Browse Source

Fix up ubl_motion indentation

pull/1/head
Scott Lahteine 7 years ago
parent
commit
d568e586b7
  1. 360
      Marlin/src/feature/bedlevel/ubl/ubl_motion.cpp

360
Marlin/src/feature/bedlevel/ubl/ubl_motion.cpp

@ -23,23 +23,23 @@
#if ENABLED(AUTO_BED_LEVELING_UBL) #if ENABLED(AUTO_BED_LEVELING_UBL)
#include "../bedlevel.h" #include "../bedlevel.h"
#include "../../../module/planner.h" #include "../../../module/planner.h"
#include "../../../module/stepper.h" #include "../../../module/stepper.h"
#include "../../../module/motion.h" #include "../../../module/motion.h"
#if ENABLED(DELTA) #if ENABLED(DELTA)
#include "../../../module/delta.h" #include "../../../module/delta.h"
#endif #endif
#include "../../../Marlin.h" #include "../../../Marlin.h"
#include <math.h> #include <math.h>
#if AVR_AT90USB1286_FAMILY // Teensyduino & Printrboard IDE extensions have compile errors without this #if AVR_AT90USB1286_FAMILY // Teensyduino & Printrboard IDE extensions have compile errors without this
inline void set_current_from_destination() { COPY(current_position, destination); } inline void set_current_from_destination() { COPY(current_position, destination); }
#else #else
extern void set_current_from_destination(); extern void set_current_from_destination();
#endif #endif
#if !UBL_SEGMENTED #if !UBL_SEGMENTED
@ -409,219 +409,219 @@
#else // UBL_SEGMENTED #else // UBL_SEGMENTED
#if IS_SCARA // scale the feed rate from mm/s to degrees/s #if IS_SCARA // scale the feed rate from mm/s to degrees/s
static float scara_feed_factor, scara_oldA, scara_oldB; static float scara_feed_factor, scara_oldA, scara_oldB;
#endif
// We don't want additional apply_leveling() performed by regular buffer_line or buffer_line_kinematic,
// so we call buffer_segment directly here. Per-segmented leveling and kinematics performed first.
inline void _O2 ubl_buffer_segment_raw(const float (&in_raw)[XYZE], const float &fr) {
#if ENABLED(SKEW_CORRECTION)
float raw[XYZE] = { in_raw[X_AXIS], in_raw[Y_AXIS], in_raw[Z_AXIS] };
planner.skew(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]);
#else
const float (&raw)[XYZE] = in_raw;
#endif #endif
// We don't want additional apply_leveling() performed by regular buffer_line or buffer_line_kinematic, #if ENABLED(DELTA) // apply delta inverse_kinematics
// so we call buffer_segment directly here. Per-segmented leveling and kinematics performed first.
inline void _O2 ubl_buffer_segment_raw(const float (&in_raw)[XYZE], const float &fr) { DELTA_RAW_IK();
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], in_raw[E_AXIS], fr, active_extruder);
#if ENABLED(SKEW_CORRECTION) #elif IS_SCARA // apply scara inverse_kinematics (should be changed to save raw->logical->raw)
float raw[XYZE] = { in_raw[X_AXIS], in_raw[Y_AXIS], in_raw[Z_AXIS] };
planner.skew(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]);
#else
const float (&raw)[XYZE] = in_raw;
#endif
#if ENABLED(DELTA) // apply delta inverse_kinematics inverse_kinematics(raw); // this writes delta[ABC] from raw[XYZE]
// should move the feedrate scaling to scara inverse_kinematics
DELTA_RAW_IK(); const float adiff = FABS(delta[A_AXIS] - scara_oldA),
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], in_raw[E_AXIS], fr, active_extruder); bdiff = FABS(delta[B_AXIS] - scara_oldB);
scara_oldA = delta[A_AXIS];
scara_oldB = delta[B_AXIS];
float s_feedrate = max(adiff, bdiff) * scara_feed_factor;
#elif IS_SCARA // apply scara inverse_kinematics (should be changed to save raw->logical->raw) planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], in_raw[E_AXIS], s_feedrate, active_extruder);
inverse_kinematics(raw); // this writes delta[ABC] from raw[XYZE] #else // CARTESIAN
// should move the feedrate scaling to scara inverse_kinematics
const float adiff = FABS(delta[A_AXIS] - scara_oldA), planner.buffer_segment(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], in_raw[E_AXIS], fr, active_extruder);
bdiff = FABS(delta[B_AXIS] - scara_oldB);
scara_oldA = delta[A_AXIS];
scara_oldB = delta[B_AXIS];
float s_feedrate = max(adiff, bdiff) * scara_feed_factor;
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], in_raw[E_AXIS], s_feedrate, active_extruder); #endif
}
#else // CARTESIAN #if IS_SCARA
#define DELTA_SEGMENT_MIN_LENGTH 0.25 // SCARA minimum segment size is 0.25mm
#elif ENABLED(DELTA)
#define DELTA_SEGMENT_MIN_LENGTH 0.10 // mm (still subject to DELTA_SEGMENTS_PER_SECOND)
#else // CARTESIAN
#ifdef LEVELED_SEGMENT_LENGTH
#define DELTA_SEGMENT_MIN_LENGTH LEVELED_SEGMENT_LENGTH
#else
#define DELTA_SEGMENT_MIN_LENGTH 1.00 // mm (similar to G2/G3 arc segmentation)
#endif
#endif
planner.buffer_segment(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], in_raw[E_AXIS], fr, active_extruder); /**
* Prepare a segmented linear move for DELTA/SCARA/CARTESIAN with UBL and FADE semantics.
* This calls planner.buffer_segment multiple times for small incremental moves.
* Returns true if did NOT move, false if moved (requires current_position update).
*/
#endif bool _O2 unified_bed_leveling::prepare_segmented_line_to(const float (&rtarget)[XYZE], const float &feedrate) {
}
#if IS_SCARA if (!position_is_reachable(rtarget[X_AXIS], rtarget[Y_AXIS])) // fail if moving outside reachable boundary
#define DELTA_SEGMENT_MIN_LENGTH 0.25 // SCARA minimum segment size is 0.25mm return true; // did not move, so current_position still accurate
#elif ENABLED(DELTA)
#define DELTA_SEGMENT_MIN_LENGTH 0.10 // mm (still subject to DELTA_SEGMENTS_PER_SECOND) const float total[XYZE] = {
#else // CARTESIAN rtarget[X_AXIS] - current_position[X_AXIS],
#ifdef LEVELED_SEGMENT_LENGTH rtarget[Y_AXIS] - current_position[Y_AXIS],
#define DELTA_SEGMENT_MIN_LENGTH LEVELED_SEGMENT_LENGTH rtarget[Z_AXIS] - current_position[Z_AXIS],
#else rtarget[E_AXIS] - current_position[E_AXIS]
#define DELTA_SEGMENT_MIN_LENGTH 1.00 // mm (similar to G2/G3 arc segmentation) };
#endif
const float cartesian_xy_mm = HYPOT(total[X_AXIS], total[Y_AXIS]); // total horizontal xy distance
#if IS_KINEMATIC
const float seconds = cartesian_xy_mm / feedrate; // seconds to move xy distance at requested rate
uint16_t segments = lroundf(delta_segments_per_second * seconds), // preferred number of segments for distance @ feedrate
seglimit = lroundf(cartesian_xy_mm * (1.0 / (DELTA_SEGMENT_MIN_LENGTH))); // number of segments at minimum segment length
NOMORE(segments, seglimit); // limit to minimum segment length (fewer segments)
#else
uint16_t segments = lroundf(cartesian_xy_mm * (1.0 / (DELTA_SEGMENT_MIN_LENGTH))); // cartesian fixed segment length
#endif #endif
/** NOLESS(segments, 1); // must have at least one segment
* Prepare a segmented linear move for DELTA/SCARA/CARTESIAN with UBL and FADE semantics. const float inv_segments = 1.0 / segments; // divide once, multiply thereafter
* This calls planner.buffer_segment multiple times for small incremental moves.
* Returns true if did NOT move, false if moved (requires current_position update).
*/
bool _O2 unified_bed_leveling::prepare_segmented_line_to(const float (&rtarget)[XYZE], const float &feedrate) { #if IS_SCARA // scale the feed rate from mm/s to degrees/s
scara_feed_factor = cartesian_xy_mm * inv_segments * feedrate;
if (!position_is_reachable(rtarget[X_AXIS], rtarget[Y_AXIS])) // fail if moving outside reachable boundary scara_oldA = stepper.get_axis_position_degrees(A_AXIS);
return true; // did not move, so current_position still accurate scara_oldB = stepper.get_axis_position_degrees(B_AXIS);
#endif
const float total[XYZE] = {
rtarget[X_AXIS] - current_position[X_AXIS], const float diff[XYZE] = {
rtarget[Y_AXIS] - current_position[Y_AXIS], total[X_AXIS] * inv_segments,
rtarget[Z_AXIS] - current_position[Z_AXIS], total[Y_AXIS] * inv_segments,
rtarget[E_AXIS] - current_position[E_AXIS] total[Z_AXIS] * inv_segments,
}; total[E_AXIS] * inv_segments
};
const float cartesian_xy_mm = HYPOT(total[X_AXIS], total[Y_AXIS]); // total horizontal xy distance
// Note that E segment distance could vary slightly as z mesh height
#if IS_KINEMATIC // changes for each segment, but small enough to ignore.
const float seconds = cartesian_xy_mm / feedrate; // seconds to move xy distance at requested rate
uint16_t segments = lroundf(delta_segments_per_second * seconds), // preferred number of segments for distance @ feedrate float raw[XYZE] = {
seglimit = lroundf(cartesian_xy_mm * (1.0 / (DELTA_SEGMENT_MIN_LENGTH))); // number of segments at minimum segment length current_position[X_AXIS],
NOMORE(segments, seglimit); // limit to minimum segment length (fewer segments) current_position[Y_AXIS],
#else current_position[Z_AXIS],
uint16_t segments = lroundf(cartesian_xy_mm * (1.0 / (DELTA_SEGMENT_MIN_LENGTH))); // cartesian fixed segment length current_position[E_AXIS]
#endif };
NOLESS(segments, 1); // must have at least one segment // Only compute leveling per segment if ubl active and target below z_fade_height.
const float inv_segments = 1.0 / segments; // divide once, multiply thereafter if (!planner.leveling_active || !planner.leveling_active_at_z(rtarget[Z_AXIS])) { // no mesh leveling
while (--segments) {
#if IS_SCARA // scale the feed rate from mm/s to degrees/s LOOP_XYZE(i) raw[i] += diff[i];
scara_feed_factor = cartesian_xy_mm * inv_segments * feedrate; ubl_buffer_segment_raw(raw, feedrate);
scara_oldA = stepper.get_axis_position_degrees(A_AXIS);
scara_oldB = stepper.get_axis_position_degrees(B_AXIS);
#endif
const float diff[XYZE] = {
total[X_AXIS] * inv_segments,
total[Y_AXIS] * inv_segments,
total[Z_AXIS] * inv_segments,
total[E_AXIS] * inv_segments
};
// Note that E segment distance could vary slightly as z mesh height
// changes for each segment, but small enough to ignore.
float raw[XYZE] = {
current_position[X_AXIS],
current_position[Y_AXIS],
current_position[Z_AXIS],
current_position[E_AXIS]
};
// Only compute leveling per segment if ubl active and target below z_fade_height.
if (!planner.leveling_active || !planner.leveling_active_at_z(rtarget[Z_AXIS])) { // no mesh leveling
while (--segments) {
LOOP_XYZE(i) raw[i] += diff[i];
ubl_buffer_segment_raw(raw, feedrate);
}
ubl_buffer_segment_raw(rtarget, feedrate);
return false; // moved but did not set_current_from_destination();
} }
ubl_buffer_segment_raw(rtarget, feedrate);
return false; // moved but did not set_current_from_destination();
}
// Otherwise perform per-segment leveling // Otherwise perform per-segment leveling
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
const float fade_scaling_factor = planner.fade_scaling_factor_for_z(rtarget[Z_AXIS]); const float fade_scaling_factor = planner.fade_scaling_factor_for_z(rtarget[Z_AXIS]);
#endif #endif
// increment to first segment destination // increment to first segment destination
LOOP_XYZE(i) raw[i] += diff[i]; LOOP_XYZE(i) raw[i] += diff[i];
for(;;) { // for each mesh cell encountered during the move for(;;) { // for each mesh cell encountered during the move
// Compute mesh cell invariants that remain constant for all segments within cell. // Compute mesh cell invariants that remain constant for all segments within cell.
// Note for cell index, if point is outside the mesh grid (in MESH_INSET perimeter) // Note for cell index, if point is outside the mesh grid (in MESH_INSET perimeter)
// the bilinear interpolation from the adjacent cell within the mesh will still work. // the bilinear interpolation from the adjacent cell within the mesh will still work.
// Inner loop will exit each time (because out of cell bounds) but will come back // Inner loop will exit each time (because out of cell bounds) but will come back
// in top of loop and again re-find same adjacent cell and use it, just less efficient // in top of loop and again re-find same adjacent cell and use it, just less efficient
// for mesh inset area. // for mesh inset area.
int8_t cell_xi = (raw[X_AXIS] - (MESH_MIN_X)) * (1.0 / (MESH_X_DIST)), int8_t cell_xi = (raw[X_AXIS] - (MESH_MIN_X)) * (1.0 / (MESH_X_DIST)),
cell_yi = (raw[Y_AXIS] - (MESH_MIN_Y)) * (1.0 / (MESH_X_DIST)); cell_yi = (raw[Y_AXIS] - (MESH_MIN_Y)) * (1.0 / (MESH_X_DIST));
cell_xi = constrain(cell_xi, 0, (GRID_MAX_POINTS_X) - 1); cell_xi = constrain(cell_xi, 0, (GRID_MAX_POINTS_X) - 1);
cell_yi = constrain(cell_yi, 0, (GRID_MAX_POINTS_Y) - 1); cell_yi = constrain(cell_yi, 0, (GRID_MAX_POINTS_Y) - 1);
const float x0 = mesh_index_to_xpos(cell_xi), // 64 byte table lookup avoids mul+add const float x0 = mesh_index_to_xpos(cell_xi), // 64 byte table lookup avoids mul+add
y0 = mesh_index_to_ypos(cell_yi); y0 = mesh_index_to_ypos(cell_yi);
float z_x0y0 = z_values[cell_xi ][cell_yi ], // z at lower left corner float z_x0y0 = z_values[cell_xi ][cell_yi ], // z at lower left corner
z_x1y0 = z_values[cell_xi+1][cell_yi ], // z at upper left corner z_x1y0 = z_values[cell_xi+1][cell_yi ], // z at upper left corner
z_x0y1 = z_values[cell_xi ][cell_yi+1], // z at lower right corner z_x0y1 = z_values[cell_xi ][cell_yi+1], // z at lower right corner
z_x1y1 = z_values[cell_xi+1][cell_yi+1]; // z at upper right corner z_x1y1 = z_values[cell_xi+1][cell_yi+1]; // z at upper right corner
if (isnan(z_x0y0)) z_x0y0 = 0; // ideally activating planner.leveling_active (G29 A) if (isnan(z_x0y0)) z_x0y0 = 0; // ideally activating planner.leveling_active (G29 A)
if (isnan(z_x1y0)) z_x1y0 = 0; // should refuse if any invalid mesh points if (isnan(z_x1y0)) z_x1y0 = 0; // should refuse if any invalid mesh points
if (isnan(z_x0y1)) z_x0y1 = 0; // in order to avoid isnan tests per cell, if (isnan(z_x0y1)) z_x0y1 = 0; // in order to avoid isnan tests per cell,
if (isnan(z_x1y1)) z_x1y1 = 0; // thus guessing zero for undefined points if (isnan(z_x1y1)) z_x1y1 = 0; // thus guessing zero for undefined points
float cx = raw[X_AXIS] - x0, // cell-relative x and y float cx = raw[X_AXIS] - x0, // cell-relative x and y
cy = raw[Y_AXIS] - y0; cy = raw[Y_AXIS] - y0;
const float z_xmy0 = (z_x1y0 - z_x0y0) * (1.0 / (MESH_X_DIST)), // z slope per x along y0 (lower left to lower right) const float z_xmy0 = (z_x1y0 - z_x0y0) * (1.0 / (MESH_X_DIST)), // z slope per x along y0 (lower left to lower right)
z_xmy1 = (z_x1y1 - z_x0y1) * (1.0 / (MESH_X_DIST)); // z slope per x along y1 (upper left to upper right) z_xmy1 = (z_x1y1 - z_x0y1) * (1.0 / (MESH_X_DIST)); // z slope per x along y1 (upper left to upper right)
float z_cxy0 = z_x0y0 + z_xmy0 * cx; // z height along y0 at cx (changes for each cx in cell) float z_cxy0 = z_x0y0 + z_xmy0 * cx; // z height along y0 at cx (changes for each cx in cell)
const float z_cxy1 = z_x0y1 + z_xmy1 * cx, // z height along y1 at cx const float z_cxy1 = z_x0y1 + z_xmy1 * cx, // z height along y1 at cx
z_cxyd = z_cxy1 - z_cxy0; // z height difference along cx from y0 to y1 z_cxyd = z_cxy1 - z_cxy0; // z height difference along cx from y0 to y1
float z_cxym = z_cxyd * (1.0 / (MESH_Y_DIST)); // z slope per y along cx from y0 to y1 (changes for each cx in cell) float z_cxym = z_cxyd * (1.0 / (MESH_Y_DIST)); // z slope per y along cx from y0 to y1 (changes for each cx in cell)
// float z_cxcy = z_cxy0 + z_cxym * cy; // interpolated mesh z height along cx at cy (do inside the segment loop) // float z_cxcy = z_cxy0 + z_cxym * cy; // interpolated mesh z height along cx at cy (do inside the segment loop)
// As subsequent segments step through this cell, the z_cxy0 intercept will change // As subsequent segments step through this cell, the z_cxy0 intercept will change
// and the z_cxym slope will change, both as a function of cx within the cell, and // and the z_cxym slope will change, both as a function of cx within the cell, and
// each change by a constant for fixed segment lengths. // each change by a constant for fixed segment lengths.
const float z_sxy0 = z_xmy0 * diff[X_AXIS], // per-segment adjustment to z_cxy0 const float z_sxy0 = z_xmy0 * diff[X_AXIS], // per-segment adjustment to z_cxy0
z_sxym = (z_xmy1 - z_xmy0) * (1.0 / (MESH_Y_DIST)) * diff[X_AXIS]; // per-segment adjustment to z_cxym z_sxym = (z_xmy1 - z_xmy0) * (1.0 / (MESH_Y_DIST)) * diff[X_AXIS]; // per-segment adjustment to z_cxym
for(;;) { // for all segments within this mesh cell for(;;) { // for all segments within this mesh cell
if (--segments == 0) // if this is last segment, use rtarget for exact if (--segments == 0) // if this is last segment, use rtarget for exact
COPY(raw, rtarget); COPY(raw, rtarget);
const float z_cxcy = (z_cxy0 + z_cxym * cy) // interpolated mesh z height along cx at cy const float z_cxcy = (z_cxy0 + z_cxym * cy) // interpolated mesh z height along cx at cy
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
* fade_scaling_factor // apply fade factor to interpolated mesh height * fade_scaling_factor // apply fade factor to interpolated mesh height
#endif #endif
; ;
const float z = raw[Z_AXIS]; const float z = raw[Z_AXIS];
raw[Z_AXIS] += z_cxcy; raw[Z_AXIS] += z_cxcy;
ubl_buffer_segment_raw(raw, feedrate); ubl_buffer_segment_raw(raw, feedrate);
raw[Z_AXIS] = z; raw[Z_AXIS] = z;
if (segments == 0) // done with last segment if (segments == 0) // done with last segment
return false; // did not set_current_from_destination() return false; // did not set_current_from_destination()
LOOP_XYZE(i) raw[i] += diff[i]; LOOP_XYZE(i) raw[i] += diff[i];
cx += diff[X_AXIS]; cx += diff[X_AXIS];
cy += diff[Y_AXIS]; cy += diff[Y_AXIS];
if (!WITHIN(cx, 0, MESH_X_DIST) || !WITHIN(cy, 0, MESH_Y_DIST)) // done within this cell, break to next if (!WITHIN(cx, 0, MESH_X_DIST) || !WITHIN(cy, 0, MESH_Y_DIST)) // done within this cell, break to next
break; break;
// Next segment still within same mesh cell, adjust the per-segment // Next segment still within same mesh cell, adjust the per-segment
// slope and intercept to compute next z height. // slope and intercept to compute next z height.
z_cxy0 += z_sxy0; // adjust z_cxy0 by per-segment z_sxy0 z_cxy0 += z_sxy0; // adjust z_cxy0 by per-segment z_sxy0
z_cxym += z_sxym; // adjust z_cxym by per-segment z_sxym z_cxym += z_sxym; // adjust z_cxym by per-segment z_sxym
} // segment loop } // segment loop
} // cell loop } // cell loop
} }
#endif // UBL_SEGMENTED #endif // UBL_SEGMENTED

Loading…
Cancel
Save