|
|
@ -27,16 +27,31 @@ |
|
|
|
* Modified 23 November 2006 by David A. Mellis |
|
|
|
* Modified 28 September 2010 by Mark Sproul |
|
|
|
* Modified 14 February 2016 by Andreas Hardtung (added tx buffer) |
|
|
|
* Modified 01 October 2017 by Eduardo José Tagle (added XON/XOFF) |
|
|
|
*/ |
|
|
|
#ifdef __AVR__ |
|
|
|
|
|
|
|
#include "MarlinSerial.h" |
|
|
|
#include "../../Marlin.h" |
|
|
|
|
|
|
|
// Disable HardwareSerial.cpp to support chips without a UART (Attiny, etc.)
|
|
|
|
|
|
|
|
#include "../../inc/MarlinConfig.h" |
|
|
|
|
|
|
|
#if !defined(USBCON) && (defined(UBRRH) || defined(UBRR0H) || defined(UBRR1H) || defined(UBRR2H) || defined(UBRR3H)) |
|
|
|
|
|
|
|
#include "MarlinSerial.h" |
|
|
|
#include "../../Marlin.h" |
|
|
|
|
|
|
|
struct ring_buffer_r { |
|
|
|
unsigned char buffer[RX_BUFFER_SIZE]; |
|
|
|
volatile ring_buffer_pos_t head, tail; |
|
|
|
}; |
|
|
|
|
|
|
|
#if TX_BUFFER_SIZE > 0 |
|
|
|
struct ring_buffer_t { |
|
|
|
unsigned char buffer[TX_BUFFER_SIZE]; |
|
|
|
volatile uint8_t head, tail; |
|
|
|
}; |
|
|
|
#endif |
|
|
|
|
|
|
|
#if UART_PRESENT(SERIAL_PORT) |
|
|
|
ring_buffer_r rx_buffer = { { 0 }, 0, 0 }; |
|
|
|
#if TX_BUFFER_SIZE > 0 |
|
|
@ -45,6 +60,23 @@ |
|
|
|
#endif |
|
|
|
#endif |
|
|
|
|
|
|
|
#if ENABLED(SERIAL_XON_XOFF) |
|
|
|
uint8_t xon_xoff_state = XON_XOFF_CHAR_SENT | XON_CHAR; |
|
|
|
constexpr uint8_t XON_XOFF_CHAR_SENT = 0x80; // XON / XOFF Character was sent
|
|
|
|
constexpr uint8_t XON_XOFF_CHAR_MASK = 0x1F; // XON / XOFF character to send
|
|
|
|
// XON / XOFF character definitions
|
|
|
|
constexpr uint8_t XON_CHAR = 17; |
|
|
|
constexpr uint8_t XOFF_CHAR = 19; |
|
|
|
#endif |
|
|
|
|
|
|
|
#if ENABLED(SERIAL_STATS_DROPPED_RX) |
|
|
|
uint8_t rx_dropped_bytes = 0; |
|
|
|
#endif |
|
|
|
|
|
|
|
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED) |
|
|
|
ring_buffer_pos_t rx_max_enqueued = 0; |
|
|
|
#endif |
|
|
|
|
|
|
|
#if ENABLED(EMERGENCY_PARSER) |
|
|
|
|
|
|
|
#include "../../module/stepper.h" |
|
|
@ -136,20 +168,78 @@ |
|
|
|
|
|
|
|
#endif // EMERGENCY_PARSER
|
|
|
|
|
|
|
|
FORCE_INLINE void store_char(unsigned char c) { |
|
|
|
CRITICAL_SECTION_START; |
|
|
|
const uint8_t h = rx_buffer.head, |
|
|
|
i = (uint8_t)(h + 1) & (RX_BUFFER_SIZE - 1); |
|
|
|
|
|
|
|
// if we should be storing the received character into the location
|
|
|
|
// just before the tail (meaning that the head would advance to the
|
|
|
|
// current location of the tail), we're about to overflow the buffer
|
|
|
|
// and so we don't write the character or advance the head.
|
|
|
|
if (i != rx_buffer.tail) { |
|
|
|
rx_buffer.buffer[h] = c; |
|
|
|
rx_buffer.head = i; |
|
|
|
FORCE_INLINE void store_rxd_char() { |
|
|
|
const ring_buffer_pos_t h = rx_buffer.head, |
|
|
|
i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); |
|
|
|
|
|
|
|
// If the character is to be stored at the index just before the tail
|
|
|
|
// (such that the head would advance to the current tail), the buffer is
|
|
|
|
// critical, so don't write the character or advance the head.
|
|
|
|
if (i != rx_buffer.tail) { |
|
|
|
rx_buffer.buffer[h] = M_UDRx; |
|
|
|
rx_buffer.head = i; |
|
|
|
} |
|
|
|
else { |
|
|
|
(void)M_UDRx; |
|
|
|
#if ENABLED(SERIAL_STATS_DROPPED_RX) |
|
|
|
if (!++rx_dropped_bytes) ++rx_dropped_bytes; |
|
|
|
#endif |
|
|
|
} |
|
|
|
|
|
|
|
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED) |
|
|
|
// calculate count of bytes stored into the RX buffer
|
|
|
|
ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(rx_buffer.head - rx_buffer.tail) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); |
|
|
|
// Keep track of the maximum count of enqueued bytes
|
|
|
|
NOLESS(rx_max_enqueued, rx_count); |
|
|
|
#endif |
|
|
|
|
|
|
|
#if ENABLED(SERIAL_XON_XOFF) |
|
|
|
|
|
|
|
// for high speed transfers, we can use XON/XOFF protocol to do
|
|
|
|
// software handshake and avoid overruns.
|
|
|
|
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XON_CHAR) { |
|
|
|
|
|
|
|
// calculate count of bytes stored into the RX buffer
|
|
|
|
ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(rx_buffer.head - rx_buffer.tail) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); |
|
|
|
|
|
|
|
// if we are above 12.5% of RX buffer capacity, send XOFF before
|
|
|
|
// we run out of RX buffer space .. We need 325 bytes @ 250kbits/s to
|
|
|
|
// let the host react and stop sending bytes. This translates to 13mS
|
|
|
|
// propagation time.
|
|
|
|
if (rx_count >= (RX_BUFFER_SIZE) / 8) { |
|
|
|
// If TX interrupts are disabled and data register is empty,
|
|
|
|
// just write the byte to the data register and be done. This
|
|
|
|
// shortcut helps significantly improve the effective datarate
|
|
|
|
// at high (>500kbit/s) bitrates, where interrupt overhead
|
|
|
|
// becomes a slowdown.
|
|
|
|
if (!TEST(M_UCSRxB, M_UDRIEx) && TEST(M_UCSRxA, M_UDREx)) { |
|
|
|
// Send an XOFF character
|
|
|
|
M_UDRx = XOFF_CHAR; |
|
|
|
// clear the TXC bit -- "can be cleared by writing a one to its bit
|
|
|
|
// location". This makes sure flush() won't return until the bytes
|
|
|
|
// actually got written
|
|
|
|
SBI(M_UCSRxA, M_TXCx); |
|
|
|
// And remember it was sent
|
|
|
|
xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT; |
|
|
|
} |
|
|
|
else { |
|
|
|
// TX interrupts disabled, but buffer still not empty ... or
|
|
|
|
// TX interrupts enabled. Reenable TX ints and schedule XOFF
|
|
|
|
// character to be sent
|
|
|
|
#if TX_BUFFER_SIZE > 0 |
|
|
|
SBI(M_UCSRxB, M_UDRIEx); |
|
|
|
xon_xoff_state = XOFF_CHAR; |
|
|
|
#else |
|
|
|
// We are not using TX interrupts, we will have to send this manually
|
|
|
|
while (!TEST(M_UCSRxA, M_UDREx)) { /* nada */ }; |
|
|
|
M_UDRx = XOFF_CHAR; |
|
|
|
// And remember we already sent it
|
|
|
|
xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT; |
|
|
|
#endif |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
CRITICAL_SECTION_END; |
|
|
|
#endif // SERIAL_XON_XOFF
|
|
|
|
|
|
|
|
#if ENABLED(EMERGENCY_PARSER) |
|
|
|
emergency_parser(c); |
|
|
@ -160,37 +250,41 @@ |
|
|
|
|
|
|
|
FORCE_INLINE void _tx_udr_empty_irq(void) { |
|
|
|
// If interrupts are enabled, there must be more data in the output
|
|
|
|
// buffer. Send the next byte
|
|
|
|
const uint8_t t = tx_buffer.tail, |
|
|
|
c = tx_buffer.buffer[t]; |
|
|
|
tx_buffer.tail = (t + 1) & (TX_BUFFER_SIZE - 1); |
|
|
|
|
|
|
|
M_UDRx = c; |
|
|
|
// buffer.
|
|
|
|
|
|
|
|
#if ENABLED(SERIAL_XON_XOFF) |
|
|
|
// Do a priority insertion of an XON/XOFF char, if needed.
|
|
|
|
const uint8_t state = xon_xoff_state; |
|
|
|
if (!(state & XON_XOFF_CHAR_SENT)) { |
|
|
|
M_UDRx = state & XON_XOFF_CHAR_MASK; |
|
|
|
xon_xoff_state = state | XON_XOFF_CHAR_SENT; |
|
|
|
} |
|
|
|
else |
|
|
|
#endif |
|
|
|
{ // Send the next byte
|
|
|
|
const uint8_t t = tx_buffer.tail, c = tx_buffer.buffer[t]; |
|
|
|
tx_buffer.tail = (t + 1) & (TX_BUFFER_SIZE - 1); |
|
|
|
M_UDRx = c; |
|
|
|
} |
|
|
|
|
|
|
|
// clear the TXC bit -- "can be cleared by writing a one to its bit
|
|
|
|
// location". This makes sure flush() won't return until the bytes
|
|
|
|
// actually got written
|
|
|
|
SBI(M_UCSRxA, M_TXCx); |
|
|
|
|
|
|
|
if (tx_buffer.head == tx_buffer.tail) { |
|
|
|
// Buffer empty, so disable interrupts
|
|
|
|
// Disable interrupts if the buffer is empty
|
|
|
|
if (tx_buffer.head == tx_buffer.tail) |
|
|
|
CBI(M_UCSRxB, M_UDRIEx); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
#ifdef M_USARTx_UDRE_vect |
|
|
|
ISR(M_USARTx_UDRE_vect) { |
|
|
|
_tx_udr_empty_irq(); |
|
|
|
} |
|
|
|
ISR(M_USARTx_UDRE_vect) { _tx_udr_empty_irq(); } |
|
|
|
#endif |
|
|
|
|
|
|
|
#endif // TX_BUFFER_SIZE
|
|
|
|
|
|
|
|
#ifdef M_USARTx_RX_vect |
|
|
|
ISR(M_USARTx_RX_vect) { |
|
|
|
const unsigned char c = M_UDRx; |
|
|
|
store_char(c); |
|
|
|
} |
|
|
|
ISR(M_USARTx_RX_vect) { store_rxd_char(); } |
|
|
|
#endif |
|
|
|
|
|
|
|
// Public Methods
|
|
|
@ -200,9 +294,9 @@ |
|
|
|
bool useU2X = true; |
|
|
|
|
|
|
|
#if F_CPU == 16000000UL && SERIAL_PORT == 0 |
|
|
|
// hard-coded exception for compatibility with the bootloader shipped
|
|
|
|
// with the Duemilanove and previous boards and the firmware on the 8U2
|
|
|
|
// on the Uno and Mega 2560.
|
|
|
|
// Hard-coded exception for compatibility with the bootloader shipped
|
|
|
|
// with the Duemilanove and previous boards, and the firmware on the
|
|
|
|
// 8U2 on the Uno and Mega 2560.
|
|
|
|
if (baud == 57600) useU2X = false; |
|
|
|
#endif |
|
|
|
|
|
|
@ -237,8 +331,9 @@ |
|
|
|
|
|
|
|
void MarlinSerial::checkRx(void) { |
|
|
|
if (TEST(M_UCSRxA, M_RXCx)) { |
|
|
|
const uint8_t c = M_UDRx; |
|
|
|
store_char(c); |
|
|
|
CRITICAL_SECTION_START; |
|
|
|
store_rxd_char(); |
|
|
|
CRITICAL_SECTION_END; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
@ -252,47 +347,76 @@ |
|
|
|
int MarlinSerial::read(void) { |
|
|
|
int v; |
|
|
|
CRITICAL_SECTION_START; |
|
|
|
const uint8_t t = rx_buffer.tail; |
|
|
|
const ring_buffer_pos_t t = rx_buffer.tail; |
|
|
|
if (rx_buffer.head == t) |
|
|
|
v = -1; |
|
|
|
else { |
|
|
|
v = rx_buffer.buffer[t]; |
|
|
|
rx_buffer.tail = (uint8_t)(t + 1) & (RX_BUFFER_SIZE - 1); |
|
|
|
rx_buffer.tail = (ring_buffer_pos_t)(t + 1) & (RX_BUFFER_SIZE - 1); |
|
|
|
|
|
|
|
#if ENABLED(SERIAL_XON_XOFF) |
|
|
|
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) { |
|
|
|
// Get count of bytes in the RX buffer
|
|
|
|
ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(rx_buffer.head - rx_buffer.tail) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); |
|
|
|
// When below 10% of RX buffer capacity, send XON before
|
|
|
|
// running out of RX buffer bytes
|
|
|
|
if (rx_count < (RX_BUFFER_SIZE) / 10) { |
|
|
|
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT; |
|
|
|
CRITICAL_SECTION_END; // End critical section before returning!
|
|
|
|
writeNoHandshake(XON_CHAR); |
|
|
|
return v; |
|
|
|
} |
|
|
|
} |
|
|
|
#endif |
|
|
|
} |
|
|
|
CRITICAL_SECTION_END; |
|
|
|
return v; |
|
|
|
} |
|
|
|
|
|
|
|
uint8_t MarlinSerial::available(void) { |
|
|
|
ring_buffer_pos_t MarlinSerial::available(void) { |
|
|
|
CRITICAL_SECTION_START; |
|
|
|
const uint8_t h = rx_buffer.head, |
|
|
|
t = rx_buffer.tail; |
|
|
|
const ring_buffer_pos_t h = rx_buffer.head, t = rx_buffer.tail; |
|
|
|
CRITICAL_SECTION_END; |
|
|
|
return (uint8_t)(RX_BUFFER_SIZE + h - t) & (RX_BUFFER_SIZE - 1); |
|
|
|
return (ring_buffer_pos_t)(RX_BUFFER_SIZE + h - t) & (RX_BUFFER_SIZE - 1); |
|
|
|
} |
|
|
|
|
|
|
|
void MarlinSerial::flush(void) { |
|
|
|
// RX
|
|
|
|
// don't reverse this or there may be problems if the RX interrupt
|
|
|
|
// occurs after reading the value of rx_buffer_head but before writing
|
|
|
|
// the value to rx_buffer_tail; the previous value of rx_buffer_head
|
|
|
|
// may be written to rx_buffer_tail, making it appear as if the buffer
|
|
|
|
// were full, not empty.
|
|
|
|
// Don't change this order of operations. If the RX interrupt occurs between
|
|
|
|
// reading rx_buffer_head and updating rx_buffer_tail, the previous rx_buffer_head
|
|
|
|
// may be written to rx_buffer_tail, making the buffer appear full rather than empty.
|
|
|
|
CRITICAL_SECTION_START; |
|
|
|
rx_buffer.head = rx_buffer.tail; |
|
|
|
CRITICAL_SECTION_END; |
|
|
|
|
|
|
|
#if ENABLED(SERIAL_XON_XOFF) |
|
|
|
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) { |
|
|
|
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT; |
|
|
|
writeNoHandshake(XON_CHAR); |
|
|
|
} |
|
|
|
#endif |
|
|
|
} |
|
|
|
|
|
|
|
#if TX_BUFFER_SIZE > 0 |
|
|
|
uint8_t MarlinSerial::availableForWrite(void) { |
|
|
|
CRITICAL_SECTION_START; |
|
|
|
const uint8_t h = tx_buffer.head, |
|
|
|
t = tx_buffer.tail; |
|
|
|
const uint8_t h = tx_buffer.head, t = tx_buffer.tail; |
|
|
|
CRITICAL_SECTION_END; |
|
|
|
return (uint8_t)(TX_BUFFER_SIZE + h - t) & (TX_BUFFER_SIZE - 1); |
|
|
|
} |
|
|
|
|
|
|
|
void MarlinSerial::write(const uint8_t c) { |
|
|
|
#if ENABLED(SERIAL_XON_XOFF) |
|
|
|
const uint8_t state = xon_xoff_state; |
|
|
|
if (!(state & XON_XOFF_CHAR_SENT)) { |
|
|
|
// Send 2 chars: XON/XOFF, then a user-specified char
|
|
|
|
writeNoHandshake(state & XON_XOFF_CHAR_MASK); |
|
|
|
xon_xoff_state = state | XON_XOFF_CHAR_SENT; |
|
|
|
} |
|
|
|
#endif |
|
|
|
writeNoHandshake(c); |
|
|
|
} |
|
|
|
|
|
|
|
void MarlinSerial::writeNoHandshake(const uint8_t c) { |
|
|
|
_written = true; |
|
|
|
CRITICAL_SECTION_START; |
|
|
|
bool emty = (tx_buffer.head == tx_buffer.tail); |
|
|
@ -353,20 +477,34 @@ |
|
|
|
} |
|
|
|
// If we get here, nothing is queued anymore (DRIE is disabled) and
|
|
|
|
// the hardware finished tranmission (TXC is set).
|
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
#else // TX_BUFFER_SIZE == 0
|
|
|
|
|
|
|
|
#else |
|
|
|
void MarlinSerial::write(uint8_t c) { |
|
|
|
while (!TEST(M_UCSRxA, M_UDREx)) |
|
|
|
; |
|
|
|
void MarlinSerial::write(const uint8_t c) { |
|
|
|
while (!TEST(M_UCSRxA, M_UDREx)) { /* nada */ } |
|
|
|
M_UDRx = c; |
|
|
|
#if ENABLED(SERIAL_XON_XOFF) |
|
|
|
// Do a priority insertion of an XON/XOFF char, if needed.
|
|
|
|
const uint8_t state = xon_xoff_state; |
|
|
|
if (!(state & XON_XOFF_CHAR_SENT)) { |
|
|
|
writeNoHandshake(state & XON_XOFF_CHAR_MASK); |
|
|
|
xon_xoff_state = state | XON_XOFF_CHAR_SENT; |
|
|
|
} |
|
|
|
#endif |
|
|
|
writeNoHandshake(c); |
|
|
|
} |
|
|
|
#endif |
|
|
|
|
|
|
|
// end NEW
|
|
|
|
void MarlinSerial::writeNoHandshake(const uint8_t c) { |
|
|
|
while (!TEST(M_UCSRxA, M_UDREx)) ; |
|
|
|
M_UDRx = c; |
|
|
|
} |
|
|
|
|
|
|
|
/// imports from print.h
|
|
|
|
#endif // TX_BUFFER_SIZE == 0
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Imports from print.h |
|
|
|
*/ |
|
|
|
|
|
|
|
void MarlinSerial::print(char c, int base) { |
|
|
|
print((long)c, base); |
|
|
@ -516,4 +654,4 @@ |
|
|
|
HardwareSerial bluetoothSerial; |
|
|
|
#endif |
|
|
|
|
|
|
|
#endif |
|
|
|
#endif // __AVR__
|
|
|
|