|
|
@ -46,275 +46,275 @@ struct mesh_index_pair; |
|
|
|
#endif |
|
|
|
|
|
|
|
class unified_bed_leveling { |
|
|
|
private: |
|
|
|
|
|
|
|
static int g29_verbose_level, |
|
|
|
g29_phase_value, |
|
|
|
g29_repetition_cnt, |
|
|
|
g29_storage_slot, |
|
|
|
g29_map_type; |
|
|
|
static bool g29_c_flag; |
|
|
|
static float g29_card_thickness, |
|
|
|
g29_constant; |
|
|
|
static xy_pos_t g29_pos; |
|
|
|
static xy_bool_t xy_seen; |
|
|
|
|
|
|
|
#if HAS_BED_PROBE |
|
|
|
static int g29_grid_size; |
|
|
|
#endif |
|
|
|
|
|
|
|
#if IS_NEWPANEL |
|
|
|
static void move_z_with_encoder(const float &multiplier); |
|
|
|
static float measure_point_with_encoder(); |
|
|
|
static float measure_business_card_thickness(); |
|
|
|
static void manually_probe_remaining_mesh(const xy_pos_t&, const float&, const float&, const bool) _O0; |
|
|
|
static void fine_tune_mesh(const xy_pos_t &pos, const bool do_ubl_mesh_map) _O0; |
|
|
|
#endif |
|
|
|
private: |
|
|
|
|
|
|
|
static int g29_verbose_level, |
|
|
|
g29_phase_value, |
|
|
|
g29_repetition_cnt, |
|
|
|
g29_storage_slot, |
|
|
|
g29_map_type; |
|
|
|
static bool g29_c_flag; |
|
|
|
static float g29_card_thickness, |
|
|
|
g29_constant; |
|
|
|
static xy_pos_t g29_pos; |
|
|
|
static xy_bool_t xy_seen; |
|
|
|
|
|
|
|
#if HAS_BED_PROBE |
|
|
|
static int g29_grid_size; |
|
|
|
#endif |
|
|
|
|
|
|
|
#if IS_NEWPANEL |
|
|
|
static void move_z_with_encoder(const float &multiplier); |
|
|
|
static float measure_point_with_encoder(); |
|
|
|
static float measure_business_card_thickness(); |
|
|
|
static void manually_probe_remaining_mesh(const xy_pos_t&, const float&, const float&, const bool) _O0; |
|
|
|
static void fine_tune_mesh(const xy_pos_t &pos, const bool do_ubl_mesh_map) _O0; |
|
|
|
#endif |
|
|
|
|
|
|
|
static bool g29_parameter_parsing() _O0; |
|
|
|
static void shift_mesh_height(); |
|
|
|
static void probe_entire_mesh(const xy_pos_t &near, const bool do_ubl_mesh_map, const bool stow_probe, const bool do_furthest) _O0; |
|
|
|
static void tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3); |
|
|
|
static void tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map); |
|
|
|
static bool smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir); |
|
|
|
static inline bool smart_fill_one(const xy_uint8_t &pos, const xy_uint8_t &dir) { |
|
|
|
return smart_fill_one(pos.x, pos.y, dir.x, dir.y); |
|
|
|
} |
|
|
|
static void smart_fill_mesh(); |
|
|
|
|
|
|
|
#if ENABLED(UBL_DEVEL_DEBUGGING) |
|
|
|
static void g29_what_command(); |
|
|
|
static void g29_eeprom_dump(); |
|
|
|
static void g29_compare_current_mesh_to_stored_mesh(); |
|
|
|
#endif |
|
|
|
|
|
|
|
public: |
|
|
|
|
|
|
|
static void echo_name(); |
|
|
|
static void report_current_mesh(); |
|
|
|
static void report_state(); |
|
|
|
static void save_ubl_active_state_and_disable(); |
|
|
|
static void restore_ubl_active_state_and_leave(); |
|
|
|
static void display_map(const int) _O0; |
|
|
|
static mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType, const xy_pos_t&, const bool=false, MeshFlags *done_flags=nullptr) _O0; |
|
|
|
static mesh_index_pair find_furthest_invalid_mesh_point() _O0; |
|
|
|
static void reset(); |
|
|
|
static void invalidate(); |
|
|
|
static void set_all_mesh_points_to_value(const float value); |
|
|
|
static void adjust_mesh_to_mean(const bool cflag, const float value); |
|
|
|
static bool sanity_check(); |
|
|
|
|
|
|
|
static void G29() _O0; // O0 for no optimization
|
|
|
|
static void smart_fill_wlsf(const float &) _O2; // O2 gives smaller code than Os on A2560
|
|
|
|
|
|
|
|
static int8_t storage_slot; |
|
|
|
|
|
|
|
static bed_mesh_t z_values; |
|
|
|
#if ENABLED(OPTIMIZED_MESH_STORAGE) |
|
|
|
static void set_store_from_mesh(const bed_mesh_t &in_values, mesh_store_t &stored_values); |
|
|
|
static void set_mesh_from_store(const mesh_store_t &stored_values, bed_mesh_t &out_values); |
|
|
|
#endif |
|
|
|
static const float _mesh_index_to_xpos[GRID_MAX_POINTS_X], |
|
|
|
_mesh_index_to_ypos[GRID_MAX_POINTS_Y]; |
|
|
|
|
|
|
|
#if HAS_LCD_MENU |
|
|
|
static bool lcd_map_control; |
|
|
|
static void steppers_were_disabled(); |
|
|
|
#else |
|
|
|
static inline void steppers_were_disabled() {} |
|
|
|
#endif |
|
|
|
|
|
|
|
static volatile int16_t encoder_diff; // Volatile because buttons may changed it at interrupt time
|
|
|
|
|
|
|
|
unified_bed_leveling(); |
|
|
|
|
|
|
|
FORCE_INLINE static void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; } |
|
|
|
|
|
|
|
static int8_t cell_index_x_raw(const float &x) { |
|
|
|
return FLOOR((x - (MESH_MIN_X)) * RECIPROCAL(MESH_X_DIST)); |
|
|
|
} |
|
|
|
|
|
|
|
static int8_t cell_index_y_raw(const float &y) { |
|
|
|
return FLOOR((y - (MESH_MIN_Y)) * RECIPROCAL(MESH_Y_DIST)); |
|
|
|
} |
|
|
|
|
|
|
|
static int8_t cell_index_x_valid(const float &x) { |
|
|
|
return WITHIN(cell_index_x_raw(x), 0, (GRID_MAX_POINTS_X - 2)); |
|
|
|
} |
|
|
|
|
|
|
|
static int8_t cell_index_y_valid(const float &y) { |
|
|
|
return WITHIN(cell_index_y_raw(y), 0, (GRID_MAX_POINTS_Y - 2)); |
|
|
|
} |
|
|
|
|
|
|
|
static int8_t cell_index_x(const float &x) { |
|
|
|
return constrain(cell_index_x_raw(x), 0, (GRID_MAX_POINTS_X) - 2); |
|
|
|
} |
|
|
|
|
|
|
|
static int8_t cell_index_y(const float &y) { |
|
|
|
return constrain(cell_index_y_raw(y), 0, (GRID_MAX_POINTS_Y) - 2); |
|
|
|
} |
|
|
|
|
|
|
|
static inline xy_int8_t cell_indexes(const float &x, const float &y) { |
|
|
|
return { cell_index_x(x), cell_index_y(y) }; |
|
|
|
} |
|
|
|
static inline xy_int8_t cell_indexes(const xy_pos_t &xy) { return cell_indexes(xy.x, xy.y); } |
|
|
|
|
|
|
|
static int8_t closest_x_index(const float &x) { |
|
|
|
const int8_t px = (x - (MESH_MIN_X) + (MESH_X_DIST) * 0.5) * RECIPROCAL(MESH_X_DIST); |
|
|
|
return WITHIN(px, 0, GRID_MAX_POINTS_X - 1) ? px : -1; |
|
|
|
} |
|
|
|
static int8_t closest_y_index(const float &y) { |
|
|
|
const int8_t py = (y - (MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * RECIPROCAL(MESH_Y_DIST); |
|
|
|
return WITHIN(py, 0, GRID_MAX_POINTS_Y - 1) ? py : -1; |
|
|
|
} |
|
|
|
static inline xy_int8_t closest_indexes(const xy_pos_t &xy) { |
|
|
|
return { closest_x_index(xy.x), closest_y_index(xy.y) }; |
|
|
|
} |
|
|
|
|
|
|
|
/**
|
|
|
|
* z2 --| |
|
|
|
* z0 | | |
|
|
|
* | | + (z2-z1) |
|
|
|
* z1 | | | |
|
|
|
* ---+-------------+--------+-- --| |
|
|
|
* a1 a0 a2 |
|
|
|
* |<---delta_a---------->| |
|
|
|
* |
|
|
|
* calc_z0 is the basis for all the Mesh Based correction. It is used to |
|
|
|
* find the expected Z Height at a position between two known Z-Height locations. |
|
|
|
* |
|
|
|
* It is fairly expensive with its 4 floating point additions and 2 floating point |
|
|
|
* multiplications. |
|
|
|
*/ |
|
|
|
FORCE_INLINE static float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) { |
|
|
|
return z1 + (z2 - z1) * (a0 - a1) / (a2 - a1); |
|
|
|
} |
|
|
|
|
|
|
|
#ifdef UBL_Z_RAISE_WHEN_OFF_MESH |
|
|
|
#define _UBL_OUTER_Z_RAISE UBL_Z_RAISE_WHEN_OFF_MESH |
|
|
|
#else |
|
|
|
#define _UBL_OUTER_Z_RAISE NAN |
|
|
|
#endif |
|
|
|
|
|
|
|
/**
|
|
|
|
* z_correction_for_x_on_horizontal_mesh_line is an optimization for |
|
|
|
* the case where the printer is making a vertical line that only crosses horizontal mesh lines. |
|
|
|
*/ |
|
|
|
static inline float z_correction_for_x_on_horizontal_mesh_line(const float &rx0, const int x1_i, const int yi) { |
|
|
|
if (!WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(yi, 0, GRID_MAX_POINTS_Y - 1)) { |
|
|
|
|
|
|
|
if (DEBUGGING(LEVELING)) { |
|
|
|
if (WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1)) DEBUG_ECHOPGM("yi"); else DEBUG_ECHOPGM("x1_i"); |
|
|
|
DEBUG_ECHOLNPAIR(" out of bounds in z_correction_for_x_on_horizontal_mesh_line(rx0=", rx0, ",x1_i=", x1_i, ",yi=", yi, ")"); |
|
|
|
} |
|
|
|
|
|
|
|
static bool g29_parameter_parsing() _O0; |
|
|
|
static void shift_mesh_height(); |
|
|
|
static void probe_entire_mesh(const xy_pos_t &near, const bool do_ubl_mesh_map, const bool stow_probe, const bool do_furthest) _O0; |
|
|
|
static void tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3); |
|
|
|
static void tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map); |
|
|
|
static bool smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir); |
|
|
|
static inline bool smart_fill_one(const xy_uint8_t &pos, const xy_uint8_t &dir) { |
|
|
|
return smart_fill_one(pos.x, pos.y, dir.x, dir.y); |
|
|
|
// The requested location is off the mesh. Return UBL_Z_RAISE_WHEN_OFF_MESH or NAN.
|
|
|
|
return _UBL_OUTER_Z_RAISE; |
|
|
|
} |
|
|
|
static void smart_fill_mesh(); |
|
|
|
|
|
|
|
#if ENABLED(UBL_DEVEL_DEBUGGING) |
|
|
|
static void g29_what_command(); |
|
|
|
static void g29_eeprom_dump(); |
|
|
|
static void g29_compare_current_mesh_to_stored_mesh(); |
|
|
|
#endif |
|
|
|
|
|
|
|
public: |
|
|
|
|
|
|
|
static void echo_name(); |
|
|
|
static void report_current_mesh(); |
|
|
|
static void report_state(); |
|
|
|
static void save_ubl_active_state_and_disable(); |
|
|
|
static void restore_ubl_active_state_and_leave(); |
|
|
|
static void display_map(const int) _O0; |
|
|
|
static mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType, const xy_pos_t&, const bool=false, MeshFlags *done_flags=nullptr) _O0; |
|
|
|
static mesh_index_pair find_furthest_invalid_mesh_point() _O0; |
|
|
|
static void reset(); |
|
|
|
static void invalidate(); |
|
|
|
static void set_all_mesh_points_to_value(const float value); |
|
|
|
static void adjust_mesh_to_mean(const bool cflag, const float value); |
|
|
|
static bool sanity_check(); |
|
|
|
|
|
|
|
static void G29() _O0; // O0 for no optimization
|
|
|
|
static void smart_fill_wlsf(const float &) _O2; // O2 gives smaller code than Os on A2560
|
|
|
|
|
|
|
|
static int8_t storage_slot; |
|
|
|
|
|
|
|
static bed_mesh_t z_values; |
|
|
|
#if ENABLED(OPTIMIZED_MESH_STORAGE) |
|
|
|
static void set_store_from_mesh(const bed_mesh_t &in_values, mesh_store_t &stored_values); |
|
|
|
static void set_mesh_from_store(const mesh_store_t &stored_values, bed_mesh_t &out_values); |
|
|
|
#endif |
|
|
|
static const float _mesh_index_to_xpos[GRID_MAX_POINTS_X], |
|
|
|
_mesh_index_to_ypos[GRID_MAX_POINTS_Y]; |
|
|
|
|
|
|
|
#if HAS_LCD_MENU |
|
|
|
static bool lcd_map_control; |
|
|
|
static void steppers_were_disabled(); |
|
|
|
#else |
|
|
|
static inline void steppers_were_disabled() {} |
|
|
|
#endif |
|
|
|
|
|
|
|
static volatile int16_t encoder_diff; // Volatile because buttons may changed it at interrupt time
|
|
|
|
const float xratio = (rx0 - mesh_index_to_xpos(x1_i)) * RECIPROCAL(MESH_X_DIST), |
|
|
|
z1 = z_values[x1_i][yi]; |
|
|
|
|
|
|
|
unified_bed_leveling(); |
|
|
|
return z1 + xratio * (z_values[_MIN(x1_i, GRID_MAX_POINTS_X - 2) + 1][yi] - z1); // Don't allow x1_i+1 to be past the end of the array
|
|
|
|
// If it is, it is clamped to the last element of the
|
|
|
|
// z_values[][] array and no correction is applied.
|
|
|
|
} |
|
|
|
|
|
|
|
FORCE_INLINE static void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; } |
|
|
|
//
|
|
|
|
// See comments above for z_correction_for_x_on_horizontal_mesh_line
|
|
|
|
//
|
|
|
|
static inline float z_correction_for_y_on_vertical_mesh_line(const float &ry0, const int xi, const int y1_i) { |
|
|
|
if (!WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(y1_i, 0, GRID_MAX_POINTS_Y - 1)) { |
|
|
|
|
|
|
|
static int8_t cell_index_x_raw(const float &x) { |
|
|
|
return FLOOR((x - (MESH_MIN_X)) * RECIPROCAL(MESH_X_DIST)); |
|
|
|
} |
|
|
|
|
|
|
|
static int8_t cell_index_y_raw(const float &y) { |
|
|
|
return FLOOR((y - (MESH_MIN_Y)) * RECIPROCAL(MESH_Y_DIST)); |
|
|
|
} |
|
|
|
|
|
|
|
static int8_t cell_index_x_valid(const float &x) { |
|
|
|
return WITHIN(cell_index_x_raw(x), 0, (GRID_MAX_POINTS_X - 2)); |
|
|
|
} |
|
|
|
if (DEBUGGING(LEVELING)) { |
|
|
|
if (WITHIN(xi, 0, GRID_MAX_POINTS_X - 1)) DEBUG_ECHOPGM("y1_i"); else DEBUG_ECHOPGM("xi"); |
|
|
|
DEBUG_ECHOLNPAIR(" out of bounds in z_correction_for_y_on_vertical_mesh_line(ry0=", ry0, ", xi=", xi, ", y1_i=", y1_i, ")"); |
|
|
|
} |
|
|
|
|
|
|
|
static int8_t cell_index_y_valid(const float &y) { |
|
|
|
return WITHIN(cell_index_y_raw(y), 0, (GRID_MAX_POINTS_Y - 2)); |
|
|
|
// The requested location is off the mesh. Return UBL_Z_RAISE_WHEN_OFF_MESH or NAN.
|
|
|
|
return _UBL_OUTER_Z_RAISE; |
|
|
|
} |
|
|
|
|
|
|
|
static int8_t cell_index_x(const float &x) { |
|
|
|
return constrain(cell_index_x_raw(x), 0, (GRID_MAX_POINTS_X) - 2); |
|
|
|
} |
|
|
|
const float yratio = (ry0 - mesh_index_to_ypos(y1_i)) * RECIPROCAL(MESH_Y_DIST), |
|
|
|
z1 = z_values[xi][y1_i]; |
|
|
|
|
|
|
|
static int8_t cell_index_y(const float &y) { |
|
|
|
return constrain(cell_index_y_raw(y), 0, (GRID_MAX_POINTS_Y) - 2); |
|
|
|
} |
|
|
|
return z1 + yratio * (z_values[xi][_MIN(y1_i, GRID_MAX_POINTS_Y - 2) + 1] - z1); // Don't allow y1_i+1 to be past the end of the array
|
|
|
|
// If it is, it is clamped to the last element of the
|
|
|
|
// z_values[][] array and no correction is applied.
|
|
|
|
} |
|
|
|
|
|
|
|
static inline xy_int8_t cell_indexes(const float &x, const float &y) { |
|
|
|
return { cell_index_x(x), cell_index_y(y) }; |
|
|
|
} |
|
|
|
static inline xy_int8_t cell_indexes(const xy_pos_t &xy) { return cell_indexes(xy.x, xy.y); } |
|
|
|
|
|
|
|
static int8_t closest_x_index(const float &x) { |
|
|
|
const int8_t px = (x - (MESH_MIN_X) + (MESH_X_DIST) * 0.5) * RECIPROCAL(MESH_X_DIST); |
|
|
|
return WITHIN(px, 0, GRID_MAX_POINTS_X - 1) ? px : -1; |
|
|
|
} |
|
|
|
static int8_t closest_y_index(const float &y) { |
|
|
|
const int8_t py = (y - (MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * RECIPROCAL(MESH_Y_DIST); |
|
|
|
return WITHIN(py, 0, GRID_MAX_POINTS_Y - 1) ? py : -1; |
|
|
|
} |
|
|
|
static inline xy_int8_t closest_indexes(const xy_pos_t &xy) { |
|
|
|
return { closest_x_index(xy.x), closest_y_index(xy.y) }; |
|
|
|
} |
|
|
|
/**
|
|
|
|
* This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first |
|
|
|
* does a linear interpolation along both of the bounding X-Mesh-Lines to find the |
|
|
|
* Z-Height at both ends. Then it does a linear interpolation of these heights based |
|
|
|
* on the Y position within the cell. |
|
|
|
*/ |
|
|
|
static float get_z_correction(const float &rx0, const float &ry0) { |
|
|
|
const int8_t cx = cell_index_x(rx0), cy = cell_index_y(ry0); // return values are clamped
|
|
|
|
|
|
|
|
/**
|
|
|
|
* z2 --| |
|
|
|
* z0 | | |
|
|
|
* | | + (z2-z1) |
|
|
|
* z1 | | | |
|
|
|
* ---+-------------+--------+-- --| |
|
|
|
* a1 a0 a2 |
|
|
|
* |<---delta_a---------->| |
|
|
|
* |
|
|
|
* calc_z0 is the basis for all the Mesh Based correction. It is used to |
|
|
|
* find the expected Z Height at a position between two known Z-Height locations. |
|
|
|
* |
|
|
|
* It is fairly expensive with its 4 floating point additions and 2 floating point |
|
|
|
* multiplications. |
|
|
|
* Check if the requested location is off the mesh. If so, and |
|
|
|
* UBL_Z_RAISE_WHEN_OFF_MESH is specified, that value is returned. |
|
|
|
*/ |
|
|
|
FORCE_INLINE static float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) { |
|
|
|
return z1 + (z2 - z1) * (a0 - a1) / (a2 - a1); |
|
|
|
} |
|
|
|
|
|
|
|
#ifdef UBL_Z_RAISE_WHEN_OFF_MESH |
|
|
|
#define _UBL_OUTER_Z_RAISE UBL_Z_RAISE_WHEN_OFF_MESH |
|
|
|
#else |
|
|
|
#define _UBL_OUTER_Z_RAISE NAN |
|
|
|
if (!WITHIN(rx0, MESH_MIN_X, MESH_MAX_X) || !WITHIN(ry0, MESH_MIN_Y, MESH_MAX_Y)) |
|
|
|
return UBL_Z_RAISE_WHEN_OFF_MESH; |
|
|
|
#endif |
|
|
|
|
|
|
|
/**
|
|
|
|
* z_correction_for_x_on_horizontal_mesh_line is an optimization for |
|
|
|
* the case where the printer is making a vertical line that only crosses horizontal mesh lines. |
|
|
|
*/ |
|
|
|
static inline float z_correction_for_x_on_horizontal_mesh_line(const float &rx0, const int x1_i, const int yi) { |
|
|
|
if (!WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(yi, 0, GRID_MAX_POINTS_Y - 1)) { |
|
|
|
|
|
|
|
if (DEBUGGING(LEVELING)) { |
|
|
|
if (WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1)) DEBUG_ECHOPGM("yi"); else DEBUG_ECHOPGM("x1_i"); |
|
|
|
DEBUG_ECHOLNPAIR(" out of bounds in z_correction_for_x_on_horizontal_mesh_line(rx0=", rx0, ",x1_i=", x1_i, ",yi=", yi, ")"); |
|
|
|
} |
|
|
|
const float z1 = calc_z0(rx0, |
|
|
|
mesh_index_to_xpos(cx), z_values[cx][cy], |
|
|
|
mesh_index_to_xpos(cx + 1), z_values[_MIN(cx, GRID_MAX_POINTS_X - 2) + 1][cy]); |
|
|
|
|
|
|
|
// The requested location is off the mesh. Return UBL_Z_RAISE_WHEN_OFF_MESH or NAN.
|
|
|
|
return _UBL_OUTER_Z_RAISE; |
|
|
|
} |
|
|
|
const float z2 = calc_z0(rx0, |
|
|
|
mesh_index_to_xpos(cx), z_values[cx][_MIN(cy, GRID_MAX_POINTS_Y - 2) + 1], |
|
|
|
mesh_index_to_xpos(cx + 1), z_values[_MIN(cx, GRID_MAX_POINTS_X - 2) + 1][_MIN(cy, GRID_MAX_POINTS_Y - 2) + 1]); |
|
|
|
|
|
|
|
const float xratio = (rx0 - mesh_index_to_xpos(x1_i)) * RECIPROCAL(MESH_X_DIST), |
|
|
|
z1 = z_values[x1_i][yi]; |
|
|
|
float z0 = calc_z0(ry0, |
|
|
|
mesh_index_to_ypos(cy), z1, |
|
|
|
mesh_index_to_ypos(cy + 1), z2); |
|
|
|
|
|
|
|
return z1 + xratio * (z_values[_MIN(x1_i, GRID_MAX_POINTS_X - 2) + 1][yi] - z1); // Don't allow x1_i+1 to be past the end of the array
|
|
|
|
// If it is, it is clamped to the last element of the
|
|
|
|
// z_values[][] array and no correction is applied.
|
|
|
|
if (DEBUGGING(MESH_ADJUST)) { |
|
|
|
DEBUG_ECHOPAIR(" raw get_z_correction(", rx0); |
|
|
|
DEBUG_CHAR(','); DEBUG_ECHO(ry0); |
|
|
|
DEBUG_ECHOPAIR_F(") = ", z0, 6); |
|
|
|
DEBUG_ECHOLNPAIR_F(" >>>---> ", z0, 6); |
|
|
|
} |
|
|
|
|
|
|
|
//
|
|
|
|
// See comments above for z_correction_for_x_on_horizontal_mesh_line
|
|
|
|
//
|
|
|
|
static inline float z_correction_for_y_on_vertical_mesh_line(const float &ry0, const int xi, const int y1_i) { |
|
|
|
if (!WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(y1_i, 0, GRID_MAX_POINTS_Y - 1)) { |
|
|
|
|
|
|
|
if (DEBUGGING(LEVELING)) { |
|
|
|
if (WITHIN(xi, 0, GRID_MAX_POINTS_X - 1)) DEBUG_ECHOPGM("y1_i"); else DEBUG_ECHOPGM("xi"); |
|
|
|
DEBUG_ECHOLNPAIR(" out of bounds in z_correction_for_y_on_vertical_mesh_line(ry0=", ry0, ", xi=", xi, ", y1_i=", y1_i, ")"); |
|
|
|
} |
|
|
|
|
|
|
|
// The requested location is off the mesh. Return UBL_Z_RAISE_WHEN_OFF_MESH or NAN.
|
|
|
|
return _UBL_OUTER_Z_RAISE; |
|
|
|
} |
|
|
|
|
|
|
|
const float yratio = (ry0 - mesh_index_to_ypos(y1_i)) * RECIPROCAL(MESH_Y_DIST), |
|
|
|
z1 = z_values[xi][y1_i]; |
|
|
|
|
|
|
|
return z1 + yratio * (z_values[xi][_MIN(y1_i, GRID_MAX_POINTS_Y - 2) + 1] - z1); // Don't allow y1_i+1 to be past the end of the array
|
|
|
|
// If it is, it is clamped to the last element of the
|
|
|
|
// z_values[][] array and no correction is applied.
|
|
|
|
} |
|
|
|
|
|
|
|
/**
|
|
|
|
* This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first |
|
|
|
* does a linear interpolation along both of the bounding X-Mesh-Lines to find the |
|
|
|
* Z-Height at both ends. Then it does a linear interpolation of these heights based |
|
|
|
* on the Y position within the cell. |
|
|
|
*/ |
|
|
|
static float get_z_correction(const float &rx0, const float &ry0) { |
|
|
|
const int8_t cx = cell_index_x(rx0), cy = cell_index_y(ry0); // return values are clamped
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Check if the requested location is off the mesh. If so, and |
|
|
|
* UBL_Z_RAISE_WHEN_OFF_MESH is specified, that value is returned. |
|
|
|
*/ |
|
|
|
#ifdef UBL_Z_RAISE_WHEN_OFF_MESH |
|
|
|
if (!WITHIN(rx0, MESH_MIN_X, MESH_MAX_X) || !WITHIN(ry0, MESH_MIN_Y, MESH_MAX_Y)) |
|
|
|
return UBL_Z_RAISE_WHEN_OFF_MESH; |
|
|
|
#endif |
|
|
|
|
|
|
|
const float z1 = calc_z0(rx0, |
|
|
|
mesh_index_to_xpos(cx), z_values[cx][cy], |
|
|
|
mesh_index_to_xpos(cx + 1), z_values[_MIN(cx, GRID_MAX_POINTS_X - 2) + 1][cy]); |
|
|
|
|
|
|
|
const float z2 = calc_z0(rx0, |
|
|
|
mesh_index_to_xpos(cx), z_values[cx][_MIN(cy, GRID_MAX_POINTS_Y - 2) + 1], |
|
|
|
mesh_index_to_xpos(cx + 1), z_values[_MIN(cx, GRID_MAX_POINTS_X - 2) + 1][_MIN(cy, GRID_MAX_POINTS_Y - 2) + 1]); |
|
|
|
|
|
|
|
float z0 = calc_z0(ry0, |
|
|
|
mesh_index_to_ypos(cy), z1, |
|
|
|
mesh_index_to_ypos(cy + 1), z2); |
|
|
|
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
|
|
|
|
z0 = 0.0; // in ubl.z_values[][] and propagate through the
|
|
|
|
// calculations. If our correction is NAN, we throw it out
|
|
|
|
// because part of the Mesh is undefined and we don't have the
|
|
|
|
// information we need to complete the height correction.
|
|
|
|
|
|
|
|
if (DEBUGGING(MESH_ADJUST)) { |
|
|
|
DEBUG_ECHOPAIR(" raw get_z_correction(", rx0); |
|
|
|
DEBUG_CHAR(','); DEBUG_ECHO(ry0); |
|
|
|
DEBUG_ECHOPAIR_F(") = ", z0, 6); |
|
|
|
DEBUG_ECHOLNPAIR_F(" >>>---> ", z0, 6); |
|
|
|
} |
|
|
|
|
|
|
|
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
|
|
|
|
z0 = 0.0; // in ubl.z_values[][] and propagate through the
|
|
|
|
// calculations. If our correction is NAN, we throw it out
|
|
|
|
// because part of the Mesh is undefined and we don't have the
|
|
|
|
// information we need to complete the height correction.
|
|
|
|
|
|
|
|
if (DEBUGGING(MESH_ADJUST)) { |
|
|
|
DEBUG_ECHOPAIR("??? Yikes! NAN in get_z_correction(", rx0); |
|
|
|
DEBUG_CHAR(','); |
|
|
|
DEBUG_ECHO(ry0); |
|
|
|
DEBUG_CHAR(')'); |
|
|
|
DEBUG_EOL(); |
|
|
|
} |
|
|
|
DEBUG_ECHOPAIR("??? Yikes! NAN in get_z_correction(", rx0); |
|
|
|
DEBUG_CHAR(','); |
|
|
|
DEBUG_ECHO(ry0); |
|
|
|
DEBUG_CHAR(')'); |
|
|
|
DEBUG_EOL(); |
|
|
|
} |
|
|
|
return z0; |
|
|
|
} |
|
|
|
static inline float get_z_correction(const xy_pos_t &pos) { return get_z_correction(pos.x, pos.y); } |
|
|
|
|
|
|
|
static inline float mesh_index_to_xpos(const uint8_t i) { |
|
|
|
return i < GRID_MAX_POINTS_X ? pgm_read_float(&_mesh_index_to_xpos[i]) : MESH_MIN_X + i * (MESH_X_DIST); |
|
|
|
} |
|
|
|
static inline float mesh_index_to_ypos(const uint8_t i) { |
|
|
|
return i < GRID_MAX_POINTS_Y ? pgm_read_float(&_mesh_index_to_ypos[i]) : MESH_MIN_Y + i * (MESH_Y_DIST); |
|
|
|
} |
|
|
|
|
|
|
|
#if UBL_SEGMENTED |
|
|
|
static bool line_to_destination_segmented(const feedRate_t &scaled_fr_mm_s); |
|
|
|
#else |
|
|
|
static void line_to_destination_cartesian(const feedRate_t &scaled_fr_mm_s, const uint8_t e); |
|
|
|
#endif |
|
|
|
|
|
|
|
static inline bool mesh_is_valid() { |
|
|
|
GRID_LOOP(x, y) if (isnan(z_values[x][y])) return false; |
|
|
|
return true; |
|
|
|
} |
|
|
|
return z0; |
|
|
|
} |
|
|
|
static inline float get_z_correction(const xy_pos_t &pos) { return get_z_correction(pos.x, pos.y); } |
|
|
|
|
|
|
|
static inline float mesh_index_to_xpos(const uint8_t i) { |
|
|
|
return i < GRID_MAX_POINTS_X ? pgm_read_float(&_mesh_index_to_xpos[i]) : MESH_MIN_X + i * (MESH_X_DIST); |
|
|
|
} |
|
|
|
static inline float mesh_index_to_ypos(const uint8_t i) { |
|
|
|
return i < GRID_MAX_POINTS_Y ? pgm_read_float(&_mesh_index_to_ypos[i]) : MESH_MIN_Y + i * (MESH_Y_DIST); |
|
|
|
} |
|
|
|
|
|
|
|
#if UBL_SEGMENTED |
|
|
|
static bool line_to_destination_segmented(const feedRate_t &scaled_fr_mm_s); |
|
|
|
#else |
|
|
|
static void line_to_destination_cartesian(const feedRate_t &scaled_fr_mm_s, const uint8_t e); |
|
|
|
#endif |
|
|
|
|
|
|
|
static inline bool mesh_is_valid() { |
|
|
|
GRID_LOOP(x, y) if (isnan(z_values[x][y])) return false; |
|
|
|
return true; |
|
|
|
} |
|
|
|
|
|
|
|
}; // class unified_bed_leveling
|
|
|
|
|
|
|
|