|
|
@ -133,13 +133,13 @@ SPISettings MAX31865::spiConfig = SPISettings( |
|
|
|
/**
|
|
|
|
* Initialize the SPI interface and set the number of RTD wires used |
|
|
|
* |
|
|
|
* @param wires The number of wires in enum format. Can be MAX31865_2WIRE, MAX31865_3WIRE, or MAX31865_4WIRE. |
|
|
|
* @param zero The resistance of the RTD at 0 degC, in ohms. |
|
|
|
* @param ref The resistance of the reference resistor, in ohms. |
|
|
|
* @param wire The resistance of the wire connecting the sensor to the RTD, in ohms. |
|
|
|
* @param wires The number of wires as an enum: MAX31865_2WIRE, MAX31865_3WIRE, or MAX31865_4WIRE. |
|
|
|
* @param zero_res The resistance of the RTD at 0°C, in ohms. |
|
|
|
* @param ref_res The resistance of the reference resistor, in ohms. |
|
|
|
* @param wire_res The resistance of the wire connecting the sensor to the RTD, in ohms. |
|
|
|
*/ |
|
|
|
void MAX31865::begin(max31865_numwires_t wires, float zero_res, float ref_res, float wire_res) { |
|
|
|
zeroRes = zero_res; |
|
|
|
void MAX31865::begin(max31865_numwires_t wires, const_float_t zero_res, const_float_t ref_res, const_float_t wire_res) { |
|
|
|
resNormalizer = 100.0f / zero_res; // reciprocal of resistance, scaled by 100
|
|
|
|
refRes = ref_res; |
|
|
|
wireRes = wire_res; |
|
|
|
|
|
|
@ -437,42 +437,61 @@ float MAX31865::temperature() { |
|
|
|
* |
|
|
|
* @return Temperature in C |
|
|
|
*/ |
|
|
|
float MAX31865::temperature(uint16_t adc_val) { |
|
|
|
float MAX31865::temperature(const uint16_t adc_val) { |
|
|
|
return temperature(((adc_val) * RECIPROCAL(32768.0f)) * refRes - wireRes); |
|
|
|
} |
|
|
|
|
|
|
|
/**
|
|
|
|
* Calculate the temperature in C from the RTD resistance. |
|
|
|
* Uses the technique outlined in this PDF: |
|
|
|
* http://www.analog.com/media/en/technical-documentation/application-notes/AN709_0.pdf
|
|
|
|
* |
|
|
|
* @param rtd_res the resistance value in ohms |
|
|
|
* @return the temperature in degC |
|
|
|
* @return the temperature in °C |
|
|
|
*/ |
|
|
|
float MAX31865::temperature(float rtd_res) { |
|
|
|
|
|
|
|
rtd_res *= resNormalizer; // normalize to 100 ohm
|
|
|
|
|
|
|
|
// Constants for calculating temperature from the measured RTD resistance.
|
|
|
|
// http://www.analog.com/media/en/technical-documentation/application-notes/AN709_0.pdf
|
|
|
|
constexpr float RTD_Z1 = -0.0039083, |
|
|
|
RTD_Z2 = +1.758480889e-5, |
|
|
|
RTD_Z3 = -2.31e-8, |
|
|
|
RTD_Z4 = -1.155e-6; |
|
|
|
|
|
|
|
// Callender-Van Dusen equation
|
|
|
|
float temp = (RTD_Z1 + sqrt(RTD_Z2 + (RTD_Z3 * rtd_res))) * RECIPROCAL(RTD_Z4); |
|
|
|
|
|
|
|
// From the PDF...
|
|
|
|
//
|
|
|
|
// The previous equation is valid only for temperatures of 0°C and above.
|
|
|
|
// The equation for RRTD(t) that defines negative temperature behavior is a
|
|
|
|
// fourth-order polynomial (after expanding the third term) and is quite
|
|
|
|
// impractical to solve for a single expression of temperature as a function
|
|
|
|
// of resistance.
|
|
|
|
// of resistance. So here we use a Linear Approximation instead.
|
|
|
|
//
|
|
|
|
if (temp < 0) { |
|
|
|
rtd_res = (rtd_res / zeroRes) * 100; // normalize to 100 ohm
|
|
|
|
float rpoly = rtd_res; |
|
|
|
#ifndef MAX31865_APPROX |
|
|
|
#define MAX31865_APPROX 5 |
|
|
|
#endif |
|
|
|
|
|
|
|
constexpr float RTD_C[] = { |
|
|
|
#if MAX31865_APPROX == 5 |
|
|
|
-242.02, +2.2228, +2.5859e-3, -4.8260e-6, -2.8183e-8, +1.5243e-10 |
|
|
|
#elif MAX31865_APPROX == 4 |
|
|
|
-241.96, +2.2163, +2.8541e-3, -9.9121e-6, -1.7152e-8 |
|
|
|
#elif MAX31865_APPROX == 3 |
|
|
|
-242.09, +2.2276, +2.5178e-3, -5.8620e-6 |
|
|
|
#else |
|
|
|
-242.97, +2.2838, +1.4727e-3 |
|
|
|
#endif |
|
|
|
}; |
|
|
|
|
|
|
|
temp = -242.02 + (2.2228 * rpoly); |
|
|
|
rpoly *= rtd_res; // square
|
|
|
|
temp += 2.5859e-3 * rpoly; |
|
|
|
rpoly *= rtd_res; // ^3
|
|
|
|
temp -= 4.8260e-6 * rpoly; |
|
|
|
rpoly *= rtd_res; // ^4
|
|
|
|
temp -= 2.8183e-8 * rpoly; |
|
|
|
rpoly *= rtd_res; // ^5
|
|
|
|
temp += 1.5243e-10 * rpoly; |
|
|
|
float rpoly = rtd_res; |
|
|
|
temp = RTD_C[0]; |
|
|
|
temp += rpoly * RTD_C[1]; |
|
|
|
rpoly *= rtd_res; temp += rpoly * RTD_C[2]; |
|
|
|
if (MAX31865_APPROX >= 3) rpoly *= rtd_res; temp += rpoly * RTD_C[3]; |
|
|
|
if (MAX31865_APPROX >= 4) rpoly *= rtd_res; temp += rpoly * RTD_C[4]; |
|
|
|
if (MAX31865_APPROX >= 5) rpoly *= rtd_res; temp += rpoly * RTD_C[5]; |
|
|
|
} |
|
|
|
|
|
|
|
return temp; |
|
|
|