|
|
@ -61,6 +61,7 @@ |
|
|
|
* G30 - Single Z probe, probes bed at X Y location (defaults to current XY location) |
|
|
|
* G31 - Dock sled (Z_PROBE_SLED only) |
|
|
|
* G32 - Undock sled (Z_PROBE_SLED only) |
|
|
|
* G33 - Delta '4-point' auto calibration iteration |
|
|
|
* G38 - Probe target - similar to G28 except it uses the Z_MIN_PROBE for all three axes |
|
|
|
* G90 - Use Absolute Coordinates |
|
|
|
* G91 - Use Relative Coordinates |
|
|
@ -146,7 +147,7 @@ |
|
|
|
S<print> T<travel> minimum speeds |
|
|
|
B<minimum segment time> |
|
|
|
X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk> |
|
|
|
* M206 - Set additional homing offset. |
|
|
|
* M206 - Set additional homing offset. (Disabled by NO_WORKSPACE_OFFSETS or DELTA) |
|
|
|
* M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT) |
|
|
|
* M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT) |
|
|
|
* M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT) |
|
|
@ -179,7 +180,7 @@ |
|
|
|
* M410 - Quickstop. Abort all planned moves. |
|
|
|
* M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL) |
|
|
|
* M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING or AUTO_BED_LEVELING_UBL) |
|
|
|
* M428 - Set the home_offset based on the current_position. Nearest edge applies. |
|
|
|
* M428 - Set the home_offset based on the current_position. Nearest edge applies. (Disabled by NO_WORKSPACE_OFFSETS or DELTA) |
|
|
|
* M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS) |
|
|
|
* M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS) |
|
|
|
* M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! ** |
|
|
@ -408,18 +409,20 @@ bool axis_relative_modes[] = AXIS_RELATIVE_MODES, |
|
|
|
float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA), |
|
|
|
volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0); |
|
|
|
|
|
|
|
#if DISABLED(NO_WORKSPACE_OFFSETS) |
|
|
|
|
|
|
|
// The distance that XYZ has been offset by G92. Reset by G28.
|
|
|
|
float position_shift[XYZ] = { 0 }; |
|
|
|
|
|
|
|
// This offset is added to the configured home position.
|
|
|
|
// Set by M206, M428, or menu item. Saved to EEPROM.
|
|
|
|
float home_offset[XYZ] = { 0 }; |
|
|
|
|
|
|
|
// The above two are combined to save on computes
|
|
|
|
float workspace_offset[XYZ] = { 0 }; |
|
|
|
|
|
|
|
#if HAS_WORKSPACE_OFFSET |
|
|
|
#if HAS_POSITION_SHIFT |
|
|
|
// The distance that XYZ has been offset by G92. Reset by G28.
|
|
|
|
float position_shift[XYZ] = { 0 }; |
|
|
|
#endif |
|
|
|
#if HAS_HOME_OFFSET |
|
|
|
// This offset is added to the configured home position.
|
|
|
|
// Set by M206, M428, or menu item. Saved to EEPROM.
|
|
|
|
float home_offset[XYZ] = { 0 }; |
|
|
|
#endif |
|
|
|
#if HAS_HOME_OFFSET && HAS_POSITION_SHIFT |
|
|
|
// The above two are combined to save on computes
|
|
|
|
float workspace_offset[XYZ] = { 0 }; |
|
|
|
#endif |
|
|
|
#endif |
|
|
|
|
|
|
|
// Software Endstops are based on the configured limits.
|
|
|
@ -1381,7 +1384,7 @@ bool get_target_extruder_from_command(int code) { |
|
|
|
|
|
|
|
#endif // DUAL_X_CARRIAGE
|
|
|
|
|
|
|
|
#if DISABLED(NO_WORKSPACE_OFFSETS) || ENABLED(DUAL_X_CARRIAGE) || ENABLED(DELTA) |
|
|
|
#if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE) |
|
|
|
|
|
|
|
/**
|
|
|
|
* Software endstops can be used to monitor the open end of |
|
|
@ -1393,7 +1396,18 @@ bool get_target_extruder_from_command(int code) { |
|
|
|
* at the same positions relative to the machine. |
|
|
|
*/ |
|
|
|
void update_software_endstops(const AxisEnum axis) { |
|
|
|
const float offs = workspace_offset[axis] = home_offset[axis] + position_shift[axis]; |
|
|
|
const float offs = 0.0 |
|
|
|
#if HAS_HOME_OFFSET |
|
|
|
+ home_offset[axis] |
|
|
|
#endif |
|
|
|
#if HAS_POSITION_SHIFT |
|
|
|
+ position_shift[axis] |
|
|
|
#endif |
|
|
|
; |
|
|
|
|
|
|
|
#if HAS_HOME_OFFSET && HAS_POSITION_SHIFT |
|
|
|
workspace_offset[axis] = offs; |
|
|
|
#endif |
|
|
|
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE) |
|
|
|
if (axis == X_AXIS) { |
|
|
@ -1426,8 +1440,10 @@ bool get_target_extruder_from_command(int code) { |
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE) |
|
|
|
if (DEBUGGING(LEVELING)) { |
|
|
|
SERIAL_ECHOPAIR("For ", axis_codes[axis]); |
|
|
|
#if DISABLED(NO_WORKSPACE_OFFSETS) |
|
|
|
#if HAS_HOME_OFFSET |
|
|
|
SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]); |
|
|
|
#endif |
|
|
|
#if HAS_POSITION_SHIFT |
|
|
|
SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]); |
|
|
|
#endif |
|
|
|
SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]); |
|
|
@ -1441,9 +1457,9 @@ bool get_target_extruder_from_command(int code) { |
|
|
|
#endif |
|
|
|
} |
|
|
|
|
|
|
|
#endif // NO_WORKSPACE_OFFSETS
|
|
|
|
#endif // HAS_WORKSPACE_OFFSET || DUAL_X_CARRIAGE
|
|
|
|
|
|
|
|
#if DISABLED(NO_WORKSPACE_OFFSETS) |
|
|
|
#if HAS_M206_COMMAND |
|
|
|
/**
|
|
|
|
* Change the home offset for an axis, update the current |
|
|
|
* position and the software endstops to retain the same |
|
|
@ -1457,7 +1473,7 @@ bool get_target_extruder_from_command(int code) { |
|
|
|
home_offset[axis] = v; |
|
|
|
update_software_endstops(axis); |
|
|
|
} |
|
|
|
#endif // NO_WORKSPACE_OFFSETS
|
|
|
|
#endif // HAS_M206_COMMAND
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Set an axis' current position to its home position (after homing). |
|
|
@ -1488,7 +1504,7 @@ static void set_axis_is_at_home(AxisEnum axis) { |
|
|
|
|
|
|
|
axis_known_position[axis] = axis_homed[axis] = true; |
|
|
|
|
|
|
|
#if DISABLED(NO_WORKSPACE_OFFSETS) |
|
|
|
#if HAS_POSITION_SHIFT |
|
|
|
position_shift[axis] = 0; |
|
|
|
update_software_endstops(axis); |
|
|
|
#endif |
|
|
@ -1564,7 +1580,7 @@ static void set_axis_is_at_home(AxisEnum axis) { |
|
|
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE) |
|
|
|
if (DEBUGGING(LEVELING)) { |
|
|
|
#if DISABLED(NO_WORKSPACE_OFFSETS) |
|
|
|
#if HAS_HOME_OFFSET |
|
|
|
SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]); |
|
|
|
SERIAL_ECHOLNPAIR("] = ", home_offset[axis]); |
|
|
|
#endif |
|
|
@ -2299,7 +2315,7 @@ static void clean_up_after_endstop_or_probe_move() { |
|
|
|
SERIAL_PROTOCOLPGM(" Y: "); |
|
|
|
SERIAL_PROTOCOL_F(y, 3); |
|
|
|
SERIAL_PROTOCOLPGM(" Z: "); |
|
|
|
SERIAL_PROTOCOL_F(FIXFLOAT(measured_z), 3); |
|
|
|
SERIAL_PROTOCOL_F(measured_z, 3); |
|
|
|
SERIAL_EOL; |
|
|
|
} |
|
|
|
|
|
|
@ -4035,6 +4051,11 @@ inline void gcode_G28() { |
|
|
|
* L Set the Left limit of the probing grid |
|
|
|
* R Set the Right limit of the probing grid |
|
|
|
* |
|
|
|
* Parameters with DEBUG_LEVELING_FEATURE only: |
|
|
|
* |
|
|
|
* C Make a totally fake grid with no actual probing. |
|
|
|
* For use in testing when no probing is possible. |
|
|
|
* |
|
|
|
* Parameters with BILINEAR leveling only: |
|
|
|
* |
|
|
|
* Z Supply an additional Z probe offset |
|
|
@ -4077,6 +4098,12 @@ inline void gcode_G28() { |
|
|
|
#endif |
|
|
|
#endif |
|
|
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(PROBE_MANUALLY) |
|
|
|
const bool faux = code_seen('C') && code_value_bool(); |
|
|
|
#else |
|
|
|
bool constexpr faux = false; |
|
|
|
#endif |
|
|
|
|
|
|
|
// Don't allow auto-leveling without homing first
|
|
|
|
if (axis_unhomed_error(true, true, true)) return; |
|
|
|
|
|
|
@ -4292,7 +4319,7 @@ inline void gcode_G28() { |
|
|
|
SYNC_PLAN_POSITION_KINEMATIC(); |
|
|
|
} |
|
|
|
|
|
|
|
setup_for_endstop_or_probe_move(); |
|
|
|
if (!faux) setup_for_endstop_or_probe_move(); |
|
|
|
|
|
|
|
//xProbe = yProbe = measured_z = 0;
|
|
|
|
|
|
|
@ -4550,7 +4577,7 @@ inline void gcode_G28() { |
|
|
|
if (!position_is_reachable(pos, true)) continue; |
|
|
|
#endif |
|
|
|
|
|
|
|
measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level); |
|
|
|
measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level); |
|
|
|
|
|
|
|
if (isnan(measured_z)) { |
|
|
|
planner.abl_enabled = abl_should_enable; |
|
|
@ -4585,7 +4612,7 @@ inline void gcode_G28() { |
|
|
|
// Retain the last probe position
|
|
|
|
xProbe = LOGICAL_X_POSITION(points[i].x); |
|
|
|
yProbe = LOGICAL_Y_POSITION(points[i].y); |
|
|
|
measured_z = points[i].z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level); |
|
|
|
measured_z = points[i].z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level); |
|
|
|
} |
|
|
|
|
|
|
|
if (isnan(measured_z)) { |
|
|
@ -4624,7 +4651,7 @@ inline void gcode_G28() { |
|
|
|
//
|
|
|
|
|
|
|
|
// Restore state after probing
|
|
|
|
clean_up_after_endstop_or_probe_move(); |
|
|
|
if (!faux) clean_up_after_endstop_or_probe_move(); |
|
|
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE) |
|
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position); |
|
|
@ -4890,8 +4917,366 @@ inline void gcode_G28() { |
|
|
|
|
|
|
|
#endif // Z_PROBE_SLED
|
|
|
|
|
|
|
|
#if ENABLED(DELTA_AUTO_CALIBRATION) |
|
|
|
/**
|
|
|
|
* G33: Delta '4-point' auto calibration iteration |
|
|
|
* |
|
|
|
* Usage: G33 <Cn> <Vn> |
|
|
|
* |
|
|
|
* C (default) = Calibrate endstops, height and delta radius |
|
|
|
* |
|
|
|
* -2, 1-4: n x n probe points, default 3 x 3 |
|
|
|
* |
|
|
|
* 1: probe center |
|
|
|
* set height only - useful when z_offset is changed |
|
|
|
* 2: probe center and towers |
|
|
|
* solve one '4 point' calibration |
|
|
|
* -2: probe center and opposite the towers |
|
|
|
* solve one '4 point' calibration |
|
|
|
* 3: probe 3 center points, towers and opposite-towers |
|
|
|
* averages between 2 '4 point' calibrations |
|
|
|
* 4: probe 4 center points, towers, opposite-towers and itermediate points |
|
|
|
* averages between 4 '4 point' calibrations |
|
|
|
* |
|
|
|
* V Verbose level (0-3, default 1) |
|
|
|
* |
|
|
|
* 0: Dry-run mode: no calibration |
|
|
|
* 1: Settings |
|
|
|
* 2: Setting + probe results |
|
|
|
* 3: Expert mode: setting + iteration factors (see Configuration_adv.h) |
|
|
|
* This prematurely stops the iteration process when factors are found |
|
|
|
*/ |
|
|
|
inline void gcode_G33() { |
|
|
|
|
|
|
|
stepper.synchronize(); |
|
|
|
|
|
|
|
#if PLANNER_LEVELING |
|
|
|
set_bed_leveling_enabled(false); |
|
|
|
#endif |
|
|
|
|
|
|
|
const int8_t pp = code_seen('C') ? code_value_int() : DELTA_CALIBRATION_DEFAULT_POINTS, |
|
|
|
probe_points = (WITHIN(pp, 1, 4) || pp == -2) ? pp : DELTA_CALIBRATION_DEFAULT_POINTS; |
|
|
|
|
|
|
|
int8_t verbose_level = code_seen('V') ? code_value_byte() : 1; |
|
|
|
|
|
|
|
#if ENABLED(DELTA_CALIBRATE_EXPERT_MODE) |
|
|
|
#define _MAX_M33_V 3 |
|
|
|
if (verbose_level == 3 && probe_points == 1) verbose_level--; // needs at least 4 points
|
|
|
|
#else |
|
|
|
#define _MAX_M33_V 2 |
|
|
|
if (verbose_level > 2) |
|
|
|
SERIAL_PROTOCOLLNPGM("Enable DELTA_CALIBRATE_EXPERT_MODE in Configuration_adv.h"); |
|
|
|
#endif |
|
|
|
|
|
|
|
if (!WITHIN(verbose_level, 0, _MAX_M33_V)) verbose_level = 1; |
|
|
|
|
|
|
|
float zero_std_dev = verbose_level ? 999.0 : 0.0; // 0.0 in dry-run mode : forced end
|
|
|
|
|
|
|
|
gcode_G28(); |
|
|
|
|
|
|
|
float e_old[XYZ], |
|
|
|
dr_old = delta_radius, |
|
|
|
zh_old = home_offset[Z_AXIS]; |
|
|
|
COPY(e_old,endstop_adj); |
|
|
|
#if ENABLED(DELTA_CALIBRATE_EXPERT_MODE) |
|
|
|
// expert variables
|
|
|
|
float h_f_old = 1.00, r_f_old = 0.00, |
|
|
|
h_diff_min = 1.00, r_diff_max = 0.10; |
|
|
|
#endif |
|
|
|
|
|
|
|
// print settings
|
|
|
|
|
|
|
|
SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate"); |
|
|
|
SERIAL_PROTOCOLPGM("Checking... AC"); |
|
|
|
if (verbose_level == 0) SERIAL_PROTOCOLPGM(" (DRY-RUN)"); |
|
|
|
#if ENABLED(DELTA_CALIBRATE_EXPERT_MODE) |
|
|
|
if (verbose_level == 3) SERIAL_PROTOCOLPGM(" (EXPERT)"); |
|
|
|
#endif |
|
|
|
SERIAL_EOL; |
|
|
|
LCD_MESSAGEPGM("Checking... AC"); |
|
|
|
|
|
|
|
SERIAL_PROTOCOLPAIR("Height:", DELTA_HEIGHT + home_offset[Z_AXIS]); |
|
|
|
if (abs(probe_points) > 1) { |
|
|
|
SERIAL_PROTOCOLPGM(" Ex:"); |
|
|
|
if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+'); |
|
|
|
SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2); |
|
|
|
SERIAL_PROTOCOLPGM(" Ey:"); |
|
|
|
if (endstop_adj[B_AXIS] >= 0) SERIAL_CHAR('+'); |
|
|
|
SERIAL_PROTOCOL_F(endstop_adj[B_AXIS], 2); |
|
|
|
SERIAL_PROTOCOLPGM(" Ez:"); |
|
|
|
if (endstop_adj[C_AXIS] >= 0) SERIAL_CHAR('+'); |
|
|
|
SERIAL_PROTOCOL_F(endstop_adj[C_AXIS], 2); |
|
|
|
SERIAL_PROTOCOLPAIR(" Radius:", delta_radius); |
|
|
|
} |
|
|
|
SERIAL_EOL; |
|
|
|
|
|
|
|
#if ENABLED(Z_PROBE_SLED) |
|
|
|
DEPLOY_PROBE(); |
|
|
|
#endif |
|
|
|
|
|
|
|
float test_precision; |
|
|
|
int8_t iterations = 0; |
|
|
|
|
|
|
|
do { // start iterations
|
|
|
|
|
|
|
|
setup_for_endstop_or_probe_move(); |
|
|
|
|
|
|
|
test_precision = |
|
|
|
#if ENABLED(DELTA_CALIBRATE_EXPERT_MODE) |
|
|
|
// Expert mode : forced end at std_dev < 0.1
|
|
|
|
(verbose_level == 3 && zero_std_dev < 0.1) ? 0.0 : |
|
|
|
#endif |
|
|
|
zero_std_dev |
|
|
|
; |
|
|
|
|
|
|
|
float z_at_pt[13] = { 0 }; |
|
|
|
|
|
|
|
iterations++; |
|
|
|
|
|
|
|
// probe the points
|
|
|
|
|
|
|
|
int16_t center_points = 0; |
|
|
|
|
|
|
|
if (probe_points != 3) { |
|
|
|
z_at_pt[0] += probe_pt(0.0, 0.0 , true, 1); |
|
|
|
center_points = 1; |
|
|
|
} |
|
|
|
|
|
|
|
int16_t step_axis = 4; |
|
|
|
if (probe_points >= 3) { |
|
|
|
for (int8_t axis = 9; axis > 0; axis -= step_axis) { // uint8_t starts endless loop
|
|
|
|
z_at_pt[0] += probe_pt( |
|
|
|
0.1 * cos(RADIANS(180 + 30 * axis)) * (DELTA_CALIBRATION_RADIUS), |
|
|
|
0.1 * sin(RADIANS(180 + 30 * axis)) * (DELTA_CALIBRATION_RADIUS), true, 1); |
|
|
|
} |
|
|
|
center_points += 3; |
|
|
|
z_at_pt[0] /= center_points; |
|
|
|
} |
|
|
|
|
|
|
|
float S1 = z_at_pt[0], S2 = sq(S1); |
|
|
|
|
|
|
|
int16_t N = 1, start = (probe_points == -2) ? 3 : 1; |
|
|
|
step_axis = (abs(probe_points) == 2) ? 4 : (probe_points == 3) ? 2 : 1; |
|
|
|
|
|
|
|
if (probe_points != 1) { |
|
|
|
for (uint8_t axis = start; axis < 13; axis += step_axis) |
|
|
|
z_at_pt[axis] += probe_pt( |
|
|
|
cos(RADIANS(180 + 30 * axis)) * (DELTA_CALIBRATION_RADIUS), |
|
|
|
sin(RADIANS(180 + 30 * axis)) * (DELTA_CALIBRATION_RADIUS), true, 1 |
|
|
|
); |
|
|
|
|
|
|
|
if (probe_points == 4) step_axis = 2; |
|
|
|
} |
|
|
|
|
|
|
|
for (uint8_t axis = start; axis < 13; axis += step_axis) { |
|
|
|
if (probe_points == 4) |
|
|
|
z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0; |
|
|
|
|
|
|
|
S1 += z_at_pt[axis]; |
|
|
|
S2 += sq(z_at_pt[axis]); |
|
|
|
N++; |
|
|
|
} |
|
|
|
zero_std_dev = round(sqrt(S2 / N) * 1000.0) / 1000.0 + 0.00001; // deviation from zero plane
|
|
|
|
|
|
|
|
// Solve matrices
|
|
|
|
|
|
|
|
if (zero_std_dev < test_precision) { |
|
|
|
COPY(e_old, endstop_adj); |
|
|
|
dr_old = delta_radius; |
|
|
|
zh_old = home_offset[Z_AXIS]; |
|
|
|
|
|
|
|
float e_delta[XYZ] = { 0.0 }, r_delta = 0.0; |
|
|
|
|
|
|
|
#if ENABLED(DELTA_CALIBRATE_EXPERT_MODE) |
|
|
|
float h_f_new = 0.0, r_f_new = 0.0 , t_f_new = 0.0, |
|
|
|
h_diff = 0.00, r_diff = 0.00; |
|
|
|
#endif |
|
|
|
|
|
|
|
#define ZP(N,I) ((N) * z_at_pt[I]) |
|
|
|
#define Z1000(I) ZP(1.00, I) |
|
|
|
#define Z1050(I) ZP(H_FACTOR, I) |
|
|
|
#define Z0700(I) ZP((H_FACTOR) * 2.0 / 3.00, I) |
|
|
|
#define Z0350(I) ZP((H_FACTOR) / 3.00, I) |
|
|
|
#define Z0175(I) ZP((H_FACTOR) / 6.00, I) |
|
|
|
#define Z2250(I) ZP(R_FACTOR, I) |
|
|
|
#define Z0750(I) ZP((R_FACTOR) / 3.00, I) |
|
|
|
#define Z0375(I) ZP((R_FACTOR) / 6.00, I) |
|
|
|
|
|
|
|
switch (probe_points) { |
|
|
|
case 1: |
|
|
|
LOOP_XYZ(i) e_delta[i] = Z1000(0); |
|
|
|
r_delta = 0.00; |
|
|
|
break; |
|
|
|
|
|
|
|
case 2: |
|
|
|
e_delta[X_AXIS] = Z1050(0) + Z0700(1) - Z0350(5) - Z0350(9); |
|
|
|
e_delta[Y_AXIS] = Z1050(0) - Z0350(1) + Z0700(5) - Z0350(9); |
|
|
|
e_delta[Z_AXIS] = Z1050(0) - Z0350(1) - Z0350(5) + Z0700(9); |
|
|
|
r_delta = Z2250(0) - Z0750(1) - Z0750(5) - Z0750(9); |
|
|
|
break; |
|
|
|
|
|
|
|
case -2: |
|
|
|
e_delta[X_AXIS] = Z1050(0) - Z0700(7) + Z0350(11) + Z0350(3); |
|
|
|
e_delta[Y_AXIS] = Z1050(0) + Z0350(7) - Z0700(11) + Z0350(3); |
|
|
|
e_delta[Z_AXIS] = Z1050(0) + Z0350(7) + Z0350(11) - Z0700(3); |
|
|
|
r_delta = Z2250(0) - Z0750(7) - Z0750(11) - Z0750(3); |
|
|
|
break; |
|
|
|
|
|
|
|
default: |
|
|
|
e_delta[X_AXIS] = Z1050(0) + Z0350(1) - Z0175(5) - Z0175(9) - Z0350(7) + Z0175(11) + Z0175(3); |
|
|
|
e_delta[Y_AXIS] = Z1050(0) - Z0175(1) + Z0350(5) - Z0175(9) + Z0175(7) - Z0350(11) + Z0175(3); |
|
|
|
e_delta[Z_AXIS] = Z1050(0) - Z0175(1) - Z0175(5) + Z0350(9) + Z0175(7) + Z0175(11) - Z0350(3); |
|
|
|
r_delta = Z2250(0) - Z0375(1) - Z0375(5) - Z0375(9) - Z0375(7) - Z0375(11) - Z0375(3); |
|
|
|
break; |
|
|
|
} |
|
|
|
|
|
|
|
#if ENABLED(DELTA_CALIBRATE_EXPERT_MODE) |
|
|
|
// Calculate h & r factors
|
|
|
|
if (verbose_level == 3) { |
|
|
|
LOOP_XYZ(axis) h_f_new += e_delta[axis] / 3; |
|
|
|
r_f_new = r_delta; |
|
|
|
h_diff = (1.0 / H_FACTOR) * (h_f_old - h_f_new) / h_f_old; |
|
|
|
if (h_diff < h_diff_min && h_diff > 0.9) h_diff_min = h_diff; |
|
|
|
if (r_f_old != 0) |
|
|
|
r_diff = ( 0.0301 * sq(R_FACTOR) * R_FACTOR |
|
|
|
+ 0.311 * sq(R_FACTOR) |
|
|
|
+ 1.1493 * R_FACTOR |
|
|
|
+ 1.7952 |
|
|
|
) * (r_f_old - r_f_new) / r_f_old; |
|
|
|
if (r_diff > r_diff_max && r_diff < 0.4444) r_diff_max = r_diff; |
|
|
|
SERIAL_EOL; |
|
|
|
|
|
|
|
h_f_old = h_f_new; |
|
|
|
r_f_old = r_f_new; |
|
|
|
} |
|
|
|
#endif // DELTA_CALIBRATE_EXPERT_MODE
|
|
|
|
|
|
|
|
// Adjust delta_height and endstops by the max amount
|
|
|
|
LOOP_XYZ(axis) endstop_adj[axis] += e_delta[axis]; |
|
|
|
delta_radius += r_delta; |
|
|
|
|
|
|
|
const float z_temp = MAX3(endstop_adj[0], endstop_adj[1], endstop_adj[2]); |
|
|
|
home_offset[Z_AXIS] -= z_temp; |
|
|
|
LOOP_XYZ(i) endstop_adj[i] -= z_temp; |
|
|
|
|
|
|
|
recalc_delta_settings(delta_radius, delta_diagonal_rod); |
|
|
|
} |
|
|
|
else { // !iterate
|
|
|
|
// step one back
|
|
|
|
COPY(endstop_adj, e_old); |
|
|
|
delta_radius = dr_old; |
|
|
|
home_offset[Z_AXIS] = zh_old; |
|
|
|
|
|
|
|
recalc_delta_settings(delta_radius, delta_diagonal_rod); |
|
|
|
} |
|
|
|
|
|
|
|
// print report
|
|
|
|
|
|
|
|
#if ENABLED(DELTA_CALIBRATE_EXPERT_MODE) |
|
|
|
if (verbose_level == 3) { |
|
|
|
const float r_factor = 22.902 * sq(r_diff_max) * r_diff_max |
|
|
|
- 44.988 * sq(r_diff_max) |
|
|
|
+ 31.697 * r_diff_max |
|
|
|
- 9.4439; |
|
|
|
SERIAL_PROTOCOLPAIR("h_factor:", 1.0 / h_diff_min); |
|
|
|
SERIAL_PROTOCOLPAIR(" r_factor:", r_factor); |
|
|
|
SERIAL_EOL; |
|
|
|
} |
|
|
|
#endif |
|
|
|
if (verbose_level == 2) { |
|
|
|
SERIAL_PROTOCOLPGM(". c:"); |
|
|
|
if (z_at_pt[0] > 0) SERIAL_CHAR('+'); |
|
|
|
SERIAL_PROTOCOL_F(z_at_pt[0], 2); |
|
|
|
if (probe_points > 1) { |
|
|
|
SERIAL_PROTOCOLPGM(" x:"); |
|
|
|
if (z_at_pt[1] >= 0) SERIAL_CHAR('+'); |
|
|
|
SERIAL_PROTOCOL_F(z_at_pt[1], 2); |
|
|
|
SERIAL_PROTOCOLPGM(" y:"); |
|
|
|
if (z_at_pt[5] >= 0) SERIAL_CHAR('+'); |
|
|
|
SERIAL_PROTOCOL_F(z_at_pt[5], 2); |
|
|
|
SERIAL_PROTOCOLPGM(" z:"); |
|
|
|
if (z_at_pt[9] >= 0) SERIAL_CHAR('+'); |
|
|
|
SERIAL_PROTOCOL_F(z_at_pt[9], 2); |
|
|
|
} |
|
|
|
if (probe_points > 0) SERIAL_EOL; |
|
|
|
if (probe_points > 2 || probe_points == -2) { |
|
|
|
if (probe_points > 2) SERIAL_PROTOCOLPGM(". "); |
|
|
|
SERIAL_PROTOCOLPGM(" yz:"); |
|
|
|
if (z_at_pt[7] >= 0) SERIAL_CHAR('+'); |
|
|
|
SERIAL_PROTOCOL_F(z_at_pt[7], 2); |
|
|
|
SERIAL_PROTOCOLPGM(" zx:"); |
|
|
|
if (z_at_pt[11] >= 0) SERIAL_CHAR('+'); |
|
|
|
SERIAL_PROTOCOL_F(z_at_pt[11], 2); |
|
|
|
SERIAL_PROTOCOLPGM(" xy:"); |
|
|
|
if (z_at_pt[3] >= 0) SERIAL_CHAR('+'); |
|
|
|
SERIAL_PROTOCOL_F(z_at_pt[3], 2); |
|
|
|
SERIAL_EOL; |
|
|
|
} |
|
|
|
} |
|
|
|
if (test_precision != 0.0) { // !forced end
|
|
|
|
if (zero_std_dev >= test_precision) { |
|
|
|
SERIAL_PROTOCOLPGM("Calibration OK"); |
|
|
|
SERIAL_PROTOCOLLNPGM(" rolling back 1"); |
|
|
|
LCD_MESSAGEPGM("Calibration OK"); |
|
|
|
SERIAL_EOL; |
|
|
|
} |
|
|
|
else { // !end iterations
|
|
|
|
char mess[15] = "No convergence"; |
|
|
|
if (iterations < 31) |
|
|
|
sprintf_P(mess, PSTR("Iteration : %02i"), (int)iterations); |
|
|
|
SERIAL_PROTOCOL(mess); |
|
|
|
SERIAL_PROTOCOLPGM(" std dev:"); |
|
|
|
SERIAL_PROTOCOL_F(zero_std_dev, 3); |
|
|
|
SERIAL_EOL; |
|
|
|
lcd_setstatus(mess); |
|
|
|
} |
|
|
|
SERIAL_PROTOCOLPAIR("Height:", DELTA_HEIGHT + home_offset[Z_AXIS]); |
|
|
|
if (abs(probe_points) > 1) { |
|
|
|
SERIAL_PROTOCOLPGM(" Ex:"); |
|
|
|
if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+'); |
|
|
|
SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2); |
|
|
|
SERIAL_PROTOCOLPGM(" Ey:"); |
|
|
|
if (endstop_adj[B_AXIS] >= 0) SERIAL_CHAR('+'); |
|
|
|
SERIAL_PROTOCOL_F(endstop_adj[B_AXIS], 2); |
|
|
|
SERIAL_PROTOCOLPGM(" Ez:"); |
|
|
|
if (endstop_adj[C_AXIS] >= 0) SERIAL_CHAR('+'); |
|
|
|
SERIAL_PROTOCOL_F(endstop_adj[C_AXIS], 2); |
|
|
|
SERIAL_PROTOCOLPAIR(" Radius:", delta_radius); |
|
|
|
} |
|
|
|
SERIAL_EOL; |
|
|
|
if (zero_std_dev >= test_precision) |
|
|
|
SERIAL_PROTOCOLLNPGM("Save with M500"); |
|
|
|
} |
|
|
|
else { // forced end
|
|
|
|
#if ENABLED(DELTA_CALIBRATE_EXPERT_MODE) |
|
|
|
if (verbose_level == 3) |
|
|
|
SERIAL_PROTOCOLLNPGM("Copy to Configuration_adv.h"); |
|
|
|
else |
|
|
|
#endif |
|
|
|
{ |
|
|
|
SERIAL_PROTOCOLPGM("End DRY-RUN std dev:"); |
|
|
|
SERIAL_PROTOCOL_F(zero_std_dev, 3); |
|
|
|
SERIAL_EOL; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
clean_up_after_endstop_or_probe_move(); |
|
|
|
stepper.synchronize(); |
|
|
|
|
|
|
|
gcode_G28(); |
|
|
|
|
|
|
|
} while (zero_std_dev < test_precision && iterations < 31); |
|
|
|
|
|
|
|
#if ENABLED(Z_PROBE_SLED) |
|
|
|
RETRACT_PROBE(); |
|
|
|
#endif |
|
|
|
} |
|
|
|
|
|
|
|
#endif // DELTA_AUTO_CALIBRATION
|
|
|
|
|
|
|
|
#endif // HAS_BED_PROBE
|
|
|
|
|
|
|
|
|
|
|
|
#if ENABLED(G38_PROBE_TARGET) |
|
|
|
|
|
|
|
static bool G38_run_probe() { |
|
|
@ -4996,7 +5381,7 @@ inline void gcode_G92() { |
|
|
|
current_position[i] = code_value_axis_units(i); |
|
|
|
if (i != E_AXIS) didXYZ = true; |
|
|
|
#else |
|
|
|
#if DISABLED(NO_WORKSPACE_OFFSETS) |
|
|
|
#if HAS_POSITION_SHIFT |
|
|
|
float p = current_position[i]; |
|
|
|
#endif |
|
|
|
float v = code_value_axis_units(i); |
|
|
@ -5005,7 +5390,7 @@ inline void gcode_G92() { |
|
|
|
|
|
|
|
if (i != E_AXIS) { |
|
|
|
didXYZ = true; |
|
|
|
#if DISABLED(NO_WORKSPACE_OFFSETS) |
|
|
|
#if HAS_POSITION_SHIFT |
|
|
|
position_shift[i] += v - p; // Offset the coordinate space
|
|
|
|
update_software_endstops((AxisEnum)i); |
|
|
|
#endif |
|
|
@ -5620,7 +6005,7 @@ inline void gcode_M42() { |
|
|
|
|
|
|
|
if (axis_unhomed_error(true, true, true)) return; |
|
|
|
|
|
|
|
int8_t verbose_level = code_seen('V') ? code_value_byte() : 1; |
|
|
|
const int8_t verbose_level = code_seen('V') ? code_value_byte() : 1; |
|
|
|
if (!WITHIN(verbose_level, 0, 4)) { |
|
|
|
SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4)."); |
|
|
|
return; |
|
|
@ -7012,7 +7397,7 @@ inline void gcode_M205() { |
|
|
|
if (code_seen('E')) planner.max_jerk[E_AXIS] = code_value_axis_units(E_AXIS); |
|
|
|
} |
|
|
|
|
|
|
|
#if DISABLED(NO_WORKSPACE_OFFSETS) |
|
|
|
#if HAS_M206_COMMAND |
|
|
|
|
|
|
|
/**
|
|
|
|
* M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y |
|
|
@ -7031,12 +7416,13 @@ inline void gcode_M205() { |
|
|
|
report_current_position(); |
|
|
|
} |
|
|
|
|
|
|
|
#endif // NO_WORKSPACE_OFFSETS
|
|
|
|
#endif // HAS_M206_COMMAND
|
|
|
|
|
|
|
|
#if ENABLED(DELTA) |
|
|
|
/**
|
|
|
|
* M665: Set delta configurations |
|
|
|
* |
|
|
|
* H = diagonal rod // AC-version
|
|
|
|
* L = diagonal rod |
|
|
|
* R = delta radius |
|
|
|
* S = segments per second |
|
|
@ -7045,6 +7431,12 @@ inline void gcode_M205() { |
|
|
|
* C = Gamma (Tower 3) diagonal rod trim |
|
|
|
*/ |
|
|
|
inline void gcode_M665() { |
|
|
|
if (code_seen('H')) { |
|
|
|
home_offset[Z_AXIS] = code_value_linear_units() - DELTA_HEIGHT; |
|
|
|
current_position[Z_AXIS] += code_value_linear_units() - DELTA_HEIGHT - home_offset[Z_AXIS]; |
|
|
|
home_offset[Z_AXIS] = code_value_linear_units() - DELTA_HEIGHT; |
|
|
|
update_software_endstops(Z_AXIS); |
|
|
|
} |
|
|
|
if (code_seen('L')) delta_diagonal_rod = code_value_linear_units(); |
|
|
|
if (code_seen('R')) delta_radius = code_value_linear_units(); |
|
|
|
if (code_seen('S')) delta_segments_per_second = code_value_float(); |
|
|
@ -7903,7 +8295,7 @@ void quickstop_stepper() { |
|
|
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
#if DISABLED(NO_WORKSPACE_OFFSETS) |
|
|
|
#if HAS_M206_COMMAND |
|
|
|
|
|
|
|
/**
|
|
|
|
* M428: Set home_offset based on the distance between the |
|
|
@ -7945,7 +8337,7 @@ void quickstop_stepper() { |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
#endif // NO_WORKSPACE_OFFSETS
|
|
|
|
#endif // HAS_M206_COMMAND
|
|
|
|
|
|
|
|
/**
|
|
|
|
* M500: Store settings in EEPROM |
|
|
@ -8924,9 +9316,9 @@ void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool n |
|
|
|
// The newly-selected extruder XY is actually at...
|
|
|
|
current_position[X_AXIS] += xydiff[X_AXIS]; |
|
|
|
current_position[Y_AXIS] += xydiff[Y_AXIS]; |
|
|
|
#if DISABLED(NO_WORKSPACE_OFFSETS) || ENABLED(DUAL_X_CARRIAGE) |
|
|
|
#if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE) |
|
|
|
for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) { |
|
|
|
#if DISABLED(NO_WORKSPACE_OFFSETS) |
|
|
|
#if HAS_POSITION_SHIFT |
|
|
|
position_shift[i] += xydiff[i]; |
|
|
|
#endif |
|
|
|
update_software_endstops((AxisEnum)i); |
|
|
@ -9192,6 +9584,15 @@ void process_next_command() { |
|
|
|
break; |
|
|
|
|
|
|
|
#endif // Z_PROBE_SLED
|
|
|
|
|
|
|
|
#if ENABLED(DELTA_AUTO_CALIBRATION) |
|
|
|
|
|
|
|
case 33: // G33: Delta Auto Calibrate
|
|
|
|
gcode_G33(); |
|
|
|
break; |
|
|
|
|
|
|
|
#endif // DELTA_AUTO_CALIBRATION
|
|
|
|
|
|
|
|
#endif // HAS_BED_PROBE
|
|
|
|
|
|
|
|
#if ENABLED(G38_PROBE_TARGET) |
|
|
@ -9509,7 +9910,7 @@ void process_next_command() { |
|
|
|
gcode_M205(); |
|
|
|
break; |
|
|
|
|
|
|
|
#if DISABLED(NO_WORKSPACE_OFFSETS) |
|
|
|
#if HAS_M206_COMMAND |
|
|
|
case 206: // M206: Set home offsets
|
|
|
|
gcode_M206(); |
|
|
|
break; |
|
|
@ -9677,7 +10078,7 @@ void process_next_command() { |
|
|
|
break; |
|
|
|
#endif |
|
|
|
|
|
|
|
#if DISABLED(NO_WORKSPACE_OFFSETS) |
|
|
|
#if HAS_M206_COMMAND |
|
|
|
case 428: // M428: Apply current_position to home_offset
|
|
|
|
gcode_M428(); |
|
|
|
break; |
|
|
@ -10198,8 +10599,8 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) { |
|
|
|
* splitting the move where it crosses mesh borders. |
|
|
|
*/ |
|
|
|
void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) { |
|
|
|
int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)), |
|
|
|
cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)), |
|
|
|
int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X)), |
|
|
|
cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y)), |
|
|
|
cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])), |
|
|
|
cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS])); |
|
|
|
NOMORE(cx1, GRID_MAX_POINTS_X - 2); |
|
|
@ -11043,6 +11444,9 @@ void disable_all_steppers() { |
|
|
|
#if ENABLED(E3_IS_TMC2130) |
|
|
|
automatic_current_control(stepperE3); |
|
|
|
#endif |
|
|
|
#if ENABLED(E4_IS_TMC2130) |
|
|
|
automatic_current_control(stepperE4); |
|
|
|
#endif |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
@ -11410,7 +11814,7 @@ void setup() { |
|
|
|
// This also updates variables in the planner, elsewhere
|
|
|
|
(void)settings.load(); |
|
|
|
|
|
|
|
#if DISABLED(NO_WORKSPACE_OFFSETS) |
|
|
|
#if HAS_M206_COMMAND |
|
|
|
// Initialize current position based on home_offset
|
|
|
|
COPY(current_position, home_offset); |
|
|
|
#else |
|
|
|