h == t) CBI(M_UCSRxB, M_UDRIEx); // (Non-atomic, could be reenabled by the main program, but eventually this will succeed) } #ifdef M_USARTx_UDRE_vect @@ -253,8 +323,8 @@ SBI(M_UCSRxB, M_RXCIEx); #if TX_BUFFER_SIZE > 0 CBI(M_UCSRxB, M_UDRIEx); - _written = false; #endif + _written = false; } void MarlinSerial::end() { @@ -281,11 +351,11 @@ } int MarlinSerial::read(void) { - int v; #if RX_BUFFER_SIZE > 256 - // Disable RX interrupts to ensure atomic reads - const bool isr_enabled = TEST(M_UCSRxB, M_RXCIEx); + // Disable RX interrupts to ensure atomic reads - This could reenable TX interrupts, + // but this situation is explicitly handled at the TX isr, so no problems there + bool isr_enabled = TEST(M_UCSRxB, M_RXCIEx); CBI(M_UCSRxB, M_RXCIEx); #endif @@ -298,43 +368,50 @@ ring_buffer_pos_t t = rx_buffer.tail; - if (h == t) - v = -1; - else { - v = rx_buffer.buffer[t]; - t = (ring_buffer_pos_t)(t + 1) & (RX_BUFFER_SIZE - 1); - - #if RX_BUFFER_SIZE > 256 - // Disable RX interrupts to ensure atomic write to tail, so - // the RX isr can't read partially updated values - const bool isr_enabled = TEST(M_UCSRxB, M_RXCIEx); - CBI(M_UCSRxB, M_RXCIEx); - #endif + // If nothing to read, return now + if (h == t) return -1; - // Advance tail - rx_buffer.tail = t; + // Get the next char + const int v = rx_buffer.buffer[t]; + t = (ring_buffer_pos_t)(t + 1) & (RX_BUFFER_SIZE - 1); - #if RX_BUFFER_SIZE > 256 - // End critical section - if (isr_enabled) SBI(M_UCSRxB, M_RXCIEx); - #endif + #if RX_BUFFER_SIZE > 256 + // Disable RX interrupts to ensure atomic write to tail, so + // the RX isr can't read partially updated values - This could + // reenable TX interrupts, but this situation is explicitly + // handled at the TX isr, so no problems there + isr_enabled = TEST(M_UCSRxB, M_RXCIEx); + CBI(M_UCSRxB, M_RXCIEx); + #endif - #if ENABLED(SERIAL_XON_XOFF) - if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) { + // Advance tail + rx_buffer.tail = t; - // Get count of bytes in the RX buffer - ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); + #if RX_BUFFER_SIZE > 256 + // End critical section + if (isr_enabled) SBI(M_UCSRxB, M_RXCIEx); + #endif - // When below 10% of RX buffer capacity, send XON before - // running out of RX buffer bytes - if (rx_count < (RX_BUFFER_SIZE) / 10) { + #if ENABLED(SERIAL_XON_XOFF) + // If the XOFF char was sent, or about to be sent... + if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) { + // Get count of bytes in the RX buffer + const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); + if (rx_count < (RX_BUFFER_SIZE) / 10) { + #if TX_BUFFER_SIZE > 0 + // Signal we want an XON character to be sent. + xon_xoff_state = XON_CHAR; + // Enable TX isr. Non atomic, but it will eventually enable them + SBI(M_UCSRxB, M_UDRIEx); + #else + // If not using TX interrupts, we must send the XON char now xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT; - write(XON_CHAR); - return v; - } + while (!TEST(M_UCSRxA, M_UDREx)) sw_barrier(); + M_UDRx = XON_CHAR; + #endif } - #endif - } + } + #endif return v; } @@ -367,9 +444,19 @@ #endif #if ENABLED(SERIAL_XON_XOFF) + // If the XOFF char was sent, or about to be sent... if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) { - xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT; - write(XON_CHAR); + #if TX_BUFFER_SIZE > 0 + // Signal we want an XON character to be sent. + xon_xoff_state = XON_CHAR; + // Enable TX isr. Non atomic, but it will eventually enable it. + SBI(M_UCSRxB, M_UDRIEx); + #else + // If not using TX interrupts, we must send the XON char now + xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT; + while (!TEST(M_UCSRxA, M_UDREx)) sw_barrier(); + M_UDRx = XON_CHAR; + #endif } #endif } @@ -383,6 +470,8 @@ // be done. This shortcut helps significantly improve the // effective datarate at high (>500kbit/s) bitrates, where // interrupt overhead becomes a slowdown. + // Yes, there is a race condition between the sending of the + // XOFF char at the RX isr, but it is properly handled there if (!TEST(M_UCSRxB, M_UDRIEx) && TEST(M_UCSRxA, M_UDREx)) { M_UDRx = c; @@ -395,61 +484,79 @@ const uint8_t i = (tx_buffer.head + 1) & (TX_BUFFER_SIZE - 1); - // If the output buffer is full, there's nothing for it other than to - // wait for the interrupt handler to empty it a bit - while (i == tx_buffer.tail) { - if (!ISRS_ENABLED()) { - // Interrupts are disabled, so we'll have to poll the data - // register empty flag ourselves. If it is set, pretend an - // interrupt has happened and call the handler to free up - // space for us. - if (TEST(M_UCSRxA, M_UDREx)) - _tx_udr_empty_irq(); - } - // (else , the interrupt handler will free up space for us) + // If global interrupts are disabled (as the result of being called from an ISR)... + if (!ISRS_ENABLED()) { + + // Make room by polling if it is possible to transmit, and do so! + while (i == tx_buffer.tail) { - // Make sure compiler rereads tx_buffer.tail - sw_barrier(); + // If we can transmit another byte, do it. + if (TEST(M_UCSRxA, M_UDREx)) _tx_udr_empty_irq(); + + // Make sure compiler rereads tx_buffer.tail + sw_barrier(); + } + } + else { + // Interrupts are enabled, just wait until there is space + while (i == tx_buffer.tail) { sw_barrier(); } } // Store new char. head is always safe to move tx_buffer.buffer[tx_buffer.head] = c; tx_buffer.head = i; - // Enable TX isr + // Enable TX isr - Non atomic, but it will eventually enable TX isr SBI(M_UCSRxB, M_UDRIEx); - return; } void MarlinSerial::flushTX(void) { - // TX - // If we have never written a byte, no need to flush. This special - // case is needed since there is no way to force the TXC (transmit - // complete) bit to 1 during initialization - if (!_written) - return; + // No bytes written, no need to flush. This special case is needed since there's + // no way to force the TXC (transmit complete) bit to 1 during initialization. + if (!_written) return; + + // If global interrupts are disabled (as the result of being called from an ISR)... + if (!ISRS_ENABLED()) { - while (TEST(M_UCSRxB, M_UDRIEx) || !TEST(M_UCSRxA, M_TXCx)) { - if (!ISRS_ENABLED()) { - // Interrupts are globally disabled, but the DR empty - // interrupt should be enabled, so poll the DR empty flag to - // prevent deadlock + // Wait until everything was transmitted - We must do polling, as interrupts are disabled + while (tx_buffer.head != tx_buffer.tail || !TEST(M_UCSRxA, M_TXCx)) { + + // If there is more space, send an extra character if (TEST(M_UCSRxA, M_UDREx)) _tx_udr_empty_irq(); + + sw_barrier(); } - sw_barrier(); + + } + else { + // Wait until everything was transmitted + while (tx_buffer.head != tx_buffer.tail || !TEST(M_UCSRxA, M_TXCx)) sw_barrier(); } - // If we get here, nothing is queued anymore (DRIE is disabled) and + + // At this point nothing is queued anymore (DRIE is disabled) and // the hardware finished transmission (TXC is set). } #else // TX_BUFFER_SIZE == 0 void MarlinSerial::write(const uint8_t c) { + _written = true; while (!TEST(M_UCSRxA, M_UDREx)) sw_barrier(); M_UDRx = c; } + void MarlinSerial::flushTX(void) { + // No bytes written, no need to flush. This special case is needed since there's + // no way to force the TXC (transmit complete) bit to 1 during initialization. + if (!_written) return; + + // Wait until everything was transmitted + while (!TEST(M_UCSRxA, M_TXCx)) sw_barrier(); + + // At this point nothing is queued anymore (DRIE is disabled) and + // the hardware finished transmission (TXC is set). + } #endif // TX_BUFFER_SIZE == 0 /** @@ -473,13 +580,9 @@ } void MarlinSerial::print(long n, int base) { - if (base == 0) - write(n); + if (base == 0) write(n); else if (base == 10) { - if (n < 0) { - print('-'); - n = -n; - } + if (n < 0) { print('-'); n = -n; } printNumber(n, 10); } else diff --git a/Marlin/src/HAL/HAL_AVR/MarlinSerial.h b/Marlin/src/HAL/HAL_AVR/MarlinSerial.h index dc39222d9b..d0274ebe4c 100644 --- a/Marlin/src/HAL/HAL_AVR/MarlinSerial.h +++ b/Marlin/src/HAL/HAL_AVR/MarlinSerial.h @@ -75,6 +75,7 @@ #define HEX 16 #define OCT 8 #define BIN 2 +#define BYTE 0 #ifndef USBCON // We're using a ring buffer (I think), in which rx_buffer_head is the index of the @@ -105,9 +106,7 @@ static void flush(void); static ring_buffer_pos_t available(void); static void write(const uint8_t c); - #if TX_BUFFER_SIZE > 0 - static void flushTX(void); - #endif + static void flushTX(void); #if ENABLED(SERIAL_STATS_DROPPED_RX) FORCE_INLINE static uint32_t dropped() { return rx_dropped_bytes; } @@ -122,8 +121,8 @@ FORCE_INLINE static void print(const String& s) { for (int i = 0; i < (int)s.length(); i++) write(s[i]); } FORCE_INLINE static void print(const char* str) { write(str); } - static void print(char, int = 0); - static void print(unsigned char, int = 0); + static void print(char, int = BYTE); + static void print(unsigned char, int = BYTE); static void print(int, int = DEC); static void print(unsigned int, int = DEC); static void print(long, int = DEC); @@ -132,8 +131,8 @@ static void println(const String& s); static void println(const char[]); - static void println(char, int = 0); - static void println(unsigned char, int = 0); + static void println(char, int = BYTE); + static void println(unsigned char, int = BYTE); static void println(int, int = DEC); static void println(unsigned int, int = DEC); static void println(long, int = DEC); diff --git a/Marlin/src/HAL/HAL_DUE/MarlinSerial_Due.cpp b/Marlin/src/HAL/HAL_DUE/MarlinSerial_Due.cpp index 306cd912e8..257833b8ea 100644 --- a/Marlin/src/HAL/HAL_DUE/MarlinSerial_Due.cpp +++ b/Marlin/src/HAL/HAL_DUE/MarlinSerial_Due.cpp @@ -74,15 +74,14 @@ ring_buffer_r rx_buffer = { { 0 }, 0, 0 }; #if TX_BUFFER_SIZE > 0 ring_buffer_t tx_buffer = { { 0 }, 0, 0 }; - static bool _written; #endif + static bool _written; #if ENABLED(SERIAL_XON_XOFF) - constexpr uint8_t XON_XOFF_CHAR_SENT = 0x80; // XON / XOFF Character was sent - constexpr uint8_t XON_XOFF_CHAR_MASK = 0x1F; // XON / XOFF character to send + constexpr uint8_t XON_XOFF_CHAR_SENT = 0x80, // XON / XOFF Character was sent + XON_XOFF_CHAR_MASK = 0x1F; // XON / XOFF character to send // XON / XOFF character definitions - constexpr uint8_t XON_CHAR = 17; - constexpr uint8_t XOFF_CHAR = 19; + constexpr uint8_t XON_CHAR = 17, XOFF_CHAR = 19; uint8_t xon_xoff_state = XON_XOFF_CHAR_SENT | XON_CHAR; // Validate that RX buffer size is at least 4096 bytes- According to several experiments, on @@ -110,128 +109,201 @@ #include "../../feature/emergency_parser.h" #endif + // (called with RX interrupts disabled) FORCE_INLINE void store_rxd_char() { #if ENABLED(EMERGENCY_PARSER) static EmergencyParser::State emergency_state; // = EP_RESET #endif - const ring_buffer_pos_t h = rx_buffer.head, - i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); + // Get the tail - Nothing can alter its value while we are at this ISR + const ring_buffer_pos_t t = rx_buffer.tail; - // Read the character - const uint8_t c = HWUART->UART_RHR; + // Get the head pointer + ring_buffer_pos_t h = rx_buffer.head; + + // Get the next element + ring_buffer_pos_t i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); + + // Read the character from the USART + uint8_t c = HWUART->UART_RHR; + + #if ENABLED(EMERGENCY_PARSER) + emergency_parser.update(emergency_state, c); + #endif // If the character is to be stored at the index just before the tail - // (such that the head would advance to the current tail), the buffer is - // critical, so don't write the character or advance the head. - if (i != rx_buffer.tail) { + // (such that the head would advance to the current tail), the RX FIFO is + // full, so don't write the character or advance the head. + if (i != t) { rx_buffer.buffer[h] = c; - rx_buffer.head = i; + h = i; } #if ENABLED(SERIAL_STATS_DROPPED_RX) - else if (!++rx_dropped_bytes) ++rx_dropped_bytes; + else if (!++rx_dropped_bytes) --rx_dropped_bytes; #endif #if ENABLED(SERIAL_STATS_MAX_RX_QUEUED) - // calculate count of bytes stored into the RX buffer - ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(rx_buffer.head - rx_buffer.tail) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); + const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); + // Calculate count of bytes stored into the RX buffer + // Keep track of the maximum count of enqueued bytes NOLESS(rx_max_enqueued, rx_count); #endif #if ENABLED(SERIAL_XON_XOFF) - - // for high speed transfers, we can use XON/XOFF protocol to do - // software handshake and avoid overruns. + // If the last char that was sent was an XON if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XON_CHAR) { - // calculate count of bytes stored into the RX buffer - ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(rx_buffer.head - rx_buffer.tail) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); + // Bytes stored into the RX buffer + const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); - // if we are above 12.5% of RX buffer capacity, send XOFF before - // we run out of RX buffer space .. We need 325 bytes @ 250kbits/s to - // let the host react and stop sending bytes. This translates to 13mS - // propagation time. + // If over 12.5% of RX buffer capacity, send XOFF before running out of + // RX buffer space .. 325 bytes @ 250kbits/s needed to let the host react + // and stop sending bytes. This translates to 13mS propagation time. if (rx_count >= (RX_BUFFER_SIZE) / 8) { - - // If TX interrupts are disabled and data register is empty, - // just write the byte to the data register and be done. This - // shortcut helps significantly improve the effective datarate - // at high (>500kbit/s) bitrates, where interrupt overhead - // becomes a slowdown. - if (!(HWUART->UART_IMR & UART_IMR_TXRDY) && (HWUART->UART_SR & UART_SR_TXRDY)) { - - // Send an XOFF character - HWUART->UART_THR = XOFF_CHAR; - - // And remember it was sent - xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT; + + // At this point, definitely no TX interrupt was executing, since the TX isr can't be preempted. + // Don't enable the TX interrupt here as a means to trigger the XOFF char, because if it happens + // to be in the middle of trying to disable the RX interrupt in the main program, eventually the + // enabling of the TX interrupt could be undone. The ONLY reliable thing this can do to ensure + // the sending of the XOFF char is to send it HERE AND NOW. + + // About to send the XOFF char + xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT; + + // Wait until the TX register becomes empty and send it - Here there could be a problem + // - While waiting for the TX register to empty, the RX register could receive a new + // character. This must also handle that situation! + uint32_t status; + while (!((status = HWUART->UART_SR) & UART_SR_TXRDY)) { + + if (status & UART_SR_RXRDY) { + // We received a char while waiting for the TX buffer to be empty - Receive and process it! + + i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); + + // Read the character from the USART + c = HWUART->UART_RHR; + + #if ENABLED(EMERGENCY_PARSER) + emergency_parser.update(emergency_state, c); + #endif + + // If the character is to be stored at the index just before the tail + // (such that the head would advance to the current tail), the FIFO is + // full, so don't write the character or advance the head. + if (i != t) { + rx_buffer.buffer[h] = c; + h = i; + } + #if ENABLED(SERIAL_STATS_DROPPED_RX) + else if (!++rx_dropped_bytes) --rx_dropped_bytes; + #endif + } + sw_barrier(); } - else { - // TX interrupts disabled, but buffer still not empty ... or - // TX interrupts enabled. Reenable TX ints and schedule XOFF - // character to be sent - #if TX_BUFFER_SIZE > 0 - HWUART->UART_IER = UART_IER_TXRDY; - xon_xoff_state = XOFF_CHAR; - #else - // We are not using TX interrupts, we will have to send this manually - while (!(HWUART->UART_SR & UART_SR_TXRDY)) sw_barrier(); - HWUART->UART_THR = XOFF_CHAR; - - // And remember we already sent it - xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT; - #endif + + HWUART->UART_THR = XOFF_CHAR; + + // At this point there could be a race condition between the write() function + // and this sending of the XOFF char. This interrupt could happen between the + // wait to be empty TX buffer loop and the actual write of the character. Since + // the TX buffer is full because it's sending the XOFF char, the only way to be + // sure the write() function will succeed is to wait for the XOFF char to be + // completely sent. Since an extra character could be received during the wait + // it must also be handled! + while (!((status = HWUART->UART_SR) & UART_SR_TXRDY)) { + + if (status & UART_SR_RXRDY) { + // A char arrived while waiting for the TX buffer to be empty - Receive and process it! + + i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); + + // Read the character from the USART + c = HWUART->UART_RHR; + + #if ENABLED(EMERGENCY_PARSER) + emergency_parser.update(emergency_state, c); + #endif + + // If the character is to be stored at the index just before the tail + // (such that the head would advance to the current tail), the FIFO is + // full, so don't write the character or advance the head. + if (i != t) { + rx_buffer.buffer[h] = c; + h = i; + } + #if ENABLED(SERIAL_STATS_DROPPED_RX) + else if (!++rx_dropped_bytes) --rx_dropped_bytes; + #endif + } + sw_barrier(); } + + // At this point everything is ready. The write() function won't + // have any issues writing to the UART TX register if it needs to! } } #endif // SERIAL_XON_XOFF - #if ENABLED(EMERGENCY_PARSER) - emergency_parser.update(emergency_state, c); - #endif + // Store the new head value + rx_buffer.head = h; } #if TX_BUFFER_SIZE > 0 FORCE_INLINE void _tx_thr_empty_irq(void) { - // If interrupts are enabled, there must be more data in the output - // buffer. + // Read positions + uint8_t t = tx_buffer.tail; + const uint8_t h = tx_buffer.head; #if ENABLED(SERIAL_XON_XOFF) - // Do a priority insertion of an XON/XOFF char, if needed. - const uint8_t state = xon_xoff_state; - if (!(state & XON_XOFF_CHAR_SENT)) { - HWUART->UART_THR = state & XON_XOFF_CHAR_MASK; - xon_xoff_state = state | XON_XOFF_CHAR_SENT; + // If an XON char is pending to be sent, do it now + if (xon_xoff_state == XON_CHAR) { + + // Send the character + HWUART->UART_THR = XON_CHAR; + + // Remember we sent it. + xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT; + + // If nothing else to transmit, just disable TX interrupts. + if (h == t) HWUART->UART_IDR = UART_IDR_TXRDY; + + return; } - else #endif - { // Send the next byte - const uint8_t t = tx_buffer.tail, c = tx_buffer.buffer[t]; - tx_buffer.tail = (t + 1) & (TX_BUFFER_SIZE - 1); - HWUART->UART_THR = c; - } - // Disable interrupts if the buffer is empty - if (tx_buffer.head == tx_buffer.tail) + // If nothing to transmit, just disable TX interrupts. This could + // happen as the result of the non atomicity of the disabling of RX + // interrupts that could end reenabling TX interrupts as a side effect. + if (h == t) { HWUART->UART_IDR = UART_IDR_TXRDY; + return; + } + + // There is something to TX, Send the next byte + const uint8_t c = tx_buffer.buffer[t]; + t = (t + 1) & (TX_BUFFER_SIZE - 1); + HWUART->UART_THR = c; + tx_buffer.tail = t; + + // Disable interrupts if there is nothing to transmit following this byte + if (h == t) HWUART->UART_IDR = UART_IDR_TXRDY; } #endif // TX_BUFFER_SIZE > 0 static void UART_ISR(void) { - uint32_t status = HWUART->UART_SR; + const uint32_t status = HWUART->UART_SR; - // Did we receive data? - if (status & UART_SR_RXRDY) - store_rxd_char(); + // Data received? + if (status & UART_SR_RXRDY) store_rxd_char(); #if TX_BUFFER_SIZE > 0 - // Do we have something to send, and TX interrupts are enabled (meaning something to send) ? - if ((status & UART_SR_TXRDY) && (HWUART->UART_IMR & UART_IMR_TXRDY)) - _tx_thr_empty_irq(); + // Something to send, and TX interrupts are enabled (meaning something to send)? + if ((status & UART_SR_TXRDY) && (HWUART->UART_IMR & UART_IMR_TXRDY)) _tx_thr_empty_irq(); #endif // Acknowledge errors @@ -312,36 +384,40 @@ } int MarlinSerial::read(void) { - int v; - + const ring_buffer_pos_t h = rx_buffer.head; ring_buffer_pos_t t = rx_buffer.tail; - - if (h == t) - v = -1; - else { - v = rx_buffer.buffer[t]; - t = (ring_buffer_pos_t)(t + 1) & (RX_BUFFER_SIZE - 1); - - // Advance tail - rx_buffer.tail = t; - #if ENABLED(SERIAL_XON_XOFF) - if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) { - - // Get count of bytes in the RX buffer - ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); - - // When below 10% of RX buffer capacity, send XON before - // running out of RX buffer bytes - if (rx_count < (RX_BUFFER_SIZE) / 10) { + if (h == t) return -1; + + int v = rx_buffer.buffer[t]; + t = (ring_buffer_pos_t)(t + 1) & (RX_BUFFER_SIZE - 1); + + // Advance tail + rx_buffer.tail = t; + + #if ENABLED(SERIAL_XON_XOFF) + // If the XOFF char was sent, or about to be sent... + if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) { + // Get count of bytes in the RX buffer + const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); + // When below 10% of RX buffer capacity, send XON before running out of RX buffer bytes + if (rx_count < (RX_BUFFER_SIZE) / 10) { + #if TX_BUFFER_SIZE > 0 + // Signal we want an XON character to be sent. + xon_xoff_state = XON_CHAR; + // Enable TX isr. + HWUART->UART_IER = UART_IER_TXRDY; + #else + // If not using TX interrupts, we must send the XON char now xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT; - write(XON_CHAR); - return v; - } + while (!(HWUART->UART_SR & UART_SR_TXRDY)) sw_barrier(); + HWUART->UART_THR = XON_CHAR; + #endif } - #endif - } + } + #endif + return v; } @@ -355,8 +431,17 @@ #if ENABLED(SERIAL_XON_XOFF) if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) { - xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT; - write(XON_CHAR); + #if TX_BUFFER_SIZE > 0 + // Signal we want an XON character to be sent. + xon_xoff_state = XON_CHAR; + // Enable TX isr. + HWUART->UART_IER = UART_IER_TXRDY; + #else + // If not using TX interrupts, we must send the XON char now + xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT; + while (!(HWUART->UART_SR & UART_SR_TXRDY)) sw_barrier(); + HWUART->UART_THR = XON_CHAR; + #endif } #endif } @@ -364,72 +449,99 @@ #if TX_BUFFER_SIZE > 0 void MarlinSerial::write(const uint8_t c) { _written = true; - - // If the TX interrupts are disabled and the data register - // is empty, just write the byte to the data register and - // be done. This shortcut helps significantly improve the - // effective datarate at high (>500kbit/s) bitrates, where + + // If the TX interrupts are disabled and the data register + // is empty, just write the byte to the data register and + // be done. This shortcut helps significantly improve the + // effective datarate at high (>500kbit/s) bitrates, where // interrupt overhead becomes a slowdown. + // Yes, there is a race condition between the sending of the + // XOFF char at the RX isr, but it is properly handled there if (!(HWUART->UART_IMR & UART_IMR_TXRDY) && (HWUART->UART_SR & UART_SR_TXRDY)) { HWUART->UART_THR = c; return; } - + const uint8_t i = (tx_buffer.head + 1) & (TX_BUFFER_SIZE - 1); - // If the output buffer is full, there's nothing for it other than to - // wait for the interrupt handler to empty it a bit - while (i == tx_buffer.tail) { - if (!ISRS_ENABLED()) { - // Interrupts are disabled, so we'll have to poll the data - // register empty flag ourselves. If it is set, pretend an - // interrupt has happened and call the handler to free up - // space for us. - if (HWUART->UART_SR & UART_SR_TXRDY) - _tx_thr_empty_irq(); + // If global interrupts are disabled (as the result of being called from an ISR)... + if (!ISRS_ENABLED()) { + + // Make room by polling if it is possible to transmit, and do so! + while (i == tx_buffer.tail) { + // If we can transmit another byte, do it. + if (HWUART->UART_SR & UART_SR_TXRDY) _tx_thr_empty_irq(); + // Make sure compiler rereads tx_buffer.tail + sw_barrier(); } - // (else , the interrupt handler will free up space for us) - - // Make sure compiler rereads tx_buffer.tail - sw_barrier(); + } + else { + // Interrupts are enabled, just wait until there is space + while (i == tx_buffer.tail) sw_barrier(); } + // Store new char. head is always safe to move tx_buffer.buffer[tx_buffer.head] = c; tx_buffer.head = i; - - // Enable TX isr + + // Enable TX isr - Non atomic, but it will eventually enable TX isr HWUART->UART_IER = UART_IER_TXRDY; - return; } void MarlinSerial::flushTX(void) { // TX - // If we have never written a byte, no need to flush. + + // If we have never written a byte, no need to flush. This special + // case is needed since there is no way to force the TXC (transmit + // complete) bit to 1 during initialization if (!_written) return; - while ((HWUART->UART_IMR & UART_IMR_TXRDY) || !(HWUART->UART_SR & UART_SR_TXEMPTY)) { - if (!ISRS_ENABLED()) { - if (HWUART->UART_SR & UART_SR_TXRDY) - _tx_thr_empty_irq(); + // If global interrupts are disabled (as the result of being called from an ISR)... + if (!ISRS_ENABLED()) { + + // Wait until everything was transmitted - We must do polling, as interrupts are disabled + while (tx_buffer.head != tx_buffer.tail || !(HWUART->UART_SR & UART_SR_TXEMPTY)) { + // If there is more space, send an extra character + if (HWUART->UART_SR & UART_SR_TXRDY) _tx_thr_empty_irq(); + sw_barrier(); } - sw_barrier(); + + } + else { + // Wait until everything was transmitted + while (tx_buffer.head != tx_buffer.tail || !(HWUART->UART_SR & UART_SR_TXEMPTY)) sw_barrier(); } - // If we get here, nothing is queued anymore (TX interrupts are disabled) and - // the hardware finished tranmission (TXEMPTY is set). + + // At this point nothing is queued anymore (DRIE is disabled) and + // the hardware finished transmission (TXC is set). } #else // TX_BUFFER_SIZE == 0 void MarlinSerial::write(const uint8_t c) { + _written = true; while (!(HWUART->UART_SR & UART_SR_TXRDY)) sw_barrier(); HWUART->UART_THR = c; } + void MarlinSerial::flushTX(void) { + // TX + + // No bytes written, no need to flush. This special case is needed since there's + // no way to force the TXC (transmit complete) bit to 1 during initialization. + if (!_written) return; + + // Wait until everything was transmitted + while (!(HWUART->UART_SR & UART_SR_TXEMPTY)) sw_barrier(); + + // At this point nothing is queued anymore (DRIE is disabled) and + // the hardware finished transmission (TXC is set). + } #endif // TX_BUFFER_SIZE == 0 /** - * Imports from print.h - */ + * Imports from print.h + */ void MarlinSerial::print(char c, int base) { print((long)c, base); @@ -448,13 +560,9 @@ } void MarlinSerial::print(long n, int base) { - if (base == 0) - write(n); + if (base == 0) write(n); else if (base == 10) { - if (n < 0) { - print('-'); - n = -n; - } + if (n < 0) { print('-'); n = -n; } printNumber(n, 10); } else @@ -546,9 +654,7 @@ // Round correctly so that print(1.999, 2) prints as "2.00" double rounding = 0.5; - for (uint8_t i = 0; i < digits; ++i) - rounding *= 0.1; - + for (uint8_t i = 0; i < digits; ++i) rounding *= 0.1; number += rounding; // Extract the integer part of the number and print it diff --git a/Marlin/src/HAL/HAL_DUE/MarlinSerial_Due.h b/Marlin/src/HAL/HAL_DUE/MarlinSerial_Due.h index 9f4077b85d..c180bb5d0f 100644 --- a/Marlin/src/HAL/HAL_DUE/MarlinSerial_Due.h +++ b/Marlin/src/HAL/HAL_DUE/MarlinSerial_Due.h @@ -85,9 +85,7 @@ public: static void flush(void); static ring_buffer_pos_t available(void); static void write(const uint8_t c); - #if TX_BUFFER_SIZE > 0 - static void flushTX(void); - #endif + static void flushTX(void); #if ENABLED(SERIAL_STATS_DROPPED_RX) FORCE_INLINE static uint32_t dropped() { return rx_dropped_bytes; }