|
|
@ -2306,87 +2306,87 @@ bool Planner::_populate_block(block_t * const block, bool split_move, |
|
|
|
|
|
|
|
vmax_junction_sqr = junction_acceleration * junction_deviation_mm * sin_theta_d2 / (1.0f - sin_theta_d2); |
|
|
|
|
|
|
|
if (block->millimeters < 1) { |
|
|
|
const float neg = junction_cos_theta < 0 ? -1 : 1, |
|
|
|
t = neg * junction_cos_theta; |
|
|
|
|
|
|
|
// If angle is greater than 135 degrees (octagon), find speed for approximate arc
|
|
|
|
if (t > 0.7071067812f) { |
|
|
|
|
|
|
|
#if ENABLED(JD_USE_MATH_ACOS) |
|
|
|
|
|
|
|
#error "TODO: Inline maths with the MCU / FPU." |
|
|
|
|
|
|
|
#elif ENABLED(JD_USE_LOOKUP_TABLE) |
|
|
|
|
|
|
|
// Fast acos approximation (max. error +-0.01 rads)
|
|
|
|
// Based on LUT table and linear interpolation
|
|
|
|
|
|
|
|
/**
|
|
|
|
* // Generate the JD Lookup Table
|
|
|
|
* constexpr float c = 1.00751317f; // Correction factor to center error around 0
|
|
|
|
* for (int i = 0; i < jd_lut_count - 1; ++i) { |
|
|
|
* const float x0 = (sq(i) - 1) / sq(i), |
|
|
|
* y0 = acos(x0) * (i ? c : 1), |
|
|
|
* x1 = 0.5 * x0 + 0.5, |
|
|
|
* y1 = acos(x1) * c; |
|
|
|
* jd_lut_k[i] = (y0 - y1) / (x0 - x1); |
|
|
|
* jd_lut_b[i] = (y1 * x0 - y0 * x1) / (x0 - x1); |
|
|
|
* } |
|
|
|
* jd_lut_k[jd_lut_count - 1] = jd_lut_b[jd_lut_count - 1] = 0; |
|
|
|
* |
|
|
|
* // Compute correction factor (Set c to 1.0f first!)
|
|
|
|
* float min = INFINITY, max = -min; |
|
|
|
* for (float t = 0; t <= 1; t += 0.0003f) { |
|
|
|
* const float e = acos(t) / approx(t); |
|
|
|
* if (isfinite(e)) { |
|
|
|
* if (e < min) min = e; |
|
|
|
* if (e > max) max = e; |
|
|
|
* } |
|
|
|
* } |
|
|
|
* fprintf(stderr, "%.9gf, ", (min + max) / 2); |
|
|
|
*/ |
|
|
|
static constexpr int16_t jd_lut_count = 15; |
|
|
|
static constexpr uint16_t jd_lut_tll = 1 << jd_lut_count; |
|
|
|
static constexpr int16_t jd_lut_tll0 = __builtin_clz(jd_lut_tll) + 1; // i.e., 16 - jd_lut_count
|
|
|
|
static constexpr float jd_lut_k[jd_lut_count] PROGMEM = { |
|
|
|
-1.03146219f, -1.30760407f, -1.75205469f, -2.41705418f, -3.37768555f, |
|
|
|
-4.74888229f, -6.69648552f, -9.45659828f, -13.3640289f, -18.8927879f, |
|
|
|
-26.7136307f, -37.7754059f, -53.4200745f, -75.5457306f, 0.0f }; |
|
|
|
static constexpr float jd_lut_b[jd_lut_count] PROGMEM = { |
|
|
|
1.57079637f, 1.70886743f, 2.04220533f, 2.62408018f, 3.52467203f, |
|
|
|
4.85301876f, 6.77019119f, 9.50873947f, 13.4009094f, 18.9188652f, |
|
|
|
26.7320709f, 37.7884521f, 53.4292908f, 75.5522461f, 0.0f }; |
|
|
|
|
|
|
|
const int16_t idx = (t == 0.0f) ? 0 : __builtin_clz(uint16_t((1.0f - t) * jd_lut_tll)) - jd_lut_tll0; |
|
|
|
|
|
|
|
float junction_theta = t * pgm_read_float(&jd_lut_k[idx]) + pgm_read_float(&jd_lut_b[idx]); |
|
|
|
if (neg > 0) junction_theta = RADIANS(180) - junction_theta; |
|
|
|
|
|
|
|
#else |
|
|
|
|
|
|
|
// Fast acos(-t) approximation (max. error +-0.033rad = 1.89°)
|
|
|
|
// Based on MinMax polynomial published by W. Randolph Franklin, see
|
|
|
|
// https://wrf.ecse.rpi.edu/Research/Short_Notes/arcsin/onlyelem.html
|
|
|
|
// acos( t) = pi / 2 - asin(x)
|
|
|
|
// acos(-t) = pi - acos(t) ... pi / 2 + asin(x)
|
|
|
|
|
|
|
|
const float asinx = 0.032843707f |
|
|
|
+ t * (-1.451838349f |
|
|
|
+ t * ( 29.66153956f |
|
|
|
+ t * (-131.1123477f |
|
|
|
+ t * ( 262.8130562f |
|
|
|
+ t * (-242.7199627f |
|
|
|
+ t * ( 84.31466202f ) ))))), |
|
|
|
junction_theta = RADIANS(90) + neg * asinx; // acos(-t)
|
|
|
|
|
|
|
|
// NOTE: junction_theta bottoms out at 0.033 which avoids divide by 0.
|
|
|
|
// For small moves with >135° junction (octagon) find speed for approximate arc
|
|
|
|
if (block->millimeters < 1 && junction_cos_theta < -0.7071067812f) { |
|
|
|
|
|
|
|
#if ENABLED(JD_USE_MATH_ACOS) |
|
|
|
|
|
|
|
#error "TODO: Inline maths with the MCU / FPU." |
|
|
|
|
|
|
|
#elif ENABLED(JD_USE_LOOKUP_TABLE) |
|
|
|
|
|
|
|
// Fast acos approximation (max. error +-0.01 rads)
|
|
|
|
// Based on LUT table and linear interpolation
|
|
|
|
|
|
|
|
/**
|
|
|
|
* // Generate the JD Lookup Table
|
|
|
|
* constexpr float c = 1.00751317f; // Correction factor to center error around 0
|
|
|
|
* for (int i = 0; i < jd_lut_count - 1; ++i) { |
|
|
|
* const float x0 = (sq(i) - 1) / sq(i), |
|
|
|
* y0 = acos(x0) * (i ? c : 1), |
|
|
|
* x1 = 0.5 * x0 + 0.5, |
|
|
|
* y1 = acos(x1) * c; |
|
|
|
* jd_lut_k[i] = (y0 - y1) / (x0 - x1); |
|
|
|
* jd_lut_b[i] = (y1 * x0 - y0 * x1) / (x0 - x1); |
|
|
|
* } |
|
|
|
* jd_lut_k[jd_lut_count - 1] = jd_lut_b[jd_lut_count - 1] = 0; |
|
|
|
* |
|
|
|
* // Compute correction factor (Set c to 1.0f first!)
|
|
|
|
* float min = INFINITY, max = -min; |
|
|
|
* for (float t = 0; t <= 1; t += 0.0003f) { |
|
|
|
* const float e = acos(t) / approx(t); |
|
|
|
* if (isfinite(e)) { |
|
|
|
* if (e < min) min = e; |
|
|
|
* if (e > max) max = e; |
|
|
|
* } |
|
|
|
* } |
|
|
|
* fprintf(stderr, "%.9gf, ", (min + max) / 2); |
|
|
|
*/ |
|
|
|
static constexpr int16_t jd_lut_count = 15; |
|
|
|
static constexpr uint16_t jd_lut_tll = 1 << jd_lut_count; |
|
|
|
static constexpr int16_t jd_lut_tll0 = __builtin_clz(jd_lut_tll) + 1; // i.e., 16 - jd_lut_count
|
|
|
|
static constexpr float jd_lut_k[jd_lut_count] PROGMEM = { |
|
|
|
-1.03146219f, -1.30760407f, -1.75205469f, -2.41705418f, -3.37768555f, |
|
|
|
-4.74888229f, -6.69648552f, -9.45659828f, -13.3640289f, -18.8927879f, |
|
|
|
-26.7136307f, -37.7754059f, -53.4200745f, -75.5457306f, 0.0f }; |
|
|
|
static constexpr float jd_lut_b[jd_lut_count] PROGMEM = { |
|
|
|
1.57079637f, 1.70886743f, 2.04220533f, 2.62408018f, 3.52467203f, |
|
|
|
4.85301876f, 6.77019119f, 9.50873947f, 13.4009094f, 18.9188652f, |
|
|
|
26.7320709f, 37.7884521f, 53.4292908f, 75.5522461f, 0.0f }; |
|
|
|
|
|
|
|
const float neg = junction_cos_theta < 0 ? -1 : 1, |
|
|
|
t = neg * junction_cos_theta; |
|
|
|
|
|
|
|
const int16_t idx = (t == 0.0f) ? 0 : __builtin_clz(uint16_t((1.0f - t) * jd_lut_tll)) - jd_lut_tll0; |
|
|
|
|
|
|
|
float junction_theta = t * pgm_read_float(&jd_lut_k[idx]) + pgm_read_float(&jd_lut_b[idx]); |
|
|
|
if (neg > 0) junction_theta = RADIANS(180) - junction_theta; // acos(-t)
|
|
|
|
|
|
|
|
#endif |
|
|
|
#else |
|
|
|
|
|
|
|
const float limit_sqr = (block->millimeters * junction_acceleration) / junction_theta; |
|
|
|
NOMORE(vmax_junction_sqr, limit_sqr); |
|
|
|
} |
|
|
|
// Fast acos(-t) approximation (max. error +-0.033rad = 1.89°)
|
|
|
|
// Based on MinMax polynomial published by W. Randolph Franklin, see
|
|
|
|
// https://wrf.ecse.rpi.edu/Research/Short_Notes/arcsin/onlyelem.html
|
|
|
|
// acos( t) = pi / 2 - asin(x)
|
|
|
|
// acos(-t) = pi - acos(t) ... pi / 2 + asin(x)
|
|
|
|
|
|
|
|
const float neg = junction_cos_theta < 0 ? -1 : 1, |
|
|
|
t = neg * junction_cos_theta, |
|
|
|
asinx = 0.032843707f |
|
|
|
+ t * (-1.451838349f |
|
|
|
+ t * ( 29.66153956f |
|
|
|
+ t * (-131.1123477f |
|
|
|
+ t * ( 262.8130562f |
|
|
|
+ t * (-242.7199627f |
|
|
|
+ t * ( 84.31466202f ) ))))), |
|
|
|
junction_theta = RADIANS(90) + neg * asinx; // acos(-t)
|
|
|
|
|
|
|
|
// NOTE: junction_theta bottoms out at 0.033 which avoids divide by 0.
|
|
|
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
const float limit_sqr = (block->millimeters * junction_acceleration) / junction_theta; |
|
|
|
NOMORE(vmax_junction_sqr, limit_sqr); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|