Browse Source

Within Marlin, maintain most feed rates in mm/s

pull/1/head
Scott Lahteine 9 years ago
parent
commit
d320065320
  1. 12
      Marlin/Marlin.h
  2. 168
      Marlin/Marlin_main.cpp

12
Marlin/Marlin.h

@ -261,9 +261,7 @@ extern int feedrate_percentage;
#define MMM_TO_MMS(MM_M) ((MM_M)/60.0) #define MMM_TO_MMS(MM_M) ((MM_M)/60.0)
#define MMS_TO_MMM(MM_S) ((MM_S)*60.0) #define MMS_TO_MMM(MM_S) ((MM_S)*60.0)
#define MMM_SCALED(MM_M) ((MM_M)*feedrate_percentage*0.01) #define MMS_SCALED(MM_S) ((MM_S)*feedrate_percentage*0.01)
#define MMS_SCALED(MM_S) MMM_SCALED(MM_S)
#define MMM_TO_MMS_SCALED(MM_M) (MMS_SCALED(MMM_TO_MMS(MM_M)))
extern bool axis_relative_modes[]; extern bool axis_relative_modes[];
extern bool volumetric_enabled; extern bool volumetric_enabled;
@ -391,9 +389,9 @@ void calculate_volumetric_multipliers();
/** /**
* Blocking movement and shorthand functions * Blocking movement and shorthand functions
*/ */
inline void do_blocking_move_to(float x, float y, float z, float fr_mm_m=0.0); inline void do_blocking_move_to(float x, float y, float z, float fr_mm_s=0.0);
inline void do_blocking_move_to_x(float x, float fr_mm_m=0.0); inline void do_blocking_move_to_x(float x, float fr_mm_s=0.0);
inline void do_blocking_move_to_z(float z, float fr_mm_m=0.0); inline void do_blocking_move_to_z(float z, float fr_mm_s=0.0);
inline void do_blocking_move_to_xy(float x, float y, float fr_mm_m=0.0); inline void do_blocking_move_to_xy(float x, float y, float fr_mm_s=0.0);
#endif //MARLIN_H #endif //MARLIN_H

168
Marlin/Marlin_main.cpp

@ -308,15 +308,15 @@ static uint8_t cmd_queue_index_r = 0,
* Feed rates are often configured with mm/m * Feed rates are often configured with mm/m
* but the planner and stepper like mm/s units. * but the planner and stepper like mm/s units.
*/ */
const float homing_feedrate_mm_m[] = { const float homing_feedrate_mm_s[] = {
#if ENABLED(DELTA) #if ENABLED(DELTA)
HOMING_FEEDRATE_Z, HOMING_FEEDRATE_Z, MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
#else #else
HOMING_FEEDRATE_XY, HOMING_FEEDRATE_XY, MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
#endif #endif
HOMING_FEEDRATE_Z, 0 MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
}; };
static float feedrate_mm_m = 1500.0, saved_feedrate_mm_m; static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
int feedrate_percentage = 100, saved_feedrate_percentage; int feedrate_percentage = 100, saved_feedrate_percentage;
bool axis_relative_modes[] = AXIS_RELATIVE_MODES; bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
@ -393,13 +393,13 @@ static uint8_t target_extruder;
#define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS])) #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
#if ENABLED(AUTO_BED_LEVELING_FEATURE) #if ENABLED(AUTO_BED_LEVELING_FEATURE)
int xy_probe_feedrate_mm_m = XY_PROBE_SPEED; float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
bool bed_leveling_in_progress = false; bool bed_leveling_in_progress = false;
#define XY_PROBE_FEEDRATE_MM_M xy_probe_feedrate_mm_m #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
#elif defined(XY_PROBE_SPEED) #elif defined(XY_PROBE_SPEED)
#define XY_PROBE_FEEDRATE_MM_M XY_PROBE_SPEED #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
#else #else
#define XY_PROBE_FEEDRATE_MM_M MMS_TO_MMM(PLANNER_XY_FEEDRATE()) #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
#endif #endif
#if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA) #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
@ -580,7 +580,7 @@ void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P);
void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); } void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); } void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
void tool_change(const uint8_t tmp_extruder, const float fr_mm_m=0.0, bool no_move=false); void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
static void report_current_position(); static void report_current_position();
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
@ -1606,7 +1606,7 @@ inline float get_homing_bump_feedrate(AxisEnum axis) {
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1"); SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
} }
return homing_feedrate_mm_m[axis] / hbd; return homing_feedrate_mm_s[axis] / hbd;
} }
// //
// line_to_current_position // line_to_current_position
@ -1614,30 +1614,30 @@ inline float get_homing_bump_feedrate(AxisEnum axis) {
// (or from wherever it has been told it is located). // (or from wherever it has been told it is located).
// //
inline void line_to_current_position() { inline void line_to_current_position() {
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(feedrate_mm_m), active_extruder); planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
} }
inline void line_to_z(float zPosition) { inline void line_to_z(float zPosition) {
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], MMM_TO_MMS(feedrate_mm_m), active_extruder); planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate_mm_s, active_extruder);
} }
inline void line_to_axis_pos(AxisEnum axis, float where, float fr_mm_m = 0.0) { inline void line_to_axis_pos(AxisEnum axis, float where, float fr_mm_s = 0.0) {
float old_feedrate_mm_m = feedrate_mm_m; float old_feedrate_mm_s = feedrate_mm_s;
current_position[axis] = where; current_position[axis] = where;
feedrate_mm_m = (fr_mm_m != 0.0) ? fr_mm_m : homing_feedrate_mm_m[axis]; feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : homing_feedrate_mm_s[axis];
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(feedrate_mm_m), active_extruder); planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
stepper.synchronize(); stepper.synchronize();
feedrate_mm_m = old_feedrate_mm_m; feedrate_mm_s = old_feedrate_mm_s;
} }
// //
// line_to_destination // line_to_destination
// Move the planner, not necessarily synced with current_position // Move the planner, not necessarily synced with current_position
// //
inline void line_to_destination(float fr_mm_m) { inline void line_to_destination(float fr_mm_s) {
planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], MMM_TO_MMS(fr_mm_m), active_extruder); planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
} }
inline void line_to_destination() { line_to_destination(feedrate_mm_m); } inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); } inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); } inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
@ -1652,7 +1652,7 @@ inline void set_destination_to_current() { memcpy(destination, current_position,
#endif #endif
refresh_cmd_timeout(); refresh_cmd_timeout();
inverse_kinematics(destination); inverse_kinematics(destination);
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], MMM_TO_MMS_SCALED(feedrate_mm_m), active_extruder); planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], MMS_SCALED(feedrate_mm_s), active_extruder);
set_current_to_destination(); set_current_to_destination();
} }
#endif #endif
@ -1661,8 +1661,8 @@ inline void set_destination_to_current() { memcpy(destination, current_position,
* Plan a move to (X, Y, Z) and set the current_position * Plan a move to (X, Y, Z) and set the current_position
* The final current_position may not be the one that was requested * The final current_position may not be the one that was requested
*/ */
void do_blocking_move_to(float x, float y, float z, float fr_mm_m /*=0.0*/) { void do_blocking_move_to(float x, float y, float z, float fr_mm_s /*=0.0*/) {
float old_feedrate_mm_m = feedrate_mm_m; float old_feedrate_mm_s = feedrate_mm_s;
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z); if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
@ -1670,7 +1670,7 @@ void do_blocking_move_to(float x, float y, float z, float fr_mm_m /*=0.0*/) {
#if ENABLED(DELTA) #if ENABLED(DELTA)
feedrate_mm_m = (fr_mm_m != 0.0) ? fr_mm_m : XY_PROBE_FEEDRATE_MM_M; feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
set_destination_to_current(); // sync destination at the start set_destination_to_current(); // sync destination at the start
@ -1730,19 +1730,19 @@ void do_blocking_move_to(float x, float y, float z, float fr_mm_m /*=0.0*/) {
// If Z needs to raise, do it before moving XY // If Z needs to raise, do it before moving XY
if (current_position[Z_AXIS] < z) { if (current_position[Z_AXIS] < z) {
feedrate_mm_m = (fr_mm_m != 0.0) ? fr_mm_m : homing_feedrate_mm_m[Z_AXIS]; feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
current_position[Z_AXIS] = z; current_position[Z_AXIS] = z;
line_to_current_position(); line_to_current_position();
} }
feedrate_mm_m = (fr_mm_m != 0.0) ? fr_mm_m : XY_PROBE_FEEDRATE_MM_M; feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
current_position[X_AXIS] = x; current_position[X_AXIS] = x;
current_position[Y_AXIS] = y; current_position[Y_AXIS] = y;
line_to_current_position(); line_to_current_position();
// If Z needs to lower, do it after moving XY // If Z needs to lower, do it after moving XY
if (current_position[Z_AXIS] > z) { if (current_position[Z_AXIS] > z) {
feedrate_mm_m = (fr_mm_m != 0.0) ? fr_mm_m : homing_feedrate_mm_m[Z_AXIS]; feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
current_position[Z_AXIS] = z; current_position[Z_AXIS] = z;
line_to_current_position(); line_to_current_position();
} }
@ -1751,16 +1751,16 @@ void do_blocking_move_to(float x, float y, float z, float fr_mm_m /*=0.0*/) {
stepper.synchronize(); stepper.synchronize();
feedrate_mm_m = old_feedrate_mm_m; feedrate_mm_s = old_feedrate_mm_s;
} }
void do_blocking_move_to_x(float x, float fr_mm_m/*=0.0*/) { void do_blocking_move_to_x(float x, float fr_mm_s/*=0.0*/) {
do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_m); do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
} }
void do_blocking_move_to_z(float z, float fr_mm_m/*=0.0*/) { void do_blocking_move_to_z(float z, float fr_mm_s/*=0.0*/) {
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_m); do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
} }
void do_blocking_move_to_xy(float x, float y, float fr_mm_m/*=0.0*/) { void do_blocking_move_to_xy(float x, float y, float fr_mm_s/*=0.0*/) {
do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_m); do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
} }
// //
@ -1776,7 +1776,7 @@ static void setup_for_endstop_or_probe_move() {
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position); if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
#endif #endif
saved_feedrate_mm_m = feedrate_mm_m; saved_feedrate_mm_s = feedrate_mm_s;
saved_feedrate_percentage = feedrate_percentage; saved_feedrate_percentage = feedrate_percentage;
feedrate_percentage = 100; feedrate_percentage = 100;
refresh_cmd_timeout(); refresh_cmd_timeout();
@ -1786,7 +1786,7 @@ static void clean_up_after_endstop_or_probe_move() {
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position); if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
#endif #endif
feedrate_mm_m = saved_feedrate_mm_m; feedrate_mm_s = saved_feedrate_mm_s;
feedrate_percentage = saved_feedrate_percentage; feedrate_percentage = saved_feedrate_percentage;
refresh_cmd_timeout(); refresh_cmd_timeout();
} }
@ -1881,7 +1881,7 @@ static void clean_up_after_endstop_or_probe_move() {
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
#define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0 #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
#endif #endif
do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE); do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
#endif #endif
#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z) #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
@ -1896,7 +1896,7 @@ static void clean_up_after_endstop_or_probe_move() {
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
#define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0 #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
#endif #endif
do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE); do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
#endif #endif
#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z) #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
@ -1911,7 +1911,7 @@ static void clean_up_after_endstop_or_probe_move() {
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
#define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0 #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
#endif #endif
do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE); do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
#endif #endif
#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z) #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
@ -1926,7 +1926,7 @@ static void clean_up_after_endstop_or_probe_move() {
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
#define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0 #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
#endif #endif
do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE); do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
#endif #endif
#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z) #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
@ -1941,7 +1941,7 @@ static void clean_up_after_endstop_or_probe_move() {
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
#define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0 #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
#endif #endif
do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE); do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
#endif #endif
} }
void run_stow_moves_script() { void run_stow_moves_script() {
@ -1958,7 +1958,7 @@ static void clean_up_after_endstop_or_probe_move() {
#ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
#define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0 #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
#endif #endif
do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE); do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
#endif #endif
#if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z) #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
#ifndef Z_PROBE_ALLEN_KEY_STOW_2_X #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
@ -1973,7 +1973,7 @@ static void clean_up_after_endstop_or_probe_move() {
#ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
#define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0 #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
#endif #endif
do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE); do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
#endif #endif
#if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z) #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
#ifndef Z_PROBE_ALLEN_KEY_STOW_3_X #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
@ -1988,7 +1988,7 @@ static void clean_up_after_endstop_or_probe_move() {
#ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
#define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0 #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
#endif #endif
do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE); do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
#endif #endif
#if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z) #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
#ifndef Z_PROBE_ALLEN_KEY_STOW_4_X #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
@ -2003,7 +2003,7 @@ static void clean_up_after_endstop_or_probe_move() {
#ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
#define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0 #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
#endif #endif
do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE); do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
#endif #endif
#if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z) #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
#ifndef Z_PROBE_ALLEN_KEY_STOW_5_X #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
@ -2018,7 +2018,7 @@ static void clean_up_after_endstop_or_probe_move() {
#ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
#define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0 #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
#endif #endif
do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE); do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
#endif #endif
} }
#endif #endif
@ -2122,20 +2122,20 @@ static void clean_up_after_endstop_or_probe_move() {
#endif #endif
#if ENABLED(PROBE_DOUBLE_TOUCH) #if ENABLED(PROBE_DOUBLE_TOUCH)
do_blocking_move_to_z(-(Z_MAX_LENGTH + 10), Z_PROBE_SPEED_FAST); do_blocking_move_to_z(-(Z_MAX_LENGTH + 10), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
endstops.hit_on_purpose(); endstops.hit_on_purpose();
set_current_from_steppers_for_axis(Z_AXIS); set_current_from_steppers_for_axis(Z_AXIS);
SYNC_PLAN_POSITION_KINEMATIC(); SYNC_PLAN_POSITION_KINEMATIC();
// move up the retract distance // move up the retract distance
do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), Z_PROBE_SPEED_FAST); do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
#else #else
// move fast, close to the bed // move fast, close to the bed
do_blocking_move_to_z(home_bump_mm(Z_AXIS), Z_PROBE_SPEED_FAST); do_blocking_move_to_z(home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
#endif #endif
// move down slowly to find bed // move down slowly to find bed
do_blocking_move_to_z(current_position[Z_AXIS] -2.0*home_bump_mm(Z_AXIS), Z_PROBE_SPEED_SLOW); do_blocking_move_to_z(current_position[Z_AXIS] -2.0*home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_SLOW));
endstops.hit_on_purpose(); endstops.hit_on_purpose();
set_current_from_steppers_for_axis(Z_AXIS); set_current_from_steppers_for_axis(Z_AXIS);
SYNC_PLAN_POSITION_KINEMATIC(); SYNC_PLAN_POSITION_KINEMATIC();
@ -2167,7 +2167,7 @@ static void clean_up_after_endstop_or_probe_move() {
} }
#endif #endif
float old_feedrate_mm_m = feedrate_mm_m; float old_feedrate_mm_s = feedrate_mm_s;
// Ensure a minimum height before moving the probe // Ensure a minimum height before moving the probe
do_probe_raise(Z_PROBE_TRAVEL_HEIGHT); do_probe_raise(Z_PROBE_TRAVEL_HEIGHT);
@ -2180,7 +2180,7 @@ static void clean_up_after_endstop_or_probe_move() {
SERIAL_ECHOLNPGM(")"); SERIAL_ECHOLNPGM(")");
} }
#endif #endif
feedrate_mm_m = XY_PROBE_FEEDRATE_MM_M; feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER)); do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
@ -2217,7 +2217,7 @@ static void clean_up_after_endstop_or_probe_move() {
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt"); if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
#endif #endif
feedrate_mm_m = old_feedrate_mm_m; feedrate_mm_s = old_feedrate_mm_s;
return measured_z; return measured_z;
} }
@ -2509,13 +2509,13 @@ static void homeaxis(AxisEnum axis) {
if (retracting == retracted[active_extruder]) return; if (retracting == retracted[active_extruder]) return;
float old_feedrate_mm_m = feedrate_mm_m; float old_feedrate_mm_s = feedrate_mm_s;
set_destination_to_current(); set_destination_to_current();
if (retracting) { if (retracting) {
feedrate_mm_m = MMS_TO_MMM(retract_feedrate_mm_s); feedrate_mm_s = retract_feedrate_mm_s;
current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder]; current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
sync_plan_position_e(); sync_plan_position_e();
prepare_move_to_destination(); prepare_move_to_destination();
@ -2533,14 +2533,14 @@ static void homeaxis(AxisEnum axis) {
SYNC_PLAN_POSITION_KINEMATIC(); SYNC_PLAN_POSITION_KINEMATIC();
} }
feedrate_mm_m = MMS_TO_MMM(retract_recover_feedrate_mm_s); feedrate_mm_s = retract_recover_feedrate_mm_s;
float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length; float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder]; current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
sync_plan_position_e(); sync_plan_position_e();
prepare_move_to_destination(); prepare_move_to_destination();
} }
feedrate_mm_m = old_feedrate_mm_m; feedrate_mm_s = old_feedrate_mm_s;
retracted[active_extruder] = retracting; retracted[active_extruder] = retracting;
} // retract() } // retract()
@ -2602,7 +2602,7 @@ void gcode_get_destination() {
} }
if (code_seen('F') && code_value_linear_units() > 0.0) if (code_seen('F') && code_value_linear_units() > 0.0)
feedrate_mm_m = code_value_linear_units(); feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
#if ENABLED(PRINTCOUNTER) #if ENABLED(PRINTCOUNTER)
if (!DEBUGGING(DRYRUN)) if (!DEBUGGING(DRYRUN))
@ -2846,9 +2846,9 @@ inline void gcode_G4() {
float mlx = max_length(X_AXIS), float mlx = max_length(X_AXIS),
mly = max_length(Y_AXIS), mly = max_length(Y_AXIS),
mlratio = mlx > mly ? mly / mlx : mlx / mly, mlratio = mlx > mly ? mly / mlx : mlx / mly,
fr_mm_m = min(homing_feedrate_mm_m[X_AXIS], homing_feedrate_mm_m[Y_AXIS]) * sqrt(sq(mlratio) + 1.0); fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_m); do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
endstops.hit_on_purpose(); // clear endstop hit flags endstops.hit_on_purpose(); // clear endstop hit flags
current_position[X_AXIS] = current_position[Y_AXIS] = 0.0; current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
@ -2940,7 +2940,7 @@ inline void gcode_G28() {
// Move all carriages up together until the first endstop is hit. // Move all carriages up together until the first endstop is hit.
current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = 3.0 * (Z_MAX_LENGTH); current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = 3.0 * (Z_MAX_LENGTH);
feedrate_mm_m = 1.732 * homing_feedrate_mm_m[X_AXIS]; feedrate_mm_s = 1.732 * homing_feedrate_mm_s[X_AXIS];
line_to_current_position(); line_to_current_position();
stepper.synchronize(); stepper.synchronize();
endstops.hit_on_purpose(); // clear endstop hit flags endstops.hit_on_purpose(); // clear endstop hit flags
@ -3157,7 +3157,7 @@ inline void gcode_G28() {
#if ENABLED(MESH_G28_REST_ORIGIN) #if ENABLED(MESH_G28_REST_ORIGIN)
current_position[Z_AXIS] = 0.0; current_position[Z_AXIS] = 0.0;
set_destination_to_current(); set_destination_to_current();
feedrate_mm_m = homing_feedrate_mm_m[Z_AXIS]; feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
line_to_destination(); line_to_destination();
stepper.synchronize(); stepper.synchronize();
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
@ -3219,8 +3219,8 @@ inline void gcode_G28() {
#if ENABLED(MESH_BED_LEVELING) #if ENABLED(MESH_BED_LEVELING)
inline void _mbl_goto_xy(float x, float y) { inline void _mbl_goto_xy(float x, float y) {
float old_feedrate_mm_m = feedrate_mm_m; float old_feedrate_mm_s = feedrate_mm_s;
feedrate_mm_m = homing_feedrate_mm_m[X_AXIS]; feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
#if Z_PROBE_TRAVEL_HEIGHT > Z_HOMING_HEIGHT #if Z_PROBE_TRAVEL_HEIGHT > Z_HOMING_HEIGHT
@ -3240,7 +3240,7 @@ inline void gcode_G28() {
line_to_current_position(); line_to_current_position();
#endif #endif
feedrate_mm_m = old_feedrate_mm_m; feedrate_mm_s = old_feedrate_mm_s;
stepper.synchronize(); stepper.synchronize();
} }
@ -3487,7 +3487,7 @@ inline void gcode_G28() {
} }
#endif #endif
xy_probe_feedrate_mm_m = code_seen('S') ? (int)code_value_linear_units() : XY_PROBE_SPEED; xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION), int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION),
right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION), right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION),
@ -6265,7 +6265,7 @@ inline void gcode_M503() {
#define RUNPLAN(RATE_MM_S) inverse_kinematics(destination); \ #define RUNPLAN(RATE_MM_S) inverse_kinematics(destination); \
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder); planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder);
#else #else
#define RUNPLAN(RATE_MM_S) line_to_destination(MMS_TO_MMM(RATE_MM_S)); #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S);
#endif #endif
KEEPALIVE_STATE(IN_HANDLER); KEEPALIVE_STATE(IN_HANDLER);
@ -6655,7 +6655,7 @@ inline void invalid_extruder_error(const uint8_t &e) {
SERIAL_ECHOLN(MSG_INVALID_EXTRUDER); SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
} }
void tool_change(const uint8_t tmp_extruder, const float fr_mm_m/*=0.0*/, bool no_move/*=false*/) { void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
#if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1 #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
if (tmp_extruder >= MIXING_VIRTUAL_TOOLS) { if (tmp_extruder >= MIXING_VIRTUAL_TOOLS) {
@ -6676,9 +6676,9 @@ void tool_change(const uint8_t tmp_extruder, const float fr_mm_m/*=0.0*/, bool n
return; return;
} }
float old_feedrate_mm_m = feedrate_mm_m; float old_feedrate_mm_s = feedrate_mm_s;
feedrate_mm_m = fr_mm_m > 0.0 ? (old_feedrate_mm_m = fr_mm_m) : XY_PROBE_FEEDRATE_MM_M; feedrate_mm_s = fr_mm_s > 0.0 ? (old_feedrate_mm_s = fr_mm_s) : XY_PROBE_FEEDRATE_MM_S;
if (tmp_extruder != active_extruder) { if (tmp_extruder != active_extruder) {
if (!no_move && axis_unhomed_error(true, true, true)) { if (!no_move && axis_unhomed_error(true, true, true)) {
@ -6928,14 +6928,14 @@ void tool_change(const uint8_t tmp_extruder, const float fr_mm_m/*=0.0*/, bool n
enable_solenoid_on_active_extruder(); enable_solenoid_on_active_extruder();
#endif // EXT_SOLENOID #endif // EXT_SOLENOID
feedrate_mm_m = old_feedrate_mm_m; feedrate_mm_s = old_feedrate_mm_s;
#else // HOTENDS <= 1 #else // HOTENDS <= 1
// Set the new active extruder // Set the new active extruder
active_extruder = tmp_extruder; active_extruder = tmp_extruder;
UNUSED(fr_mm_m); UNUSED(fr_mm_s);
UNUSED(no_move); UNUSED(no_move);
#endif // HOTENDS <= 1 #endif // HOTENDS <= 1
@ -6971,7 +6971,7 @@ inline void gcode_T(uint8_t tmp_extruder) {
tool_change( tool_change(
tmp_extruder, tmp_extruder,
code_seen('F') ? code_value_axis_units(X_AXIS) : 0.0, code_seen('F') ? MMM_TO_MMS(code_value_axis_units(X_AXIS)) : 0.0,
(tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool()) (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
); );
@ -7916,7 +7916,7 @@ void set_current_from_steppers_for_axis(AxisEnum axis) {
#if ENABLED(MESH_BED_LEVELING) #if ENABLED(MESH_BED_LEVELING)
// This function is used to split lines on mesh borders so each segment is only part of one mesh area // This function is used to split lines on mesh borders so each segment is only part of one mesh area
void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) { void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)), int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)), cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])), cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
@ -7928,7 +7928,7 @@ void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_
if (cx1 == cx2 && cy1 == cy2) { if (cx1 == cx2 && cy1 == cy2) {
// Start and end on same mesh square // Start and end on same mesh square
line_to_destination(fr_mm_m); line_to_destination(fr_mm_s);
set_current_to_destination(); set_current_to_destination();
return; return;
} }
@ -7955,7 +7955,7 @@ void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_
} }
else { else {
// Already split on a border // Already split on a border
line_to_destination(fr_mm_m); line_to_destination(fr_mm_s);
set_current_to_destination(); set_current_to_destination();
return; return;
} }
@ -7964,11 +7964,11 @@ void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_
destination[E_AXIS] = MBL_SEGMENT_END(E); destination[E_AXIS] = MBL_SEGMENT_END(E);
// Do the split and look for more borders // Do the split and look for more borders
mesh_line_to_destination(fr_mm_m, x_splits, y_splits); mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
// Restore destination from stack // Restore destination from stack
memcpy(destination, end, sizeof(end)); memcpy(destination, end, sizeof(end));
mesh_line_to_destination(fr_mm_m, x_splits, y_splits); mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
} }
#endif // MESH_BED_LEVELING #endif // MESH_BED_LEVELING
@ -7981,7 +7981,7 @@ void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_
float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS])); float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]); if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
if (cartesian_mm < 0.000001) return false; if (cartesian_mm < 0.000001) return false;
float _feedrate_mm_s = MMM_TO_MMS_SCALED(feedrate_mm_m); float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
float seconds = cartesian_mm / _feedrate_mm_s; float seconds = cartesian_mm / _feedrate_mm_s;
int steps = max(1, int(delta_segments_per_second * seconds)); int steps = max(1, int(delta_segments_per_second * seconds));
float inv_steps = 1.0/steps; float inv_steps = 1.0/steps;
@ -8067,12 +8067,12 @@ void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_
else { else {
#if ENABLED(MESH_BED_LEVELING) #if ENABLED(MESH_BED_LEVELING)
if (mbl.active()) { if (mbl.active()) {
mesh_line_to_destination(MMM_SCALED(feedrate_mm_m)); mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
return false; return false;
} }
else else
#endif #endif
line_to_destination(MMM_SCALED(feedrate_mm_m)); line_to_destination(MMS_SCALED(feedrate_mm_s));
} }
return true; return true;
} }
@ -8213,7 +8213,7 @@ void prepare_move_to_destination() {
// Initialize the extruder axis // Initialize the extruder axis
arc_target[E_AXIS] = current_position[E_AXIS]; arc_target[E_AXIS] = current_position[E_AXIS];
float fr_mm_s = MMM_TO_MMS_SCALED(feedrate_mm_m); float fr_mm_s = MMS_SCALED(feedrate_mm_s);
millis_t next_idle_ms = millis() + 200UL; millis_t next_idle_ms = millis() + 200UL;
@ -8284,7 +8284,7 @@ void prepare_move_to_destination() {
#if ENABLED(BEZIER_CURVE_SUPPORT) #if ENABLED(BEZIER_CURVE_SUPPORT)
void plan_cubic_move(const float offset[4]) { void plan_cubic_move(const float offset[4]) {
cubic_b_spline(current_position, destination, offset, MMM_TO_MMS_SCALED(feedrate_mm_m), active_extruder); cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
// As far as the parser is concerned, the position is now == target. In reality the // As far as the parser is concerned, the position is now == target. In reality the
// motion control system might still be processing the action and the real tool position // motion control system might still be processing the action and the real tool position

Loading…
Cancel
Save