Scott Lahteine
7 years ago
committed by
GitHub
8 changed files with 1229 additions and 302 deletions
@ -0,0 +1,95 @@ |
|||
/**
|
|||
* Marlin 3D Printer Firmware |
|||
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|||
* |
|||
* Based on Sprinter and grbl. |
|||
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm |
|||
* |
|||
* This program is free software: you can redistribute it and/or modify |
|||
* it under the terms of the GNU General Public License as published by |
|||
* the Free Software Foundation, either version 3 of the License, or |
|||
* (at your option) any later version. |
|||
* |
|||
* This program is distributed in the hope that it will be useful, |
|||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|||
* GNU General Public License for more details. |
|||
* |
|||
* You should have received a copy of the GNU General Public License |
|||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|||
* |
|||
*/ |
|||
|
|||
/**
|
|||
* InterruptVectors_Due.cpp - This module relocates the Interrupt vector table to SRAM, |
|||
* allowing to register new interrupt handlers at runtime. Specially valuable and needed |
|||
* because Arduino runtime allocates some interrupt handlers that we NEED to override to |
|||
* properly support extended functionality, as for example, USB host or USB device (MSD, MTP) |
|||
* and custom serial port handlers, and we don't actually want to modify and/or recompile the |
|||
* Arduino runtime. We just want to run as much as possible on Stock Arduino |
|||
* |
|||
* Copyright (c) 2017 Eduardo José Tagle. All right reserved |
|||
*/ |
|||
#ifdef ARDUINO_ARCH_SAM |
|||
|
|||
#include "HAL_Due.h" |
|||
#include "InterruptVectors_Due.h" |
|||
|
|||
/* The relocated Exception/Interrupt Table - Must be aligned to 128bytes,
|
|||
as bits 0-6 on VTOR register are reserved and must be set to 0 */ |
|||
__attribute__ ((aligned(128))) |
|||
static DeviceVectors ram_tab = { NULL }; |
|||
|
|||
/**
|
|||
* This function checks if the exception/interrupt table is already in SRAM or not. |
|||
* If it is not, then it copies the ROM table to the SRAM and relocates the table |
|||
* by reprogramming the NVIC registers |
|||
*/ |
|||
static pfnISR_Handler* get_relocated_table_addr(void) { |
|||
// Get the address of the interrupt/exception table
|
|||
uint32_t isrtab = SCB->VTOR; |
|||
|
|||
// If already relocated, we are done!
|
|||
if (isrtab >= IRAM0_ADDR) |
|||
return (pfnISR_Handler*)isrtab; |
|||
|
|||
// Get the address of the table stored in FLASH
|
|||
const pfnISR_Handler* romtab = (const pfnISR_Handler*)isrtab; |
|||
|
|||
// Copy it to SRAM
|
|||
memcpy(&ram_tab, romtab, sizeof(ram_tab)); |
|||
|
|||
// Disable global interrupts
|
|||
CRITICAL_SECTION_START; |
|||
|
|||
// Set the vector table base address to the SRAM copy
|
|||
SCB->VTOR = (uint32_t)(&ram_tab); |
|||
|
|||
// Reenable interrupts
|
|||
CRITICAL_SECTION_END; |
|||
|
|||
// Return the address of the table
|
|||
return (pfnISR_Handler*)(&ram_tab); |
|||
} |
|||
|
|||
pfnISR_Handler install_isr(IRQn_Type irq, pfnISR_Handler newHandler) { |
|||
// Get the address of the relocated table
|
|||
const pfnISR_Handler *isrtab = get_relocated_table_addr(); |
|||
|
|||
// Disable global interrupts
|
|||
CRITICAL_SECTION_START; |
|||
|
|||
// Get the original handler
|
|||
pfnISR_Handler oldHandler = isrtab[irq + 16]; |
|||
|
|||
// Install the new one
|
|||
isrtab[irq + 16] = newHandler; |
|||
|
|||
// Reenable interrupts
|
|||
CRITICAL_SECTION_END; |
|||
|
|||
// Return the original one
|
|||
return oldHandler; |
|||
} |
|||
|
|||
#endif |
@ -0,0 +1,52 @@ |
|||
/**
|
|||
* Marlin 3D Printer Firmware |
|||
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|||
* |
|||
* Based on Sprinter and grbl. |
|||
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm |
|||
* |
|||
* This program is free software: you can redistribute it and/or modify |
|||
* it under the terms of the GNU General Public License as published by |
|||
* the Free Software Foundation, either version 3 of the License, or |
|||
* (at your option) any later version. |
|||
* |
|||
* This program is distributed in the hope that it will be useful, |
|||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|||
* GNU General Public License for more details. |
|||
* |
|||
* You should have received a copy of the GNU General Public License |
|||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|||
* |
|||
*/ |
|||
|
|||
/**
|
|||
* InterruptVectors_Due.h |
|||
* |
|||
* Copyright (c) 2017 Eduardo José Tagle. All right reserved |
|||
* |
|||
* This module relocates the Interrupt vector table to SRAM, allowing new |
|||
* interrupt handlers to be added at runtime. This is required because the |
|||
* Arduino runtime steals interrupt handlers that Marlin MUST use to support |
|||
* extended functionality such as USB hosts and USB devices (MSD, MTP) and |
|||
* custom serial port handlers. Rather than modifying and/or recompiling the |
|||
* Arduino runtime, We just want to run as much as possible on Stock Arduino. |
|||
* |
|||
* Copyright (c) 2017 Eduardo José Tagle. All right reserved |
|||
*/ |
|||
|
|||
#ifndef INTERRUPTVECTORS_DUE_H |
|||
#define INTERRUPTVECTORS_DUE_H |
|||
|
|||
#include "../../inc/MarlinConfig.h" |
|||
|
|||
#ifdef ARDUINO_ARCH_SAM |
|||
|
|||
// ISR handler type
|
|||
typedef void (*pfnISR_Handler)(void); |
|||
|
|||
// Install a new interrupt vector handler for the given irq, returning the old one
|
|||
pfnISR_Handler install_isr(IRQn_Type irq, pfnISR_Handler newHandler); |
|||
|
|||
#endif // ARDUINO_ARCH_SAM
|
|||
#endif // INTERRUPTVECTORS_DUE_H
|
@ -0,0 +1,680 @@ |
|||
/**
|
|||
* Marlin 3D Printer Firmware |
|||
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|||
* |
|||
* Based on Sprinter and grbl. |
|||
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm |
|||
* |
|||
* This program is free software: you can redistribute it and/or modify |
|||
* it under the terms of the GNU General Public License as published by |
|||
* the Free Software Foundation, either version 3 of the License, or |
|||
* (at your option) any later version. |
|||
* |
|||
* This program is distributed in the hope that it will be useful, |
|||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|||
* GNU General Public License for more details. |
|||
* |
|||
* You should have received a copy of the GNU General Public License |
|||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|||
* |
|||
*/ |
|||
|
|||
/**
|
|||
* MarlinSerial_Due.cpp - Hardware serial library for Arduino DUE |
|||
* Copyright (c) 2017 Eduardo José Tagle. All right reserved |
|||
* Based on MarlinSerial for AVR, copyright (c) 2006 Nicholas Zambetti. All right reserved. |
|||
*/ |
|||
#ifdef ARDUINO_ARCH_SAM |
|||
|
|||
#include "../../inc/MarlinConfig.h" |
|||
|
|||
#include "MarlinSerial_Due.h" |
|||
#include "InterruptVectors_Due.h" |
|||
#include "../../Marlin.h" |
|||
|
|||
// Based on selected port, use the proper configuration
|
|||
#if SERIAL_PORT == 0 |
|||
#define HWUART UART |
|||
#define HWUART_IRQ UART_IRQn |
|||
#define HWUART_IRQ_ID ID_UART |
|||
#elif SERIAL_PORT == 1 |
|||
#define HWUART USART0 |
|||
#define HWUART_IRQ USART0_IRQn |
|||
#define HWUART_IRQ_ID ID_USART0 |
|||
#elif SERIAL_PORT == 2 |
|||
#define HWUART USART1 |
|||
#define HWUART_IRQ USART1_IRQn |
|||
#define HWUART_IRQ_ID ID_USART1 |
|||
#elif SERIAL_PORT == 3 |
|||
#define HWUART USART3 |
|||
#define HWUART_IRQ USART3_IRQn |
|||
#define HWUART_IRQ_ID ID_USART3 |
|||
#endif |
|||
|
|||
struct ring_buffer_r { |
|||
unsigned char buffer[RX_BUFFER_SIZE]; |
|||
volatile ring_buffer_pos_t head, tail; |
|||
}; |
|||
|
|||
#if TX_BUFFER_SIZE > 0 |
|||
struct ring_buffer_t { |
|||
unsigned char buffer[TX_BUFFER_SIZE]; |
|||
volatile uint8_t head, tail; |
|||
}; |
|||
#endif |
|||
|
|||
ring_buffer_r rx_buffer = { { 0 }, 0, 0 }; |
|||
#if TX_BUFFER_SIZE > 0 |
|||
ring_buffer_t tx_buffer = { { 0 }, 0, 0 }; |
|||
static bool _written; |
|||
#endif |
|||
|
|||
#if ENABLED(SERIAL_XON_XOFF) |
|||
constexpr uint8_t XON_XOFF_CHAR_SENT = 0x80; // XON / XOFF Character was sent
|
|||
constexpr uint8_t XON_XOFF_CHAR_MASK = 0x1F; // XON / XOFF character to send
|
|||
// XON / XOFF character definitions
|
|||
constexpr uint8_t XON_CHAR = 17; |
|||
constexpr uint8_t XOFF_CHAR = 19; |
|||
uint8_t xon_xoff_state = XON_XOFF_CHAR_SENT | XON_CHAR; |
|||
|
|||
// Validate that RX buffer size is at least 4096 bytes- According to several experiments, on
|
|||
// the original Arduino Due that uses a ATmega16U2 as USB to serial bridge, due to the introduced
|
|||
// latencies, at least 2959 bytes of RX buffering (when transmitting at 250kbits/s) are required
|
|||
// to avoid overflows.
|
|||
|
|||
#if RX_BUFFER_SIZE < 4096 |
|||
#error Arduino DUE requires at least 4096 bytes of RX buffer to avoid buffer overflows when using XON/XOFF handshake |
|||
#endif |
|||
#endif |
|||
|
|||
#if ENABLED(SERIAL_STATS_DROPPED_RX) |
|||
uint8_t rx_dropped_bytes = 0; |
|||
#endif |
|||
|
|||
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED) |
|||
ring_buffer_pos_t rx_max_enqueued = 0; |
|||
#endif |
|||
|
|||
// A SW memory barrier, to ensure GCC does not overoptimize loops
|
|||
#define sw_barrier() asm volatile("": : :"memory"); |
|||
|
|||
#if ENABLED(EMERGENCY_PARSER) |
|||
|
|||
#include "../../module/stepper.h" |
|||
|
|||
// Currently looking for: M108, M112, M410
|
|||
// If you alter the parser please don't forget to update the capabilities in Conditionals_post.h
|
|||
|
|||
FORCE_INLINE void emergency_parser(const uint8_t c) { |
|||
|
|||
static e_parser_state state = state_RESET; |
|||
|
|||
switch (state) { |
|||
case state_RESET: |
|||
switch (c) { |
|||
case ' ': break; |
|||
case 'N': state = state_N; break; |
|||
case 'M': state = state_M; break; |
|||
default: state = state_IGNORE; |
|||
} |
|||
break; |
|||
|
|||
case state_N: |
|||
switch (c) { |
|||
case '0': case '1': case '2': |
|||
case '3': case '4': case '5': |
|||
case '6': case '7': case '8': |
|||
case '9': case '-': case ' ': break; |
|||
case 'M': state = state_M; break; |
|||
default: state = state_IGNORE; |
|||
} |
|||
break; |
|||
|
|||
case state_M: |
|||
switch (c) { |
|||
case ' ': break; |
|||
case '1': state = state_M1; break; |
|||
case '4': state = state_M4; break; |
|||
default: state = state_IGNORE; |
|||
} |
|||
break; |
|||
|
|||
case state_M1: |
|||
switch (c) { |
|||
case '0': state = state_M10; break; |
|||
case '1': state = state_M11; break; |
|||
default: state = state_IGNORE; |
|||
} |
|||
break; |
|||
|
|||
case state_M10: |
|||
state = (c == '8') ? state_M108 : state_IGNORE; |
|||
break; |
|||
|
|||
case state_M11: |
|||
state = (c == '2') ? state_M112 : state_IGNORE; |
|||
break; |
|||
|
|||
case state_M4: |
|||
state = (c == '1') ? state_M41 : state_IGNORE; |
|||
break; |
|||
|
|||
case state_M41: |
|||
state = (c == '0') ? state_M410 : state_IGNORE; |
|||
break; |
|||
|
|||
case state_IGNORE: |
|||
if (c == '\n') state = state_RESET; |
|||
break; |
|||
|
|||
default: |
|||
if (c == '\n') { |
|||
switch (state) { |
|||
case state_M108: |
|||
wait_for_user = wait_for_heatup = false; |
|||
break; |
|||
case state_M112: |
|||
kill(PSTR(MSG_KILLED)); |
|||
break; |
|||
case state_M410: |
|||
quickstop_stepper(); |
|||
break; |
|||
default: |
|||
break; |
|||
} |
|||
state = state_RESET; |
|||
} |
|||
} |
|||
} |
|||
|
|||
#endif // EMERGENCY_PARSER
|
|||
|
|||
FORCE_INLINE void store_rxd_char() { |
|||
|
|||
const ring_buffer_pos_t h = rx_buffer.head, |
|||
i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); |
|||
|
|||
// Read the character
|
|||
const uint8_t c = HWUART->UART_RHR; |
|||
|
|||
// If the character is to be stored at the index just before the tail
|
|||
// (such that the head would advance to the current tail), the buffer is
|
|||
// critical, so don't write the character or advance the head.
|
|||
if (i != rx_buffer.tail) { |
|||
rx_buffer.buffer[h] = c; |
|||
rx_buffer.head = i; |
|||
} |
|||
#if ENABLED(SERIAL_STATS_DROPPED_RX) |
|||
else if (!++rx_dropped_bytes) ++rx_dropped_bytes; |
|||
#endif |
|||
|
|||
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED) |
|||
// calculate count of bytes stored into the RX buffer
|
|||
ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(rx_buffer.head - rx_buffer.tail) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); |
|||
// Keep track of the maximum count of enqueued bytes
|
|||
NOLESS(rx_max_enqueued, rx_count); |
|||
#endif |
|||
|
|||
#if ENABLED(SERIAL_XON_XOFF) |
|||
|
|||
// for high speed transfers, we can use XON/XOFF protocol to do
|
|||
// software handshake and avoid overruns.
|
|||
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XON_CHAR) { |
|||
|
|||
// calculate count of bytes stored into the RX buffer
|
|||
ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(rx_buffer.head - rx_buffer.tail) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); |
|||
|
|||
// if we are above 12.5% of RX buffer capacity, send XOFF before
|
|||
// we run out of RX buffer space .. We need 325 bytes @ 250kbits/s to
|
|||
// let the host react and stop sending bytes. This translates to 13mS
|
|||
// propagation time.
|
|||
if (rx_count >= (RX_BUFFER_SIZE) / 8) { |
|||
// If TX interrupts are disabled and data register is empty,
|
|||
// just write the byte to the data register and be done. This
|
|||
// shortcut helps significantly improve the effective datarate
|
|||
// at high (>500kbit/s) bitrates, where interrupt overhead
|
|||
// becomes a slowdown.
|
|||
if (!(HWUART->UART_IMR & UART_IMR_TXRDY) && (HWUART->UART_SR & UART_SR_TXRDY)) { |
|||
// Send an XOFF character
|
|||
HWUART->UART_THR = XOFF_CHAR; |
|||
|
|||
// And remember it was sent
|
|||
xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT; |
|||
} |
|||
else { |
|||
// TX interrupts disabled, but buffer still not empty ... or
|
|||
// TX interrupts enabled. Reenable TX ints and schedule XOFF
|
|||
// character to be sent
|
|||
#if TX_BUFFER_SIZE > 0 |
|||
HWUART->UART_IER = UART_IER_TXRDY; |
|||
xon_xoff_state = XOFF_CHAR; |
|||
#else |
|||
// We are not using TX interrupts, we will have to send this manually
|
|||
while (!(HWUART->UART_SR & UART_SR_TXRDY)) { sw_barrier(); }; |
|||
HWUART->UART_THR = XOFF_CHAR; |
|||
// And remember we already sent it
|
|||
xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT; |
|||
#endif |
|||
} |
|||
} |
|||
} |
|||
#endif // SERIAL_XON_XOFF
|
|||
|
|||
#if ENABLED(EMERGENCY_PARSER) |
|||
emergency_parser(c); |
|||
#endif |
|||
} |
|||
|
|||
#if TX_BUFFER_SIZE > 0 |
|||
|
|||
FORCE_INLINE void _tx_thr_empty_irq(void) { |
|||
// If interrupts are enabled, there must be more data in the output
|
|||
// buffer.
|
|||
|
|||
#if ENABLED(SERIAL_XON_XOFF) |
|||
// Do a priority insertion of an XON/XOFF char, if needed.
|
|||
const uint8_t state = xon_xoff_state; |
|||
if (!(state & XON_XOFF_CHAR_SENT)) { |
|||
HWUART->UART_THR = state & XON_XOFF_CHAR_MASK; |
|||
xon_xoff_state = state | XON_XOFF_CHAR_SENT; |
|||
} |
|||
else |
|||
#endif |
|||
{ // Send the next byte
|
|||
const uint8_t t = tx_buffer.tail, c = tx_buffer.buffer[t]; |
|||
tx_buffer.tail = (t + 1) & (TX_BUFFER_SIZE - 1); |
|||
HWUART->UART_THR = c; |
|||
} |
|||
|
|||
// Disable interrupts if the buffer is empty
|
|||
if (tx_buffer.head == tx_buffer.tail) |
|||
HWUART->UART_IDR = UART_IDR_TXRDY; |
|||
} |
|||
|
|||
#endif // TX_BUFFER_SIZE
|
|||
|
|||
static void UART_ISR(void) { |
|||
uint32_t status = HWUART->UART_SR; |
|||
|
|||
// Did we receive data?
|
|||
if (status & UART_SR_RXRDY) |
|||
store_rxd_char(); |
|||
|
|||
#if TX_BUFFER_SIZE > 0 |
|||
// Do we have something to send, and TX interrupts are enabled (meaning something to send) ?
|
|||
if ((status & UART_SR_TXRDY) && (HWUART->UART_IMR & UART_IMR_TXRDY)) |
|||
_tx_thr_empty_irq(); |
|||
#endif |
|||
|
|||
// Acknowledge errors
|
|||
if ((status & UART_SR_OVRE) || (status & UART_SR_FRAME)) { |
|||
// TODO: error reporting outside ISR
|
|||
HWUART->UART_CR = UART_CR_RSTSTA; |
|||
} |
|||
} |
|||
|
|||
// Public Methods
|
|||
|
|||
void MarlinSerial::begin(const long baud_setting) { |
|||
|
|||
// Disable UART interrupt in NVIC
|
|||
NVIC_DisableIRQ( HWUART_IRQ ); |
|||
|
|||
// Disable clock
|
|||
pmc_disable_periph_clk( HWUART_IRQ_ID ); |
|||
|
|||
// Configure PMC
|
|||
pmc_enable_periph_clk( HWUART_IRQ_ID ); |
|||
|
|||
// Disable PDC channel
|
|||
HWUART->UART_PTCR = UART_PTCR_RXTDIS | UART_PTCR_TXTDIS; |
|||
|
|||
// Reset and disable receiver and transmitter
|
|||
HWUART->UART_CR = UART_CR_RSTRX | UART_CR_RSTTX | UART_CR_RXDIS | UART_CR_TXDIS; |
|||
|
|||
// Configure mode: 8bit, No parity, 1 bit stop
|
|||
HWUART->UART_MR = UART_MR_CHMODE_NORMAL | US_MR_CHRL_8_BIT | US_MR_NBSTOP_1_BIT | UART_MR_PAR_NO; |
|||
|
|||
// Configure baudrate (asynchronous, no oversampling)
|
|||
HWUART->UART_BRGR = (SystemCoreClock / (baud_setting << 4)); |
|||
|
|||
// Configure interrupts
|
|||
HWUART->UART_IDR = 0xFFFFFFFF; |
|||
HWUART->UART_IER = UART_IER_RXRDY | UART_IER_OVRE | UART_IER_FRAME; |
|||
|
|||
// Install interrupt handler
|
|||
install_isr(HWUART_IRQ, UART_ISR); |
|||
|
|||
// Enable UART interrupt in NVIC
|
|||
NVIC_EnableIRQ(HWUART_IRQ); |
|||
|
|||
// Enable receiver and transmitter
|
|||
HWUART->UART_CR = UART_CR_RXEN | UART_CR_TXEN; |
|||
|
|||
#if TX_BUFFER_SIZE > 0 |
|||
_written = false; |
|||
#endif |
|||
} |
|||
|
|||
void MarlinSerial::end() { |
|||
// Disable UART interrupt in NVIC
|
|||
NVIC_DisableIRQ( HWUART_IRQ ); |
|||
|
|||
pmc_disable_periph_clk( HWUART_IRQ_ID ); |
|||
} |
|||
|
|||
void MarlinSerial::checkRx(void) { |
|||
if (HWUART->UART_SR & UART_SR_RXRDY) { |
|||
CRITICAL_SECTION_START; |
|||
store_rxd_char(); |
|||
CRITICAL_SECTION_END; |
|||
} |
|||
} |
|||
|
|||
int MarlinSerial::peek(void) { |
|||
CRITICAL_SECTION_START; |
|||
const int v = rx_buffer.head == rx_buffer.tail ? -1 : rx_buffer.buffer[rx_buffer.tail]; |
|||
CRITICAL_SECTION_END; |
|||
return v; |
|||
} |
|||
|
|||
int MarlinSerial::read(void) { |
|||
int v; |
|||
CRITICAL_SECTION_START; |
|||
const ring_buffer_pos_t t = rx_buffer.tail; |
|||
if (rx_buffer.head == t) |
|||
v = -1; |
|||
else { |
|||
v = rx_buffer.buffer[t]; |
|||
rx_buffer.tail = (ring_buffer_pos_t)(t + 1) & (RX_BUFFER_SIZE - 1); |
|||
|
|||
#if ENABLED(SERIAL_XON_XOFF) |
|||
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) { |
|||
// Get count of bytes in the RX buffer
|
|||
ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(rx_buffer.head - rx_buffer.tail) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); |
|||
// When below 10% of RX buffer capacity, send XON before
|
|||
// running out of RX buffer bytes
|
|||
if (rx_count < (RX_BUFFER_SIZE) / 10) { |
|||
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT; |
|||
CRITICAL_SECTION_END; // End critical section before returning!
|
|||
writeNoHandshake(XON_CHAR); |
|||
return v; |
|||
} |
|||
} |
|||
#endif |
|||
} |
|||
CRITICAL_SECTION_END; |
|||
return v; |
|||
} |
|||
|
|||
ring_buffer_pos_t MarlinSerial::available(void) { |
|||
CRITICAL_SECTION_START; |
|||
const ring_buffer_pos_t h = rx_buffer.head, t = rx_buffer.tail; |
|||
CRITICAL_SECTION_END; |
|||
return (ring_buffer_pos_t)(RX_BUFFER_SIZE + h - t) & (RX_BUFFER_SIZE - 1); |
|||
} |
|||
|
|||
void MarlinSerial::flush(void) { |
|||
// Don't change this order of operations. If the RX interrupt occurs between
|
|||
// reading rx_buffer_head and updating rx_buffer_tail, the previous rx_buffer_head
|
|||
// may be written to rx_buffer_tail, making the buffer appear full rather than empty.
|
|||
CRITICAL_SECTION_START; |
|||
rx_buffer.head = rx_buffer.tail; |
|||
CRITICAL_SECTION_END; |
|||
|
|||
#if ENABLED(SERIAL_XON_XOFF) |
|||
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) { |
|||
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT; |
|||
writeNoHandshake(XON_CHAR); |
|||
} |
|||
#endif |
|||
} |
|||
|
|||
#if TX_BUFFER_SIZE > 0 |
|||
uint8_t MarlinSerial::availableForWrite(void) { |
|||
CRITICAL_SECTION_START; |
|||
const uint8_t h = tx_buffer.head, t = tx_buffer.tail; |
|||
CRITICAL_SECTION_END; |
|||
return (uint8_t)(TX_BUFFER_SIZE + h - t) & (TX_BUFFER_SIZE - 1); |
|||
} |
|||
|
|||
void MarlinSerial::write(const uint8_t c) { |
|||
#if ENABLED(SERIAL_XON_XOFF) |
|||
const uint8_t state = xon_xoff_state; |
|||
if (!(state & XON_XOFF_CHAR_SENT)) { |
|||
// Send 2 chars: XON/XOFF, then a user-specified char
|
|||
writeNoHandshake(state & XON_XOFF_CHAR_MASK); |
|||
xon_xoff_state = state | XON_XOFF_CHAR_SENT; |
|||
} |
|||
#endif |
|||
writeNoHandshake(c); |
|||
} |
|||
|
|||
void MarlinSerial::writeNoHandshake(const uint8_t c) { |
|||
_written = true; |
|||
CRITICAL_SECTION_START; |
|||
bool emty = (tx_buffer.head == tx_buffer.tail); |
|||
CRITICAL_SECTION_END; |
|||
// If the buffer and the data register is empty, just write the byte
|
|||
// to the data register and be done. This shortcut helps
|
|||
// significantly improve the effective datarate at high (>
|
|||
// 500kbit/s) bitrates, where interrupt overhead becomes a slowdown.
|
|||
if (emty && (HWUART->UART_SR & UART_SR_TXRDY)) { |
|||
CRITICAL_SECTION_START; |
|||
HWUART->UART_THR = c; |
|||
HWUART->UART_IER = UART_IER_TXRDY; |
|||
CRITICAL_SECTION_END; |
|||
return; |
|||
} |
|||
const uint8_t i = (tx_buffer.head + 1) & (TX_BUFFER_SIZE - 1); |
|||
|
|||
// If the output buffer is full, there's nothing for it other than to
|
|||
// wait for the interrupt handler to empty it a bit
|
|||
while (i == tx_buffer.tail) { |
|||
if (__get_PRIMASK()) { |
|||
// Interrupts are disabled, so we'll have to poll the data
|
|||
// register empty flag ourselves. If it is set, pretend an
|
|||
// interrupt has happened and call the handler to free up
|
|||
// space for us.
|
|||
if (HWUART->UART_SR & UART_SR_TXRDY) |
|||
_tx_thr_empty_irq(); |
|||
} |
|||
else { |
|||
// nop, the interrupt handler will free up space for us
|
|||
} |
|||
sw_barrier(); |
|||
} |
|||
|
|||
tx_buffer.buffer[tx_buffer.head] = c; |
|||
{ CRITICAL_SECTION_START; |
|||
tx_buffer.head = i; |
|||
HWUART->UART_IER = UART_IER_TXRDY; |
|||
CRITICAL_SECTION_END; |
|||
} |
|||
return; |
|||
} |
|||
|
|||
void MarlinSerial::flushTX(void) { |
|||
// TX
|
|||
// If we have never written a byte, no need to flush.
|
|||
if (!_written) |
|||
return; |
|||
|
|||
while ((HWUART->UART_IMR & UART_IMR_TXRDY) || !(HWUART->UART_SR & UART_SR_TXEMPTY)) { |
|||
if (__get_PRIMASK()) |
|||
if ((HWUART->UART_SR & UART_SR_TXRDY)) |
|||
_tx_thr_empty_irq(); |
|||
sw_barrier(); |
|||
} |
|||
// If we get here, nothing is queued anymore (TX interrupts are disabled) and
|
|||
// the hardware finished tranmission (TXEMPTY is set).
|
|||
} |
|||
|
|||
#else // TX_BUFFER_SIZE == 0
|
|||
|
|||
void MarlinSerial::write(const uint8_t c) { |
|||
#if ENABLED(SERIAL_XON_XOFF) |
|||
// Do a priority insertion of an XON/XOFF char, if needed.
|
|||
const uint8_t state = xon_xoff_state; |
|||
if (!(state & XON_XOFF_CHAR_SENT)) { |
|||
writeNoHandshake(state & XON_XOFF_CHAR_MASK); |
|||
xon_xoff_state = state | XON_XOFF_CHAR_SENT; |
|||
} |
|||
#endif |
|||
writeNoHandshake(c); |
|||
} |
|||
|
|||
void MarlinSerial::writeNoHandshake(const uint8_t c) { |
|||
while (!(HWUART->UART_SR & UART_SR_TXRDY)) { sw_barrier(); }; |
|||
HWUART->UART_THR = c; |
|||
} |
|||
|
|||
#endif // TX_BUFFER_SIZE == 0
|
|||
|
|||
/**
|
|||
* Imports from print.h |
|||
*/ |
|||
|
|||
void MarlinSerial::print(char c, int base) { |
|||
print((long)c, base); |
|||
} |
|||
|
|||
void MarlinSerial::print(unsigned char b, int base) { |
|||
print((unsigned long)b, base); |
|||
} |
|||
|
|||
void MarlinSerial::print(int n, int base) { |
|||
print((long)n, base); |
|||
} |
|||
|
|||
void MarlinSerial::print(unsigned int n, int base) { |
|||
print((unsigned long)n, base); |
|||
} |
|||
|
|||
void MarlinSerial::print(long n, int base) { |
|||
if (base == 0) |
|||
write(n); |
|||
else if (base == 10) { |
|||
if (n < 0) { |
|||
print('-'); |
|||
n = -n; |
|||
} |
|||
printNumber(n, 10); |
|||
} |
|||
else |
|||
printNumber(n, base); |
|||
} |
|||
|
|||
void MarlinSerial::print(unsigned long n, int base) { |
|||
if (base == 0) write(n); |
|||
else printNumber(n, base); |
|||
} |
|||
|
|||
void MarlinSerial::print(double n, int digits) { |
|||
printFloat(n, digits); |
|||
} |
|||
|
|||
void MarlinSerial::println(void) { |
|||
print('\r'); |
|||
print('\n'); |
|||
} |
|||
|
|||
void MarlinSerial::println(const String& s) { |
|||
print(s); |
|||
println(); |
|||
} |
|||
|
|||
void MarlinSerial::println(const char c[]) { |
|||
print(c); |
|||
println(); |
|||
} |
|||
|
|||
void MarlinSerial::println(char c, int base) { |
|||
print(c, base); |
|||
println(); |
|||
} |
|||
|
|||
void MarlinSerial::println(unsigned char b, int base) { |
|||
print(b, base); |
|||
println(); |
|||
} |
|||
|
|||
void MarlinSerial::println(int n, int base) { |
|||
print(n, base); |
|||
println(); |
|||
} |
|||
|
|||
void MarlinSerial::println(unsigned int n, int base) { |
|||
print(n, base); |
|||
println(); |
|||
} |
|||
|
|||
void MarlinSerial::println(long n, int base) { |
|||
print(n, base); |
|||
println(); |
|||
} |
|||
|
|||
void MarlinSerial::println(unsigned long n, int base) { |
|||
print(n, base); |
|||
println(); |
|||
} |
|||
|
|||
void MarlinSerial::println(double n, int digits) { |
|||
print(n, digits); |
|||
println(); |
|||
} |
|||
|
|||
// Private Methods
|
|||
|
|||
void MarlinSerial::printNumber(unsigned long n, uint8_t base) { |
|||
if (n) { |
|||
unsigned char buf[8 * sizeof(long)]; // Enough space for base 2
|
|||
int8_t i = 0; |
|||
while (n) { |
|||
buf[i++] = n % base; |
|||
n /= base; |
|||
} |
|||
while (i--) |
|||
print((char)(buf[i] + (buf[i] < 10 ? '0' : 'A' - 10))); |
|||
} |
|||
else |
|||
print('0'); |
|||
} |
|||
|
|||
void MarlinSerial::printFloat(double number, uint8_t digits) { |
|||
// Handle negative numbers
|
|||
if (number < 0.0) { |
|||
print('-'); |
|||
number = -number; |
|||
} |
|||
|
|||
// Round correctly so that print(1.999, 2) prints as "2.00"
|
|||
double rounding = 0.5; |
|||
for (uint8_t i = 0; i < digits; ++i) |
|||
rounding *= 0.1; |
|||
|
|||
number += rounding; |
|||
|
|||
// Extract the integer part of the number and print it
|
|||
unsigned long int_part = (unsigned long)number; |
|||
double remainder = number - (double)int_part; |
|||
print(int_part); |
|||
|
|||
// Print the decimal point, but only if there are digits beyond
|
|||
if (digits) { |
|||
print('.'); |
|||
// Extract digits from the remainder one at a time
|
|||
while (digits--) { |
|||
remainder *= 10.0; |
|||
int toPrint = int(remainder); |
|||
print(toPrint); |
|||
remainder -= toPrint; |
|||
} |
|||
} |
|||
} |
|||
|
|||
// Preinstantiate
|
|||
MarlinSerial customizedSerial; |
|||
|
|||
#endif // ARDUINO_ARCH_SAM
|
@ -0,0 +1,142 @@ |
|||
/**
|
|||
* Marlin 3D Printer Firmware |
|||
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|||
* |
|||
* Based on Sprinter and grbl. |
|||
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm |
|||
* |
|||
* This program is free software: you can redistribute it and/or modify |
|||
* it under the terms of the GNU General Public License as published by |
|||
* the Free Software Foundation, either version 3 of the License, or |
|||
* (at your option) any later version. |
|||
* |
|||
* This program is distributed in the hope that it will be useful, |
|||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|||
* GNU General Public License for more details. |
|||
* |
|||
* You should have received a copy of the GNU General Public License |
|||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|||
* |
|||
*/ |
|||
|
|||
/**
|
|||
* MarlinSerial_Due.h - Hardware serial library for Arduino DUE |
|||
* Copyright (c) 2017 Eduardo José Tagle. All right reserved |
|||
* Based on MarlinSerial for AVR, copyright (c) 2006 Nicholas Zambetti. All right reserved. |
|||
*/ |
|||
|
|||
#ifndef MARLINSERIAL_DUE_H |
|||
#define MARLINSERIAL_DUE_H |
|||
|
|||
#include "../../inc/MarlinConfig.h" |
|||
|
|||
#include <WString.h> |
|||
|
|||
#ifndef SERIAL_PORT |
|||
#define SERIAL_PORT 0 |
|||
#endif |
|||
|
|||
#define DEC 10 |
|||
#define HEX 16 |
|||
#define OCT 8 |
|||
#define BIN 2 |
|||
#define BYTE 0 |
|||
|
|||
// Define constants and variables for buffering incoming serial data. We're
|
|||
// using a ring buffer (I think), in which rx_buffer_head is the index of the
|
|||
// location to which to write the next incoming character and rx_buffer_tail
|
|||
// is the index of the location from which to read.
|
|||
// 256 is the max limit due to uint8_t head and tail. Use only powers of 2. (...,16,32,64,128,256)
|
|||
#ifndef RX_BUFFER_SIZE |
|||
#define RX_BUFFER_SIZE 128 |
|||
#endif |
|||
#ifndef TX_BUFFER_SIZE |
|||
#define TX_BUFFER_SIZE 32 |
|||
#endif |
|||
|
|||
#if ENABLED(SERIAL_XON_XOFF) && RX_BUFFER_SIZE < 1024 |
|||
#error "XON/XOFF requires RX_BUFFER_SIZE >= 1024 for reliable transfers without drops." |
|||
#endif |
|||
|
|||
#if !IS_POWER_OF_2(RX_BUFFER_SIZE) || RX_BUFFER_SIZE < 2 |
|||
#error "RX_BUFFER_SIZE must be a power of 2 greater than 1." |
|||
#endif |
|||
|
|||
#if TX_BUFFER_SIZE && (TX_BUFFER_SIZE < 2 || TX_BUFFER_SIZE > 256 || !IS_POWER_OF_2(TX_BUFFER_SIZE)) |
|||
#error "TX_BUFFER_SIZE must be 0 or a power of 2 greater than 1." |
|||
#endif |
|||
|
|||
#if RX_BUFFER_SIZE > 256 |
|||
typedef uint16_t ring_buffer_pos_t; |
|||
#else |
|||
typedef uint8_t ring_buffer_pos_t; |
|||
#endif |
|||
|
|||
#if ENABLED(SERIAL_STATS_DROPPED_RX) |
|||
extern uint8_t rx_dropped_bytes; |
|||
#endif |
|||
|
|||
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED) |
|||
extern ring_buffer_pos_t rx_max_enqueued; |
|||
#endif |
|||
|
|||
class MarlinSerial { |
|||
|
|||
public: |
|||
MarlinSerial() {}; |
|||
static void begin(const long); |
|||
static void end(); |
|||
static int peek(void); |
|||
static int read(void); |
|||
static void flush(void); |
|||
static ring_buffer_pos_t available(void); |
|||
static void checkRx(void); |
|||
static void write(const uint8_t c); |
|||
#if TX_BUFFER_SIZE > 0 |
|||
static uint8_t availableForWrite(void); |
|||
static void flushTX(void); |
|||
#endif |
|||
static void writeNoHandshake(const uint8_t c); |
|||
|
|||
#if ENABLED(SERIAL_STATS_DROPPED_RX) |
|||
FORCE_INLINE static uint32_t dropped() { return rx_dropped_bytes; } |
|||
#endif |
|||
|
|||
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED) |
|||
FORCE_INLINE static ring_buffer_pos_t rxMaxEnqueued() { return rx_max_enqueued; } |
|||
#endif |
|||
|
|||
static FORCE_INLINE void write(const char* str) { while (*str) write(*str++); } |
|||
static FORCE_INLINE void write(const uint8_t* buffer, size_t size) { while (size--) write(*buffer++); } |
|||
static FORCE_INLINE void print(const String& s) { for (int i = 0; i < (int)s.length(); i++) write(s[i]); } |
|||
static FORCE_INLINE void print(const char* str) { write(str); } |
|||
|
|||
static void print(char, int = BYTE); |
|||
static void print(unsigned char, int = BYTE); |
|||
static void print(int, int = DEC); |
|||
static void print(unsigned int, int = DEC); |
|||
static void print(long, int = DEC); |
|||
static void print(unsigned long, int = DEC); |
|||
static void print(double, int = 2); |
|||
|
|||
static void println(const String& s); |
|||
static void println(const char[]); |
|||
static void println(char, int = BYTE); |
|||
static void println(unsigned char, int = BYTE); |
|||
static void println(int, int = DEC); |
|||
static void println(unsigned int, int = DEC); |
|||
static void println(long, int = DEC); |
|||
static void println(unsigned long, int = DEC); |
|||
static void println(double, int = 2); |
|||
static void println(void); |
|||
operator bool() { return true; } |
|||
|
|||
private: |
|||
static void printNumber(unsigned long, const uint8_t); |
|||
static void printFloat(double, uint8_t); |
|||
}; |
|||
|
|||
extern MarlinSerial customizedSerial; |
|||
|
|||
#endif // MARLINSERIAL_DUE_H
|
Loading…
Reference in new issue