|
@ -23,23 +23,23 @@ |
|
|
|
|
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_UBL) |
|
|
#if ENABLED(AUTO_BED_LEVELING_UBL) |
|
|
|
|
|
|
|
|
#include "../bedlevel.h" |
|
|
#include "../bedlevel.h" |
|
|
#include "../../../module/planner.h" |
|
|
#include "../../../module/planner.h" |
|
|
#include "../../../module/stepper.h" |
|
|
#include "../../../module/stepper.h" |
|
|
#include "../../../module/motion.h" |
|
|
#include "../../../module/motion.h" |
|
|
|
|
|
|
|
|
#if ENABLED(DELTA) |
|
|
#if ENABLED(DELTA) |
|
|
#include "../../../module/delta.h" |
|
|
#include "../../../module/delta.h" |
|
|
#endif |
|
|
#endif |
|
|
|
|
|
|
|
|
#include "../../../Marlin.h" |
|
|
#include "../../../Marlin.h" |
|
|
#include <math.h> |
|
|
#include <math.h> |
|
|
|
|
|
|
|
|
#if AVR_AT90USB1286_FAMILY // Teensyduino & Printrboard IDE extensions have compile errors without this
|
|
|
#if AVR_AT90USB1286_FAMILY // Teensyduino & Printrboard IDE extensions have compile errors without this
|
|
|
inline void set_current_from_destination() { COPY(current_position, destination); } |
|
|
inline void set_current_from_destination() { COPY(current_position, destination); } |
|
|
#else |
|
|
#else |
|
|
extern void set_current_from_destination(); |
|
|
extern void set_current_from_destination(); |
|
|
#endif |
|
|
#endif |
|
|
|
|
|
|
|
|
#if !UBL_SEGMENTED |
|
|
#if !UBL_SEGMENTED |
|
|
|
|
|
|
|
@ -409,219 +409,219 @@ |
|
|
|
|
|
|
|
|
#else // UBL_SEGMENTED
|
|
|
#else // UBL_SEGMENTED
|
|
|
|
|
|
|
|
|
#if IS_SCARA // scale the feed rate from mm/s to degrees/s
|
|
|
#if IS_SCARA // scale the feed rate from mm/s to degrees/s
|
|
|
static float scara_feed_factor, scara_oldA, scara_oldB; |
|
|
static float scara_feed_factor, scara_oldA, scara_oldB; |
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
// We don't want additional apply_leveling() performed by regular buffer_line or buffer_line_kinematic,
|
|
|
|
|
|
// so we call buffer_segment directly here. Per-segmented leveling and kinematics performed first.
|
|
|
|
|
|
|
|
|
|
|
|
inline void _O2 ubl_buffer_segment_raw(const float (&in_raw)[XYZE], const float &fr) { |
|
|
|
|
|
|
|
|
|
|
|
#if ENABLED(SKEW_CORRECTION) |
|
|
|
|
|
float raw[XYZE] = { in_raw[X_AXIS], in_raw[Y_AXIS], in_raw[Z_AXIS] }; |
|
|
|
|
|
planner.skew(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]); |
|
|
|
|
|
#else |
|
|
|
|
|
const float (&raw)[XYZE] = in_raw; |
|
|
#endif |
|
|
#endif |
|
|
|
|
|
|
|
|
// We don't want additional apply_leveling() performed by regular buffer_line or buffer_line_kinematic,
|
|
|
#if ENABLED(DELTA) // apply delta inverse_kinematics
|
|
|
// so we call buffer_segment directly here. Per-segmented leveling and kinematics performed first.
|
|
|
|
|
|
|
|
|
|
|
|
inline void _O2 ubl_buffer_segment_raw(const float (&in_raw)[XYZE], const float &fr) { |
|
|
DELTA_RAW_IK(); |
|
|
|
|
|
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], in_raw[E_AXIS], fr, active_extruder); |
|
|
|
|
|
|
|
|
#if ENABLED(SKEW_CORRECTION) |
|
|
#elif IS_SCARA // apply scara inverse_kinematics (should be changed to save raw->logical->raw)
|
|
|
float raw[XYZE] = { in_raw[X_AXIS], in_raw[Y_AXIS], in_raw[Z_AXIS] }; |
|
|
|
|
|
planner.skew(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]); |
|
|
|
|
|
#else |
|
|
|
|
|
const float (&raw)[XYZE] = in_raw; |
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
#if ENABLED(DELTA) // apply delta inverse_kinematics
|
|
|
inverse_kinematics(raw); // this writes delta[ABC] from raw[XYZE]
|
|
|
|
|
|
// should move the feedrate scaling to scara inverse_kinematics
|
|
|
|
|
|
|
|
|
DELTA_RAW_IK(); |
|
|
const float adiff = FABS(delta[A_AXIS] - scara_oldA), |
|
|
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], in_raw[E_AXIS], fr, active_extruder); |
|
|
bdiff = FABS(delta[B_AXIS] - scara_oldB); |
|
|
|
|
|
scara_oldA = delta[A_AXIS]; |
|
|
|
|
|
scara_oldB = delta[B_AXIS]; |
|
|
|
|
|
float s_feedrate = max(adiff, bdiff) * scara_feed_factor; |
|
|
|
|
|
|
|
|
#elif IS_SCARA // apply scara inverse_kinematics (should be changed to save raw->logical->raw)
|
|
|
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], in_raw[E_AXIS], s_feedrate, active_extruder); |
|
|
|
|
|
|
|
|
inverse_kinematics(raw); // this writes delta[ABC] from raw[XYZE]
|
|
|
#else // CARTESIAN
|
|
|
// should move the feedrate scaling to scara inverse_kinematics
|
|
|
|
|
|
|
|
|
|
|
|
const float adiff = FABS(delta[A_AXIS] - scara_oldA), |
|
|
planner.buffer_segment(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], in_raw[E_AXIS], fr, active_extruder); |
|
|
bdiff = FABS(delta[B_AXIS] - scara_oldB); |
|
|
|
|
|
scara_oldA = delta[A_AXIS]; |
|
|
|
|
|
scara_oldB = delta[B_AXIS]; |
|
|
|
|
|
float s_feedrate = max(adiff, bdiff) * scara_feed_factor; |
|
|
|
|
|
|
|
|
|
|
|
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], in_raw[E_AXIS], s_feedrate, active_extruder); |
|
|
#endif |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
#else // CARTESIAN
|
|
|
#if IS_SCARA |
|
|
|
|
|
#define DELTA_SEGMENT_MIN_LENGTH 0.25 // SCARA minimum segment size is 0.25mm
|
|
|
|
|
|
#elif ENABLED(DELTA) |
|
|
|
|
|
#define DELTA_SEGMENT_MIN_LENGTH 0.10 // mm (still subject to DELTA_SEGMENTS_PER_SECOND)
|
|
|
|
|
|
#else // CARTESIAN
|
|
|
|
|
|
#ifdef LEVELED_SEGMENT_LENGTH |
|
|
|
|
|
#define DELTA_SEGMENT_MIN_LENGTH LEVELED_SEGMENT_LENGTH |
|
|
|
|
|
#else |
|
|
|
|
|
#define DELTA_SEGMENT_MIN_LENGTH 1.00 // mm (similar to G2/G3 arc segmentation)
|
|
|
|
|
|
#endif |
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
planner.buffer_segment(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], in_raw[E_AXIS], fr, active_extruder); |
|
|
/**
|
|
|
|
|
|
* Prepare a segmented linear move for DELTA/SCARA/CARTESIAN with UBL and FADE semantics. |
|
|
|
|
|
* This calls planner.buffer_segment multiple times for small incremental moves. |
|
|
|
|
|
* Returns true if did NOT move, false if moved (requires current_position update). |
|
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
#endif |
|
|
bool _O2 unified_bed_leveling::prepare_segmented_line_to(const float (&rtarget)[XYZE], const float &feedrate) { |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
#if IS_SCARA |
|
|
if (!position_is_reachable(rtarget[X_AXIS], rtarget[Y_AXIS])) // fail if moving outside reachable boundary
|
|
|
#define DELTA_SEGMENT_MIN_LENGTH 0.25 // SCARA minimum segment size is 0.25mm
|
|
|
return true; // did not move, so current_position still accurate
|
|
|
#elif ENABLED(DELTA) |
|
|
|
|
|
#define DELTA_SEGMENT_MIN_LENGTH 0.10 // mm (still subject to DELTA_SEGMENTS_PER_SECOND)
|
|
|
const float total[XYZE] = { |
|
|
#else // CARTESIAN
|
|
|
rtarget[X_AXIS] - current_position[X_AXIS], |
|
|
#ifdef LEVELED_SEGMENT_LENGTH |
|
|
rtarget[Y_AXIS] - current_position[Y_AXIS], |
|
|
#define DELTA_SEGMENT_MIN_LENGTH LEVELED_SEGMENT_LENGTH |
|
|
rtarget[Z_AXIS] - current_position[Z_AXIS], |
|
|
#else |
|
|
rtarget[E_AXIS] - current_position[E_AXIS] |
|
|
#define DELTA_SEGMENT_MIN_LENGTH 1.00 // mm (similar to G2/G3 arc segmentation)
|
|
|
}; |
|
|
#endif |
|
|
|
|
|
|
|
|
const float cartesian_xy_mm = HYPOT(total[X_AXIS], total[Y_AXIS]); // total horizontal xy distance
|
|
|
|
|
|
|
|
|
|
|
|
#if IS_KINEMATIC |
|
|
|
|
|
const float seconds = cartesian_xy_mm / feedrate; // seconds to move xy distance at requested rate
|
|
|
|
|
|
uint16_t segments = lroundf(delta_segments_per_second * seconds), // preferred number of segments for distance @ feedrate
|
|
|
|
|
|
seglimit = lroundf(cartesian_xy_mm * (1.0 / (DELTA_SEGMENT_MIN_LENGTH))); // number of segments at minimum segment length
|
|
|
|
|
|
NOMORE(segments, seglimit); // limit to minimum segment length (fewer segments)
|
|
|
|
|
|
#else |
|
|
|
|
|
uint16_t segments = lroundf(cartesian_xy_mm * (1.0 / (DELTA_SEGMENT_MIN_LENGTH))); // cartesian fixed segment length
|
|
|
#endif |
|
|
#endif |
|
|
|
|
|
|
|
|
/**
|
|
|
NOLESS(segments, 1); // must have at least one segment
|
|
|
* Prepare a segmented linear move for DELTA/SCARA/CARTESIAN with UBL and FADE semantics. |
|
|
const float inv_segments = 1.0 / segments; // divide once, multiply thereafter
|
|
|
* This calls planner.buffer_segment multiple times for small incremental moves. |
|
|
|
|
|
* Returns true if did NOT move, false if moved (requires current_position update). |
|
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
|
|
bool _O2 unified_bed_leveling::prepare_segmented_line_to(const float (&rtarget)[XYZE], const float &feedrate) { |
|
|
#if IS_SCARA // scale the feed rate from mm/s to degrees/s
|
|
|
|
|
|
scara_feed_factor = cartesian_xy_mm * inv_segments * feedrate; |
|
|
if (!position_is_reachable(rtarget[X_AXIS], rtarget[Y_AXIS])) // fail if moving outside reachable boundary
|
|
|
scara_oldA = stepper.get_axis_position_degrees(A_AXIS); |
|
|
return true; // did not move, so current_position still accurate
|
|
|
scara_oldB = stepper.get_axis_position_degrees(B_AXIS); |
|
|
|
|
|
#endif |
|
|
const float total[XYZE] = { |
|
|
|
|
|
rtarget[X_AXIS] - current_position[X_AXIS], |
|
|
const float diff[XYZE] = { |
|
|
rtarget[Y_AXIS] - current_position[Y_AXIS], |
|
|
total[X_AXIS] * inv_segments, |
|
|
rtarget[Z_AXIS] - current_position[Z_AXIS], |
|
|
total[Y_AXIS] * inv_segments, |
|
|
rtarget[E_AXIS] - current_position[E_AXIS] |
|
|
total[Z_AXIS] * inv_segments, |
|
|
}; |
|
|
total[E_AXIS] * inv_segments |
|
|
|
|
|
}; |
|
|
const float cartesian_xy_mm = HYPOT(total[X_AXIS], total[Y_AXIS]); // total horizontal xy distance
|
|
|
|
|
|
|
|
|
// Note that E segment distance could vary slightly as z mesh height
|
|
|
#if IS_KINEMATIC |
|
|
// changes for each segment, but small enough to ignore.
|
|
|
const float seconds = cartesian_xy_mm / feedrate; // seconds to move xy distance at requested rate
|
|
|
|
|
|
uint16_t segments = lroundf(delta_segments_per_second * seconds), // preferred number of segments for distance @ feedrate
|
|
|
float raw[XYZE] = { |
|
|
seglimit = lroundf(cartesian_xy_mm * (1.0 / (DELTA_SEGMENT_MIN_LENGTH))); // number of segments at minimum segment length
|
|
|
current_position[X_AXIS], |
|
|
NOMORE(segments, seglimit); // limit to minimum segment length (fewer segments)
|
|
|
current_position[Y_AXIS], |
|
|
#else |
|
|
current_position[Z_AXIS], |
|
|
uint16_t segments = lroundf(cartesian_xy_mm * (1.0 / (DELTA_SEGMENT_MIN_LENGTH))); // cartesian fixed segment length
|
|
|
current_position[E_AXIS] |
|
|
#endif |
|
|
}; |
|
|
|
|
|
|
|
|
NOLESS(segments, 1); // must have at least one segment
|
|
|
// Only compute leveling per segment if ubl active and target below z_fade_height.
|
|
|
const float inv_segments = 1.0 / segments; // divide once, multiply thereafter
|
|
|
if (!planner.leveling_active || !planner.leveling_active_at_z(rtarget[Z_AXIS])) { // no mesh leveling
|
|
|
|
|
|
while (--segments) { |
|
|
#if IS_SCARA // scale the feed rate from mm/s to degrees/s
|
|
|
LOOP_XYZE(i) raw[i] += diff[i]; |
|
|
scara_feed_factor = cartesian_xy_mm * inv_segments * feedrate; |
|
|
ubl_buffer_segment_raw(raw, feedrate); |
|
|
scara_oldA = stepper.get_axis_position_degrees(A_AXIS); |
|
|
|
|
|
scara_oldB = stepper.get_axis_position_degrees(B_AXIS); |
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
const float diff[XYZE] = { |
|
|
|
|
|
total[X_AXIS] * inv_segments, |
|
|
|
|
|
total[Y_AXIS] * inv_segments, |
|
|
|
|
|
total[Z_AXIS] * inv_segments, |
|
|
|
|
|
total[E_AXIS] * inv_segments |
|
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
// Note that E segment distance could vary slightly as z mesh height
|
|
|
|
|
|
// changes for each segment, but small enough to ignore.
|
|
|
|
|
|
|
|
|
|
|
|
float raw[XYZE] = { |
|
|
|
|
|
current_position[X_AXIS], |
|
|
|
|
|
current_position[Y_AXIS], |
|
|
|
|
|
current_position[Z_AXIS], |
|
|
|
|
|
current_position[E_AXIS] |
|
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
// Only compute leveling per segment if ubl active and target below z_fade_height.
|
|
|
|
|
|
if (!planner.leveling_active || !planner.leveling_active_at_z(rtarget[Z_AXIS])) { // no mesh leveling
|
|
|
|
|
|
while (--segments) { |
|
|
|
|
|
LOOP_XYZE(i) raw[i] += diff[i]; |
|
|
|
|
|
ubl_buffer_segment_raw(raw, feedrate); |
|
|
|
|
|
} |
|
|
|
|
|
ubl_buffer_segment_raw(rtarget, feedrate); |
|
|
|
|
|
return false; // moved but did not set_current_from_destination();
|
|
|
|
|
|
} |
|
|
} |
|
|
|
|
|
ubl_buffer_segment_raw(rtarget, feedrate); |
|
|
|
|
|
return false; // moved but did not set_current_from_destination();
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
// Otherwise perform per-segment leveling
|
|
|
// Otherwise perform per-segment leveling
|
|
|
|
|
|
|
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) |
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) |
|
|
const float fade_scaling_factor = planner.fade_scaling_factor_for_z(rtarget[Z_AXIS]); |
|
|
const float fade_scaling_factor = planner.fade_scaling_factor_for_z(rtarget[Z_AXIS]); |
|
|
#endif |
|
|
#endif |
|
|
|
|
|
|
|
|
// increment to first segment destination
|
|
|
// increment to first segment destination
|
|
|
LOOP_XYZE(i) raw[i] += diff[i]; |
|
|
LOOP_XYZE(i) raw[i] += diff[i]; |
|
|
|
|
|
|
|
|
for(;;) { // for each mesh cell encountered during the move
|
|
|
for(;;) { // for each mesh cell encountered during the move
|
|
|
|
|
|
|
|
|
// Compute mesh cell invariants that remain constant for all segments within cell.
|
|
|
// Compute mesh cell invariants that remain constant for all segments within cell.
|
|
|
// Note for cell index, if point is outside the mesh grid (in MESH_INSET perimeter)
|
|
|
// Note for cell index, if point is outside the mesh grid (in MESH_INSET perimeter)
|
|
|
// the bilinear interpolation from the adjacent cell within the mesh will still work.
|
|
|
// the bilinear interpolation from the adjacent cell within the mesh will still work.
|
|
|
// Inner loop will exit each time (because out of cell bounds) but will come back
|
|
|
// Inner loop will exit each time (because out of cell bounds) but will come back
|
|
|
// in top of loop and again re-find same adjacent cell and use it, just less efficient
|
|
|
// in top of loop and again re-find same adjacent cell and use it, just less efficient
|
|
|
// for mesh inset area.
|
|
|
// for mesh inset area.
|
|
|
|
|
|
|
|
|
int8_t cell_xi = (raw[X_AXIS] - (MESH_MIN_X)) * (1.0 / (MESH_X_DIST)), |
|
|
int8_t cell_xi = (raw[X_AXIS] - (MESH_MIN_X)) * (1.0 / (MESH_X_DIST)), |
|
|
cell_yi = (raw[Y_AXIS] - (MESH_MIN_Y)) * (1.0 / (MESH_X_DIST)); |
|
|
cell_yi = (raw[Y_AXIS] - (MESH_MIN_Y)) * (1.0 / (MESH_X_DIST)); |
|
|
|
|
|
|
|
|
cell_xi = constrain(cell_xi, 0, (GRID_MAX_POINTS_X) - 1); |
|
|
cell_xi = constrain(cell_xi, 0, (GRID_MAX_POINTS_X) - 1); |
|
|
cell_yi = constrain(cell_yi, 0, (GRID_MAX_POINTS_Y) - 1); |
|
|
cell_yi = constrain(cell_yi, 0, (GRID_MAX_POINTS_Y) - 1); |
|
|
|
|
|
|
|
|
const float x0 = mesh_index_to_xpos(cell_xi), // 64 byte table lookup avoids mul+add
|
|
|
const float x0 = mesh_index_to_xpos(cell_xi), // 64 byte table lookup avoids mul+add
|
|
|
y0 = mesh_index_to_ypos(cell_yi); |
|
|
y0 = mesh_index_to_ypos(cell_yi); |
|
|
|
|
|
|
|
|
float z_x0y0 = z_values[cell_xi ][cell_yi ], // z at lower left corner
|
|
|
float z_x0y0 = z_values[cell_xi ][cell_yi ], // z at lower left corner
|
|
|
z_x1y0 = z_values[cell_xi+1][cell_yi ], // z at upper left corner
|
|
|
z_x1y0 = z_values[cell_xi+1][cell_yi ], // z at upper left corner
|
|
|
z_x0y1 = z_values[cell_xi ][cell_yi+1], // z at lower right corner
|
|
|
z_x0y1 = z_values[cell_xi ][cell_yi+1], // z at lower right corner
|
|
|
z_x1y1 = z_values[cell_xi+1][cell_yi+1]; // z at upper right corner
|
|
|
z_x1y1 = z_values[cell_xi+1][cell_yi+1]; // z at upper right corner
|
|
|
|
|
|
|
|
|
if (isnan(z_x0y0)) z_x0y0 = 0; // ideally activating planner.leveling_active (G29 A)
|
|
|
if (isnan(z_x0y0)) z_x0y0 = 0; // ideally activating planner.leveling_active (G29 A)
|
|
|
if (isnan(z_x1y0)) z_x1y0 = 0; // should refuse if any invalid mesh points
|
|
|
if (isnan(z_x1y0)) z_x1y0 = 0; // should refuse if any invalid mesh points
|
|
|
if (isnan(z_x0y1)) z_x0y1 = 0; // in order to avoid isnan tests per cell,
|
|
|
if (isnan(z_x0y1)) z_x0y1 = 0; // in order to avoid isnan tests per cell,
|
|
|
if (isnan(z_x1y1)) z_x1y1 = 0; // thus guessing zero for undefined points
|
|
|
if (isnan(z_x1y1)) z_x1y1 = 0; // thus guessing zero for undefined points
|
|
|
|
|
|
|
|
|
float cx = raw[X_AXIS] - x0, // cell-relative x and y
|
|
|
float cx = raw[X_AXIS] - x0, // cell-relative x and y
|
|
|
cy = raw[Y_AXIS] - y0; |
|
|
cy = raw[Y_AXIS] - y0; |
|
|
|
|
|
|
|
|
const float z_xmy0 = (z_x1y0 - z_x0y0) * (1.0 / (MESH_X_DIST)), // z slope per x along y0 (lower left to lower right)
|
|
|
const float z_xmy0 = (z_x1y0 - z_x0y0) * (1.0 / (MESH_X_DIST)), // z slope per x along y0 (lower left to lower right)
|
|
|
z_xmy1 = (z_x1y1 - z_x0y1) * (1.0 / (MESH_X_DIST)); // z slope per x along y1 (upper left to upper right)
|
|
|
z_xmy1 = (z_x1y1 - z_x0y1) * (1.0 / (MESH_X_DIST)); // z slope per x along y1 (upper left to upper right)
|
|
|
|
|
|
|
|
|
float z_cxy0 = z_x0y0 + z_xmy0 * cx; // z height along y0 at cx (changes for each cx in cell)
|
|
|
float z_cxy0 = z_x0y0 + z_xmy0 * cx; // z height along y0 at cx (changes for each cx in cell)
|
|
|
|
|
|
|
|
|
const float z_cxy1 = z_x0y1 + z_xmy1 * cx, // z height along y1 at cx
|
|
|
const float z_cxy1 = z_x0y1 + z_xmy1 * cx, // z height along y1 at cx
|
|
|
z_cxyd = z_cxy1 - z_cxy0; // z height difference along cx from y0 to y1
|
|
|
z_cxyd = z_cxy1 - z_cxy0; // z height difference along cx from y0 to y1
|
|
|
|
|
|
|
|
|
float z_cxym = z_cxyd * (1.0 / (MESH_Y_DIST)); // z slope per y along cx from y0 to y1 (changes for each cx in cell)
|
|
|
float z_cxym = z_cxyd * (1.0 / (MESH_Y_DIST)); // z slope per y along cx from y0 to y1 (changes for each cx in cell)
|
|
|
|
|
|
|
|
|
// float z_cxcy = z_cxy0 + z_cxym * cy; // interpolated mesh z height along cx at cy (do inside the segment loop)
|
|
|
// float z_cxcy = z_cxy0 + z_cxym * cy; // interpolated mesh z height along cx at cy (do inside the segment loop)
|
|
|
|
|
|
|
|
|
// As subsequent segments step through this cell, the z_cxy0 intercept will change
|
|
|
// As subsequent segments step through this cell, the z_cxy0 intercept will change
|
|
|
// and the z_cxym slope will change, both as a function of cx within the cell, and
|
|
|
// and the z_cxym slope will change, both as a function of cx within the cell, and
|
|
|
// each change by a constant for fixed segment lengths.
|
|
|
// each change by a constant for fixed segment lengths.
|
|
|
|
|
|
|
|
|
const float z_sxy0 = z_xmy0 * diff[X_AXIS], // per-segment adjustment to z_cxy0
|
|
|
const float z_sxy0 = z_xmy0 * diff[X_AXIS], // per-segment adjustment to z_cxy0
|
|
|
z_sxym = (z_xmy1 - z_xmy0) * (1.0 / (MESH_Y_DIST)) * diff[X_AXIS]; // per-segment adjustment to z_cxym
|
|
|
z_sxym = (z_xmy1 - z_xmy0) * (1.0 / (MESH_Y_DIST)) * diff[X_AXIS]; // per-segment adjustment to z_cxym
|
|
|
|
|
|
|
|
|
for(;;) { // for all segments within this mesh cell
|
|
|
for(;;) { // for all segments within this mesh cell
|
|
|
|
|
|
|
|
|
if (--segments == 0) // if this is last segment, use rtarget for exact
|
|
|
if (--segments == 0) // if this is last segment, use rtarget for exact
|
|
|
COPY(raw, rtarget); |
|
|
COPY(raw, rtarget); |
|
|
|
|
|
|
|
|
const float z_cxcy = (z_cxy0 + z_cxym * cy) // interpolated mesh z height along cx at cy
|
|
|
const float z_cxcy = (z_cxy0 + z_cxym * cy) // interpolated mesh z height along cx at cy
|
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) |
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) |
|
|
* fade_scaling_factor // apply fade factor to interpolated mesh height
|
|
|
* fade_scaling_factor // apply fade factor to interpolated mesh height
|
|
|
#endif |
|
|
#endif |
|
|
; |
|
|
; |
|
|
|
|
|
|
|
|
const float z = raw[Z_AXIS]; |
|
|
const float z = raw[Z_AXIS]; |
|
|
raw[Z_AXIS] += z_cxcy; |
|
|
raw[Z_AXIS] += z_cxcy; |
|
|
ubl_buffer_segment_raw(raw, feedrate); |
|
|
ubl_buffer_segment_raw(raw, feedrate); |
|
|
raw[Z_AXIS] = z; |
|
|
raw[Z_AXIS] = z; |
|
|
|
|
|
|
|
|
if (segments == 0) // done with last segment
|
|
|
if (segments == 0) // done with last segment
|
|
|
return false; // did not set_current_from_destination()
|
|
|
return false; // did not set_current_from_destination()
|
|
|
|
|
|
|
|
|
LOOP_XYZE(i) raw[i] += diff[i]; |
|
|
LOOP_XYZE(i) raw[i] += diff[i]; |
|
|
|
|
|
|
|
|
cx += diff[X_AXIS]; |
|
|
cx += diff[X_AXIS]; |
|
|
cy += diff[Y_AXIS]; |
|
|
cy += diff[Y_AXIS]; |
|
|
|
|
|
|
|
|
if (!WITHIN(cx, 0, MESH_X_DIST) || !WITHIN(cy, 0, MESH_Y_DIST)) // done within this cell, break to next
|
|
|
if (!WITHIN(cx, 0, MESH_X_DIST) || !WITHIN(cy, 0, MESH_Y_DIST)) // done within this cell, break to next
|
|
|
break; |
|
|
break; |
|
|
|
|
|
|
|
|
// Next segment still within same mesh cell, adjust the per-segment
|
|
|
// Next segment still within same mesh cell, adjust the per-segment
|
|
|
// slope and intercept to compute next z height.
|
|
|
// slope and intercept to compute next z height.
|
|
|
|
|
|
|
|
|
z_cxy0 += z_sxy0; // adjust z_cxy0 by per-segment z_sxy0
|
|
|
z_cxy0 += z_sxy0; // adjust z_cxy0 by per-segment z_sxy0
|
|
|
z_cxym += z_sxym; // adjust z_cxym by per-segment z_sxym
|
|
|
z_cxym += z_sxym; // adjust z_cxym by per-segment z_sxym
|
|
|
|
|
|
|
|
|
} // segment loop
|
|
|
} // segment loop
|
|
|
} // cell loop
|
|
|
} // cell loop
|
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
#endif // UBL_SEGMENTED
|
|
|
#endif // UBL_SEGMENTED
|
|
|
|
|
|
|
|
|