|
@ -523,30 +523,44 @@ void Planner::check_axes_activity() { |
|
|
|
|
|
|
|
|
#if PLANNER_LEVELING |
|
|
#if PLANNER_LEVELING |
|
|
|
|
|
|
|
|
void Planner::apply_leveling( |
|
|
void Planner::apply_leveling(float &lx, float &ly, float &lz) { |
|
|
#if ENABLED(MESH_BED_LEVELING) |
|
|
#if ENABLED(MESH_BED_LEVELING) |
|
|
const float &x, const float &y |
|
|
|
|
|
#else |
|
|
if (mbl.active()) |
|
|
float &x, float &y |
|
|
lz += mbl.get_z(RAW_X_POSITION(lx), RAW_Y_POSITION(ly)); |
|
|
|
|
|
|
|
|
|
|
|
#elif ENABLED(AUTO_BED_LEVELING_LINEAR) |
|
|
|
|
|
|
|
|
|
|
|
float dx = RAW_X_POSITION(lx) - (X_TILT_FULCRUM), |
|
|
|
|
|
dy = RAW_Y_POSITION(ly) - (Y_TILT_FULCRUM), |
|
|
|
|
|
dz = RAW_Z_POSITION(lz); |
|
|
|
|
|
|
|
|
|
|
|
apply_rotation_xyz(bed_level_matrix, dx, dy, dz); |
|
|
|
|
|
|
|
|
|
|
|
lx = LOGICAL_X_POSITION(dx + X_TILT_FULCRUM); |
|
|
|
|
|
ly = LOGICAL_Y_POSITION(dy + Y_TILT_FULCRUM); |
|
|
|
|
|
lz = LOGICAL_Z_POSITION(dz); |
|
|
|
|
|
|
|
|
#endif |
|
|
#endif |
|
|
, float &z |
|
|
} |
|
|
) { |
|
|
|
|
|
|
|
|
void Planner::unapply_leveling(float &lx, float &ly, float &lz) { |
|
|
#if ENABLED(MESH_BED_LEVELING) |
|
|
#if ENABLED(MESH_BED_LEVELING) |
|
|
|
|
|
|
|
|
if (mbl.active()) |
|
|
if (mbl.active()) |
|
|
z += mbl.get_z(RAW_X_POSITION(x), RAW_Y_POSITION(y)); |
|
|
lz -= mbl.get_z(RAW_X_POSITION(lx), RAW_Y_POSITION(ly)); |
|
|
|
|
|
|
|
|
|
|
|
#elif ENABLED(AUTO_BED_LEVELING_LINEAR) |
|
|
|
|
|
|
|
|
#elif ENABLED(AUTO_BED_LEVELING_FEATURE) |
|
|
matrix_3x3 inverse = matrix_3x3::transpose(bed_level_matrix); |
|
|
|
|
|
|
|
|
float tx = RAW_X_POSITION(x) - (X_TILT_FULCRUM), |
|
|
float dx = lx - (X_TILT_FULCRUM), dy = ly - (Y_TILT_FULCRUM), dz = lz; |
|
|
ty = RAW_Y_POSITION(y) - (Y_TILT_FULCRUM), |
|
|
|
|
|
tz = RAW_Z_POSITION(z); |
|
|
|
|
|
|
|
|
|
|
|
apply_rotation_xyz(bed_level_matrix, tx, ty, tz); |
|
|
apply_rotation_xyz(inverse, dx, dy, dz); |
|
|
|
|
|
|
|
|
x = LOGICAL_X_POSITION(tx + X_TILT_FULCRUM); |
|
|
lx = LOGICAL_X_POSITION(dx + X_TILT_FULCRUM); |
|
|
y = LOGICAL_Y_POSITION(ty + Y_TILT_FULCRUM); |
|
|
ly = LOGICAL_Y_POSITION(dy + Y_TILT_FULCRUM); |
|
|
z = LOGICAL_Z_POSITION(tz); |
|
|
lz = LOGICAL_Z_POSITION(dz); |
|
|
|
|
|
|
|
|
#endif |
|
|
#endif |
|
|
} |
|
|
} |
|
@ -562,15 +576,7 @@ void Planner::check_axes_activity() { |
|
|
* fr_mm_s - (target) speed of the move |
|
|
* fr_mm_s - (target) speed of the move |
|
|
* extruder - target extruder |
|
|
* extruder - target extruder |
|
|
*/ |
|
|
*/ |
|
|
|
|
|
void Planner::buffer_line(ARG_X, ARG_Y, ARG_Z, const float &e, float fr_mm_s, const uint8_t extruder) { |
|
|
void Planner::buffer_line( |
|
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING) |
|
|
|
|
|
float x, float y, float z |
|
|
|
|
|
#else |
|
|
|
|
|
const float& x, const float& y, const float& z |
|
|
|
|
|
#endif |
|
|
|
|
|
, const float& e, float fr_mm_s, const uint8_t extruder |
|
|
|
|
|
) { |
|
|
|
|
|
// Calculate the buffer head after we push this byte
|
|
|
// Calculate the buffer head after we push this byte
|
|
|
int next_buffer_head = next_block_index(block_buffer_head); |
|
|
int next_buffer_head = next_block_index(block_buffer_head); |
|
|
|
|
|
|
|
@ -578,17 +584,17 @@ void Planner::buffer_line( |
|
|
// Rest here until there is room in the buffer.
|
|
|
// Rest here until there is room in the buffer.
|
|
|
while (block_buffer_tail == next_buffer_head) idle(); |
|
|
while (block_buffer_tail == next_buffer_head) idle(); |
|
|
|
|
|
|
|
|
#if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_FEATURE) |
|
|
#if PLANNER_LEVELING |
|
|
apply_leveling(x, y, z); |
|
|
apply_leveling(lx, ly, lz); |
|
|
#endif |
|
|
#endif |
|
|
|
|
|
|
|
|
// The target position of the tool in absolute steps
|
|
|
// The target position of the tool in absolute steps
|
|
|
// Calculate target position in absolute steps
|
|
|
// Calculate target position in absolute steps
|
|
|
//this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
|
|
|
//this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
|
|
|
long target[NUM_AXIS] = { |
|
|
long target[NUM_AXIS] = { |
|
|
lround(x * axis_steps_per_mm[X_AXIS]), |
|
|
lround(lx * axis_steps_per_mm[X_AXIS]), |
|
|
lround(y * axis_steps_per_mm[Y_AXIS]), |
|
|
lround(ly * axis_steps_per_mm[Y_AXIS]), |
|
|
lround(z * axis_steps_per_mm[Z_AXIS]), |
|
|
lround(lz * axis_steps_per_mm[Z_AXIS]), |
|
|
lround(e * axis_steps_per_mm[E_AXIS]) |
|
|
lround(e * axis_steps_per_mm[E_AXIS]) |
|
|
}; |
|
|
}; |
|
|
|
|
|
|
|
@ -598,11 +604,22 @@ void Planner::buffer_line( |
|
|
|
|
|
|
|
|
/*
|
|
|
/*
|
|
|
SERIAL_ECHO_START; |
|
|
SERIAL_ECHO_START; |
|
|
SERIAL_ECHOPAIR("Planner X:", x); |
|
|
SERIAL_ECHOPGM("Planner ", x); |
|
|
SERIAL_ECHOPAIR(" (", dx); |
|
|
#if IS_KINEMATIC |
|
|
SERIAL_ECHOPAIR(") Y:", y); |
|
|
SERIAL_ECHOPAIR("A:", x); |
|
|
|
|
|
SERIAL_ECHOPAIR(" (", dx); |
|
|
|
|
|
SERIAL_ECHOPAIR(") B:", y); |
|
|
|
|
|
#else |
|
|
|
|
|
SERIAL_ECHOPAIR("X:", x); |
|
|
|
|
|
SERIAL_ECHOPAIR(" (", dx); |
|
|
|
|
|
SERIAL_ECHOPAIR(") Y:", y); |
|
|
|
|
|
#endif |
|
|
SERIAL_ECHOPAIR(" (", dy); |
|
|
SERIAL_ECHOPAIR(" (", dy); |
|
|
SERIAL_ECHOPAIR(") Z:", z); |
|
|
#elif ENABLED(DELTA) |
|
|
|
|
|
SERIAL_ECHOPAIR(") C:", z); |
|
|
|
|
|
#else |
|
|
|
|
|
SERIAL_ECHOPAIR(") Z:", z); |
|
|
|
|
|
#endif |
|
|
SERIAL_ECHOPAIR(" (", dz); |
|
|
SERIAL_ECHOPAIR(" (", dz); |
|
|
SERIAL_ECHOLNPGM(")"); |
|
|
SERIAL_ECHOLNPGM(")"); |
|
|
//*/
|
|
|
//*/
|
|
@ -671,7 +688,7 @@ void Planner::buffer_line( |
|
|
// For a mixing extruder, get a magnified step_event_count for each
|
|
|
// For a mixing extruder, get a magnified step_event_count for each
|
|
|
#if ENABLED(MIXING_EXTRUDER) |
|
|
#if ENABLED(MIXING_EXTRUDER) |
|
|
for (uint8_t i = 0; i < MIXING_STEPPERS; i++) |
|
|
for (uint8_t i = 0; i < MIXING_STEPPERS; i++) |
|
|
block->mix_event_count[i] = (mixing_factor[i] < 0.0001) ? 0 : block->step_event_count / mixing_factor[i]; |
|
|
block->mix_event_count[i] = UNEAR_ZERO(mixing_factor[i]) ? 0 : block->step_event_count / mixing_factor[i]; |
|
|
#endif |
|
|
#endif |
|
|
|
|
|
|
|
|
#if FAN_COUNT > 0 |
|
|
#if FAN_COUNT > 0 |
|
@ -1124,7 +1141,7 @@ void Planner::buffer_line( |
|
|
block->advance_rate = acc_dist ? advance / (float)acc_dist : 0; |
|
|
block->advance_rate = acc_dist ? advance / (float)acc_dist : 0; |
|
|
} |
|
|
} |
|
|
/**
|
|
|
/**
|
|
|
SERIAL_ECHO_START; |
|
|
SERIAL_ECHO_START; |
|
|
SERIAL_ECHOPGM("advance :"); |
|
|
SERIAL_ECHOPGM("advance :"); |
|
|
SERIAL_ECHO(block->advance/256.0); |
|
|
SERIAL_ECHO(block->advance/256.0); |
|
|
SERIAL_ECHOPGM("advance rate :"); |
|
|
SERIAL_ECHOPGM("advance rate :"); |
|
@ -1152,22 +1169,15 @@ void Planner::buffer_line( |
|
|
* |
|
|
* |
|
|
* On CORE machines stepper ABC will be translated from the given XYZ. |
|
|
* On CORE machines stepper ABC will be translated from the given XYZ. |
|
|
*/ |
|
|
*/ |
|
|
void Planner::set_position_mm( |
|
|
void Planner::set_position_mm(ARG_X, ARG_Y, ARG_Z, const float &e) { |
|
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING) |
|
|
|
|
|
float x, float y, float z |
|
|
|
|
|
#else |
|
|
|
|
|
const float& x, const float& y, const float& z |
|
|
|
|
|
#endif |
|
|
|
|
|
, const float& e |
|
|
|
|
|
) { |
|
|
|
|
|
|
|
|
|
|
|
#if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_FEATURE) |
|
|
#if PLANNER_LEVELING |
|
|
apply_leveling(x, y, z); |
|
|
apply_leveling(lx, ly, lz); |
|
|
#endif |
|
|
#endif |
|
|
|
|
|
|
|
|
long nx = position[X_AXIS] = lround(x * axis_steps_per_mm[X_AXIS]), |
|
|
long nx = position[X_AXIS] = lround(lx * axis_steps_per_mm[X_AXIS]), |
|
|
ny = position[Y_AXIS] = lround(y * axis_steps_per_mm[Y_AXIS]), |
|
|
ny = position[Y_AXIS] = lround(ly * axis_steps_per_mm[Y_AXIS]), |
|
|
nz = position[Z_AXIS] = lround(z * axis_steps_per_mm[Z_AXIS]), |
|
|
nz = position[Z_AXIS] = lround(lz * axis_steps_per_mm[Z_AXIS]), |
|
|
ne = position[E_AXIS] = lround(e * axis_steps_per_mm[E_AXIS]); |
|
|
ne = position[E_AXIS] = lround(e * axis_steps_per_mm[E_AXIS]); |
|
|
stepper.set_position(nx, ny, nz, ne); |
|
|
stepper.set_position(nx, ny, nz, ne); |
|
|
previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
|
|
|
previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
|
|
|