Browse Source

Move reachable test to Probe class

vanilla_fb_2.0.x
Scott Lahteine 5 years ago
parent
commit
be62ab2d02
  1. 4
      Marlin/src/feature/bedlevel/ubl/ubl_G29.cpp
  2. 14
      Marlin/src/gcode/bedlevel/abl/G29.cpp
  3. 4
      Marlin/src/gcode/calibrate/G34_M422.cpp
  4. 2
      Marlin/src/gcode/calibrate/G76_M871.cpp
  5. 8
      Marlin/src/gcode/calibrate/M48.cpp
  6. 2
      Marlin/src/gcode/probe/G30.cpp
  7. 59
      Marlin/src/module/motion.h
  8. 4
      Marlin/src/module/probe.cpp
  9. 49
      Marlin/src/module/probe.h

4
Marlin/src/feature/bedlevel/ubl/ubl_G29.cpp

@ -1249,7 +1249,7 @@
if (isnan(z_values[i][j])) { // Invalid mesh point? if (isnan(z_values[i][j])) { // Invalid mesh point?
// Skip points the probe can't reach // Skip points the probe can't reach
if (!position_is_reachable_by_probe(mesh_index_to_xpos(i), mesh_index_to_ypos(j))) if (!probe.can_reach(mesh_index_to_xpos(i), mesh_index_to_ypos(j)))
continue; continue;
found_a_NAN = true; found_a_NAN = true;
@ -1316,7 +1316,7 @@
// Also for round beds, there are grid points outside the bed the nozzle can't reach. // Also for round beds, there are grid points outside the bed the nozzle can't reach.
// Prune them from the list and ignore them till the next Phase (manual nozzle probing). // Prune them from the list and ignore them till the next Phase (manual nozzle probing).
if (probe_relative ? !position_is_reachable_by_probe(mpos) : !position_is_reachable(mpos)) if (!(probe_relative ? probe.can_reach(mpos) : position_is_reachable(mpos)))
continue; continue;
// Reachable. Check if it's the best_so_far location to the nozzle. // Reachable. Check if it's the best_so_far location to the nozzle.

14
Marlin/src/gcode/bedlevel/abl/G29.cpp

@ -417,17 +417,7 @@ G29_TYPE GcodeSuite::G29() {
); );
} }
if ( if (!probe.good_bounds(probe_position_lf, probe_position_rb)) {
#if IS_SCARA || ENABLED(DELTA)
!position_is_reachable_by_probe(probe_position_lf.x, 0)
|| !position_is_reachable_by_probe(probe_position_rb.x, 0)
|| !position_is_reachable_by_probe(0, probe_position_lf.y)
|| !position_is_reachable_by_probe(0, probe_position_rb.y)
#else
!position_is_reachable_by_probe(probe_position_lf)
|| !position_is_reachable_by_probe(probe_position_rb)
#endif
) {
SERIAL_ECHOLNPGM("? (L,R,F,B) out of bounds."); SERIAL_ECHOLNPGM("? (L,R,F,B) out of bounds.");
G29_RETURN(false); G29_RETURN(false);
} }
@ -704,7 +694,7 @@ G29_TYPE GcodeSuite::G29() {
#if IS_KINEMATIC #if IS_KINEMATIC
// Avoid probing outside the round or hexagonal area // Avoid probing outside the round or hexagonal area
if (!position_is_reachable_by_probe(probePos)) continue; if (!probe.can_reach(probePos)) continue;
#endif #endif
if (verbose_level) SERIAL_ECHOLNPAIR("Probing mesh point ", int(pt_index), "/", int(GRID_MAX_POINTS), "."); if (verbose_level) SERIAL_ECHOLNPAIR("Probing mesh point ", int(pt_index), "/", int(GRID_MAX_POINTS), ".");

4
Marlin/src/gcode/calibrate/G34_M422.cpp

@ -432,11 +432,11 @@ void GcodeSuite::M422() {
}; };
if (is_probe_point) { if (is_probe_point) {
if (!position_is_reachable_by_probe(pos.x, Y_CENTER)) { if (!probe.can_reach(pos.x, Y_CENTER)) {
SERIAL_ECHOLNPGM("?(X) out of bounds."); SERIAL_ECHOLNPGM("?(X) out of bounds.");
return; return;
} }
if (!position_is_reachable_by_probe(pos)) { if (!probe.can_reach(pos)) {
SERIAL_ECHOLNPGM("?(Y) out of bounds."); SERIAL_ECHOLNPGM("?(Y) out of bounds.");
return; return;
} }

2
Marlin/src/gcode/calibrate/G76_M871.cpp

@ -116,7 +116,7 @@ void GcodeSuite::G76() {
temp_comp.measure_point_x - probe.offset_xy.x, temp_comp.measure_point_x - probe.offset_xy.x,
temp_comp.measure_point_y - probe.offset_xy.y temp_comp.measure_point_y - probe.offset_xy.y
); );
if (!position_is_reachable_by_probe(destination)) { if (!probe.can_reach(destination)) {
SERIAL_ECHOLNPGM("!Probe position unreachable - aborting."); SERIAL_ECHOLNPGM("!Probe position unreachable - aborting.");
return; return;
} }

8
Marlin/src/gcode/calibrate/M48.cpp

@ -80,11 +80,11 @@ void GcodeSuite::M48() {
xy_float_t next_pos = current_position; xy_float_t next_pos = current_position;
const xy_pos_t probe_pos = { const xy_pos_t probe_pos = {
parser.linearval('X', next_pos.x + probe.offset_xy.x), parser.linearval('X', next_pos.x + probe.offset_xy.x), // If no X use the probe's current X position
parser.linearval('Y', next_pos.y + probe.offset_xy.y) parser.linearval('Y', next_pos.y + probe.offset_xy.y) // If no Y, ditto
}; };
if (!position_is_reachable_by_probe(probe_pos)) { if (!probe.can_reach(probe_pos)) {
SERIAL_ECHOLNPGM("? (X,Y) out of bounds."); SERIAL_ECHOLNPGM("? (X,Y) out of bounds.");
return; return;
} }
@ -179,7 +179,7 @@ void GcodeSuite::M48() {
#else #else
// If we have gone out too far, we can do a simple fix and scale the numbers // If we have gone out too far, we can do a simple fix and scale the numbers
// back in closer to the origin. // back in closer to the origin.
while (!position_is_reachable_by_probe(next_pos)) { while (!probe.can_reach(next_pos)) {
next_pos *= 0.8f; next_pos *= 0.8f;
if (verbose_level > 3) if (verbose_level > 3)
SERIAL_ECHOLNPAIR_P(PSTR("Moving inward: X"), next_pos.x, SP_Y_STR, next_pos.y); SERIAL_ECHOLNPAIR_P(PSTR("Moving inward: X"), next_pos.x, SP_Y_STR, next_pos.y);

2
Marlin/src/gcode/probe/G30.cpp

@ -43,7 +43,7 @@ void GcodeSuite::G30() {
const xy_pos_t pos = { parser.linearval('X', current_position.x + probe.offset_xy.x), const xy_pos_t pos = { parser.linearval('X', current_position.x + probe.offset_xy.x),
parser.linearval('Y', current_position.y + probe.offset_xy.y) }; parser.linearval('Y', current_position.y + probe.offset_xy.y) };
if (!position_is_reachable_by_probe(pos)) return; if (!probe.can_reach(pos)) return;
// Disable leveling so the planner won't mess with us // Disable leveling so the planner won't mess with us
#if HAS_LEVELING #if HAS_LEVELING

59
Marlin/src/module/motion.h

@ -30,10 +30,6 @@
#include "../inc/MarlinConfig.h" #include "../inc/MarlinConfig.h"
#if HAS_BED_PROBE
#include "probe.h"
#endif
#if IS_SCARA #if IS_SCARA
#include "scara.h" #include "scara.h"
#endif #endif
@ -58,7 +54,7 @@ FORCE_INLINE bool homing_needed() {
} }
// Error margin to work around float imprecision // Error margin to work around float imprecision
constexpr float slop = 0.0001; constexpr float fslop = 0.0001;
extern bool relative_mode; extern bool relative_mode;
@ -306,7 +302,7 @@ void homeaxis(const AxisEnum axis);
// Return true if the given point is within the printable area // Return true if the given point is within the printable area
inline bool position_is_reachable(const float &rx, const float &ry, const float inset=0) { inline bool position_is_reachable(const float &rx, const float &ry, const float inset=0) {
#if ENABLED(DELTA) #if ENABLED(DELTA)
return HYPOT2(rx, ry) <= sq(DELTA_PRINTABLE_RADIUS - inset + slop); return HYPOT2(rx, ry) <= sq(DELTA_PRINTABLE_RADIUS - inset + fslop);
#elif IS_SCARA #elif IS_SCARA
const float R2 = HYPOT2(rx - SCARA_OFFSET_X, ry - SCARA_OFFSET_Y); const float R2 = HYPOT2(rx - SCARA_OFFSET_X, ry - SCARA_OFFSET_Y);
return ( return (
@ -322,67 +318,24 @@ void homeaxis(const AxisEnum axis);
return position_is_reachable(pos.x, pos.y, inset); return position_is_reachable(pos.x, pos.y, inset);
} }
#if HAS_BED_PROBE
#if HAS_PROBE_XY_OFFSET
// Return true if the both nozzle and the probe can reach the given point.
// Note: This won't work on SCARA since the probe offset rotates with the arm.
inline bool position_is_reachable_by_probe(const float &rx, const float &ry) {
return position_is_reachable(rx - probe.offset_xy.x, ry - probe.offset_xy.y)
&& position_is_reachable(rx, ry, ABS(MIN_PROBE_EDGE));
}
#else
FORCE_INLINE bool position_is_reachable_by_probe(const float &rx, const float &ry) {
return position_is_reachable(rx, ry, MIN_PROBE_EDGE);
}
#endif
#endif // HAS_BED_PROBE
#else // CARTESIAN #else // CARTESIAN
// Return true if the given position is within the machine bounds. // Return true if the given position is within the machine bounds.
inline bool position_is_reachable(const float &rx, const float &ry) { inline bool position_is_reachable(const float &rx, const float &ry) {
if (!WITHIN(ry, Y_MIN_POS - slop, Y_MAX_POS + slop)) return false; if (!WITHIN(ry, Y_MIN_POS - fslop, Y_MAX_POS + fslop)) return false;
#if ENABLED(DUAL_X_CARRIAGE) #if ENABLED(DUAL_X_CARRIAGE)
if (active_extruder) if (active_extruder)
return WITHIN(rx, X2_MIN_POS - slop, X2_MAX_POS + slop); return WITHIN(rx, X2_MIN_POS - fslop, X2_MAX_POS + fslop);
else else
return WITHIN(rx, X1_MIN_POS - slop, X1_MAX_POS + slop); return WITHIN(rx, X1_MIN_POS - fslop, X1_MAX_POS + fslop);
#else #else
return WITHIN(rx, X_MIN_POS - slop, X_MAX_POS + slop); return WITHIN(rx, X_MIN_POS - fslop, X_MAX_POS + fslop);
#endif #endif
} }
inline bool position_is_reachable(const xy_pos_t &pos) { return position_is_reachable(pos.x, pos.y); } inline bool position_is_reachable(const xy_pos_t &pos) { return position_is_reachable(pos.x, pos.y); }
#if HAS_BED_PROBE
/**
* Return whether the given position is within the bed, and whether the nozzle
* can reach the position required to put the probe at the given position.
*
* Example: For a probe offset of -10,+10, then for the probe to reach 0,0 the
* nozzle must be be able to reach +10,-10.
*/
inline bool position_is_reachable_by_probe(const float &rx, const float &ry) {
return position_is_reachable(rx - probe.offset_xy.x, ry - probe.offset_xy.y)
&& WITHIN(rx, probe.min_x() - slop, probe.max_x() + slop)
&& WITHIN(ry, probe.min_y() - slop, probe.max_y() + slop);
}
#endif // HAS_BED_PROBE
#endif // CARTESIAN #endif // CARTESIAN
#if !HAS_BED_PROBE
FORCE_INLINE bool position_is_reachable_by_probe(const float &rx, const float &ry) { return position_is_reachable(rx, ry); }
#endif
FORCE_INLINE bool position_is_reachable_by_probe(const xy_pos_t &pos) { return position_is_reachable_by_probe(pos.x, pos.y); }
/** /**
* Duplication mode * Duplication mode
*/ */

4
Marlin/src/module/probe.cpp

@ -89,7 +89,7 @@ Probe probe;
xyz_pos_t Probe::offset; // Initialized by settings.load() xyz_pos_t Probe::offset; // Initialized by settings.load()
#if HAS_PROBE_XY_OFFSET #if HAS_PROBE_XY_OFFSET
const xyz_pos_t &Probe::offset_xy = probe.offset; const xyz_pos_t &Probe::offset_xy = Probe::offset;
#endif #endif
#if ENABLED(Z_PROBE_SLED) #if ENABLED(Z_PROBE_SLED)
@ -727,7 +727,7 @@ float Probe::probe_at_point(const float &rx, const float &ry, const ProbePtRaise
// TODO: Adapt for SCARA, where the offset rotates // TODO: Adapt for SCARA, where the offset rotates
xyz_pos_t npos = { rx, ry }; xyz_pos_t npos = { rx, ry };
if (probe_relative) { // The given position is in terms of the probe if (probe_relative) { // The given position is in terms of the probe
if (!position_is_reachable_by_probe(npos)) { if (!can_reach(npos)) {
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Position Not Reachable"); if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Position Not Reachable");
return NAN; return NAN;
} }

49
Marlin/src/module/probe.h

@ -27,6 +27,8 @@
#include "../inc/MarlinConfig.h" #include "../inc/MarlinConfig.h"
#include "motion.h"
#if HAS_BED_PROBE #if HAS_BED_PROBE
enum ProbePtRaise : uint8_t { enum ProbePtRaise : uint8_t {
PROBE_PT_NONE, // No raise or stow after run_z_probe PROBE_PT_NONE, // No raise or stow after run_z_probe
@ -45,6 +47,39 @@ public:
static bool set_deployed(const bool deploy); static bool set_deployed(const bool deploy);
#if IS_KINEMATIC
#if HAS_PROBE_XY_OFFSET
// Return true if the both nozzle and the probe can reach the given point.
// Note: This won't work on SCARA since the probe offset rotates with the arm.
static inline bool can_reach(const float &rx, const float &ry) {
return position_is_reachable(rx - offset_xy.x, ry - offset_xy.y) // The nozzle can go where it needs to go?
&& position_is_reachable(rx, ry, ABS(MIN_PROBE_EDGE)); // Can the nozzle also go near there?
}
#else
FORCE_INLINE static bool can_reach(const float &rx, const float &ry) {
return position_is_reachable(rx, ry, MIN_PROBE_EDGE);
}
#endif
#else
/**
* Return whether the given position is within the bed, and whether the nozzle
* can reach the position required to put the probe at the given position.
*
* Example: For a probe offset of -10,+10, then for the probe to reach 0,0 the
* nozzle must be be able to reach +10,-10.
*/
static inline bool can_reach(const float &rx, const float &ry) {
return position_is_reachable(rx - offset_xy.x, ry - offset_xy.y)
&& WITHIN(rx, min_x() - fslop, max_x() + fslop)
&& WITHIN(ry, min_y() - fslop, max_y() + fslop);
}
#endif
#ifdef Z_AFTER_PROBING #ifdef Z_AFTER_PROBING
static void move_z_after_probing(); static void move_z_after_probing();
#endif #endif
@ -62,8 +97,22 @@ public:
static bool set_deployed(const bool) { return false; } static bool set_deployed(const bool) { return false; }
FORCE_INLINE static bool can_reach(const float &rx, const float &ry) { return position_is_reachable(rx, ry); }
#endif #endif
FORCE_INLINE static bool can_reach(const xy_pos_t &pos) { return can_reach(pos.x, pos.y); }
FORCE_INLINE static bool good_bounds(const xy_pos_t &lf, const xy_pos_t &rb) {
return (
#if IS_KINEMATIC
can_reach(lf.x, 0) && can_reach(rb.x, 0) && can_reach(0, lf.y) && can_reach(0, rb.y)
#else
can_reach(lf) && can_reach(rb)
#endif
);
}
// Use offset_xy for read only access // Use offset_xy for read only access
// More optimal the XY offset is known to always be zero. // More optimal the XY offset is known to always be zero.
#if HAS_PROBE_XY_OFFSET #if HAS_PROBE_XY_OFFSET

Loading…
Cancel
Save