|
|
@ -29,6 +29,12 @@ |
|
|
|
#include "../../module/planner.h" |
|
|
|
#include "../../module/temperature.h" |
|
|
|
|
|
|
|
#if ENABLED(DELTA) |
|
|
|
#include "../../module/delta.h" |
|
|
|
#elif ENABLED(SCARA) |
|
|
|
#include "../../module/scara.h" |
|
|
|
#endif |
|
|
|
|
|
|
|
#if N_ARC_CORRECTION < 1 |
|
|
|
#undef N_ARC_CORRECTION |
|
|
|
#define N_ARC_CORRECTION 1 |
|
|
@ -113,7 +119,7 @@ void plan_arc( |
|
|
|
* This is important when there are successive arc motions. |
|
|
|
*/ |
|
|
|
// Vector rotation matrix values
|
|
|
|
float arc_target[XYZE]; |
|
|
|
float raw[XYZE]; |
|
|
|
const float theta_per_segment = angular_travel / segments, |
|
|
|
linear_per_segment = linear_travel / segments, |
|
|
|
extruder_per_segment = extruder_travel / segments, |
|
|
@ -121,10 +127,10 @@ void plan_arc( |
|
|
|
cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
|
|
|
|
|
|
|
|
// Initialize the linear axis
|
|
|
|
arc_target[l_axis] = current_position[l_axis]; |
|
|
|
raw[l_axis] = current_position[l_axis]; |
|
|
|
|
|
|
|
// Initialize the extruder axis
|
|
|
|
arc_target[E_AXIS] = current_position[E_AXIS]; |
|
|
|
raw[E_AXIS] = current_position[E_AXIS]; |
|
|
|
|
|
|
|
const float fr_mm_s = MMS_SCALED(feedrate_mm_s); |
|
|
|
|
|
|
@ -134,6 +140,14 @@ void plan_arc( |
|
|
|
int8_t arc_recalc_count = N_ARC_CORRECTION; |
|
|
|
#endif |
|
|
|
|
|
|
|
#if ENABLED(SCARA_FEEDRATE_SCALING) |
|
|
|
// SCARA needs to scale the feed rate from mm/s to degrees/s
|
|
|
|
const float inv_segment_length = 1.0 / (MM_PER_ARC_SEGMENT), |
|
|
|
inverse_secs = inv_segment_length * fr_mm_s; |
|
|
|
float oldA = stepper.get_axis_position_degrees(A_AXIS), |
|
|
|
oldB = stepper.get_axis_position_degrees(B_AXIS); |
|
|
|
#endif |
|
|
|
|
|
|
|
for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
|
|
|
|
|
|
|
|
thermalManager.manage_heater(); |
|
|
@ -165,19 +179,34 @@ void plan_arc( |
|
|
|
r_Q = -offset[0] * sin_Ti - offset[1] * cos_Ti; |
|
|
|
} |
|
|
|
|
|
|
|
// Update arc_target location
|
|
|
|
arc_target[p_axis] = center_P + r_P; |
|
|
|
arc_target[q_axis] = center_Q + r_Q; |
|
|
|
arc_target[l_axis] += linear_per_segment; |
|
|
|
arc_target[E_AXIS] += extruder_per_segment; |
|
|
|
|
|
|
|
clamp_to_software_endstops(arc_target); |
|
|
|
|
|
|
|
planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder); |
|
|
|
// Update raw location
|
|
|
|
raw[p_axis] = center_P + r_P; |
|
|
|
raw[q_axis] = center_Q + r_Q; |
|
|
|
raw[l_axis] += linear_per_segment; |
|
|
|
raw[E_AXIS] += extruder_per_segment; |
|
|
|
|
|
|
|
clamp_to_software_endstops(raw); |
|
|
|
|
|
|
|
#if ENABLED(SCARA_FEEDRATE_SCALING) |
|
|
|
// For SCARA scale the feed rate from mm/s to degrees/s.
|
|
|
|
// i.e., Complete the angular vector in the given time.
|
|
|
|
inverse_kinematics(raw); |
|
|
|
ADJUST_DELTA(raw); |
|
|
|
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], raw[Z_AXIS], raw[E_AXIS], HYPOT(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB) * inverse_secs, active_extruder); |
|
|
|
oldA = delta[A_AXIS]; oldB = delta[B_AXIS]; |
|
|
|
#else |
|
|
|
planner.buffer_line_kinematic(raw, fr_mm_s, active_extruder); |
|
|
|
#endif |
|
|
|
} |
|
|
|
|
|
|
|
// Ensure last segment arrives at target location.
|
|
|
|
planner.buffer_line_kinematic(cart, fr_mm_s, active_extruder); |
|
|
|
#if ENABLED(SCARA_FEEDRATE_SCALING) |
|
|
|
inverse_kinematics(cart); |
|
|
|
ADJUST_DELTA(cart); |
|
|
|
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], cart[Z_AXIS], cart[E_AXIS], HYPOT(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB) * inverse_secs, active_extruder); |
|
|
|
#else |
|
|
|
planner.buffer_line_kinematic(cart, fr_mm_s, active_extruder); |
|
|
|
#endif |
|
|
|
|
|
|
|
// As far as the parser is concerned, the position is now == target. In reality the
|
|
|
|
// motion control system might still be processing the action and the real tool position
|
|
|
|