|
|
@ -1056,24 +1056,21 @@ void Temperature::init() { |
|
|
|
*state = TRInactive; |
|
|
|
// Inactive state waits for a target temperature to be set
|
|
|
|
case TRInactive: |
|
|
|
if (target_temperature > 0) { |
|
|
|
tr_target_temperature[heater_index] = target_temperature; |
|
|
|
*state = TRFirstHeating; |
|
|
|
} |
|
|
|
break; |
|
|
|
if (target_temperature <= 0) break; |
|
|
|
tr_target_temperature[heater_index] = target_temperature; |
|
|
|
*state = TRFirstHeating; |
|
|
|
// When first heating, wait for the temperature to be reached then go to Stable state
|
|
|
|
case TRFirstHeating: |
|
|
|
if (temperature >= tr_target_temperature[heater_index]) *state = TRStable; |
|
|
|
break; |
|
|
|
if (temperature < tr_target_temperature[heater_index]) break; |
|
|
|
*state = TRStable; |
|
|
|
// While the temperature is stable watch for a bad temperature
|
|
|
|
case TRStable: |
|
|
|
// If the temperature is over the target (-hysteresis) restart the timer
|
|
|
|
if (temperature >= tr_target_temperature[heater_index] - hysteresis_degc) |
|
|
|
*timer = millis(); |
|
|
|
// If the timer goes too long without a reset, trigger shutdown
|
|
|
|
else if (ELAPSED(millis(), *timer + period_seconds * 1000UL)) |
|
|
|
if (temperature < tr_target_temperature[heater_index] - hysteresis_degc && ELAPSED(millis(), *timer)) |
|
|
|
*state = TRRunaway; |
|
|
|
break; |
|
|
|
else { |
|
|
|
*timer = millis() + period_seconds * 1000UL; |
|
|
|
break; |
|
|
|
} |
|
|
|
case TRRunaway: |
|
|
|
_temp_error(heater_id, PSTR(MSG_T_THERMAL_RUNAWAY), PSTR(MSG_THERMAL_RUNAWAY)); |
|
|
|
} |
|
|
|