Browse Source

Initial HAL SPI API

pull/1/head
Christopher Pepper 8 years ago
committed by Scott Lahteine
parent
commit
bcd050f33b
  1. 25
      Marlin/src/HAL/HAL_LPC1768/HAL_spi.cpp
  2. 5
      Marlin/src/HAL/HAL_LPC1768/main.cpp
  3. 402
      Marlin/src/HAL/HAL_LPC1768/spi_impl.cpp
  4. 7
      Marlin/src/HAL/HAL_LPC1768/spi_pins.h
  5. 46
      Marlin/src/HAL/spi_api.h

25
Marlin/src/HAL/HAL_LPC1768/HAL_spi.cpp

@ -37,12 +37,12 @@
// -------------------------------------------------------------------------- // --------------------------------------------------------------------------
#include "../../../MarlinConfig.h" #include "../../../MarlinConfig.h"
#include "../spi_api.h"
// -------------------------------------------------------------------------- // --------------------------------------------------------------------------
// Public Variables // Public Variables
// -------------------------------------------------------------------------- // --------------------------------------------------------------------------
// -------------------------------------------------------------------------- // --------------------------------------------------------------------------
// Public functions // Public functions
// -------------------------------------------------------------------------- // --------------------------------------------------------------------------
@ -138,39 +138,32 @@
} }
#else #else
void spiBegin() { void spiBegin() {
HAL::SPI::initialise(SD_SPI_CHANNEL);
} }
void spiInit(uint8_t spiRate) { void spiInit(uint8_t spiRate) {
uint32_t freq = 8000000 / (1u << spiRate);
HAL::SPI::set_frequency(SD_SPI_CHANNEL, freq);
} }
void spiSend(byte b) { void spiSend(byte b) {
} HAL::SPI::write(SD_SPI_CHANNEL, b);
void spiSend(const uint8_t* buf, size_t n) {
}
void spiSend(uint32_t chan, byte b) {
}
void spiSend(uint32_t chan, const uint8_t* buf, size_t n) {
} }
// Read single byte from SPI // Read single byte from SPI
uint8_t spiRec() { uint8_t spiRec() {
return 0; return HAL::SPI::read(SD_SPI_CHANNEL);
}
uint8_t spiRec(uint32_t chan) {
return 0;
} }
// Read from SPI into buffer // Read from SPI into buffer
void spiRead(uint8_t*buf, uint16_t nbyte) { void spiRead(uint8_t*buf, uint16_t nbyte) {
HAL::SPI::read(SD_SPI_CHANNEL, buf, nbyte);
} }
// Write from buffer to SPI // Write from buffer to SPI
void spiSendBlock(uint8_t token, const uint8_t* buf) { void spiSendBlock(uint8_t token, const uint8_t* buf) {
HAL::SPI::write(SD_SPI_CHANNEL, token);
HAL::SPI::write(SD_SPI_CHANNEL, buf, 512);
} }
#endif // ENABLED(SOFTWARE_SPI) #endif // ENABLED(SOFTWARE_SPI)

5
Marlin/src/HAL/HAL_LPC1768/main.cpp

@ -43,7 +43,6 @@ static __INLINE uint32_t SysTick_Config(uint32_t ticks) {
SysTick_CTRL_ENABLE_Msk; /* Enable SysTick IRQ and SysTick Timer */ SysTick_CTRL_ENABLE_Msk; /* Enable SysTick IRQ and SysTick Timer */
return (0); /* Function successful */ return (0); /* Function successful */
} }
extern "C" { extern "C" {
extern void disk_timerproc(void); extern void disk_timerproc(void);
volatile uint32_t _millis; volatile uint32_t _millis;
@ -70,6 +69,7 @@ extern "C" void SystemPostInit() {
extern uint32_t MSC_SD_Init(uint8_t pdrv); extern uint32_t MSC_SD_Init(uint8_t pdrv);
extern HalSerial usb_serial; extern HalSerial usb_serial;
int main(void) { int main(void) {
debug_frmwrk_init();
(void)MSC_SD_Init(0); (void)MSC_SD_Init(0);
USB_Init(); // USB Initialization USB_Init(); // USB Initialization
@ -81,8 +81,7 @@ int main(void) {
TOGGLE(13); // Flash fast while USB initialisation completes TOGGLE(13); // Flash fast while USB initialisation completes
} }
debug_frmwrk_init(); usb_serial.printf("\n\nRe-ARM (LPC1768 @ %dMhz) USB Initialised\n", SystemCoreClock / 1000000);
usb_serial.printf("\n\nRe-ARM (LPC1768 @ %dMhz) UART0 Initialised\n", SystemCoreClock / 1000000);
HAL_timer_init(); HAL_timer_init();

402
Marlin/src/HAL/HAL_LPC1768/spi_impl.cpp

@ -0,0 +1,402 @@
#ifdef TARGET_LPC1768
#include "../spi_api.h"
#include <lpc17xx_ssp.h>
#include <lpc17xx_pinsel.h>
#include <lpc17xx_gpio.h>
#include "lpc17xx_clkpwr.h"
extern "C" void SSP0_IRQHandler(void);
extern "C" void SSP1_IRQHandler(void);
namespace HAL {
namespace SPI {
enum class SignalPolarity : uint8_t {
ACTIVE_LOW = 0,
ACTIVE_HIGH
};
/* Hardware channels :
* 0: clk(0_7), mosi(0_9), miso(0_8), SSP1
* 1: clk(0_15), mosi(0_28), miso(0_17), SSP0
* Logical channels:
* 0: hwchannel: 1, ssel(0_6)
* 1: hwchannel: 0, ssel(0_16)
* 2: hwchannel: 0, ssel(1_23)
*/
/*
* Defines the Hardware setup for an SPI channel
* The pins and (if applicable) the Hardware Peripheral
*
*/
struct LogicalChannel; // who doesn't like circular dependencies
struct HardwareChannel {
LPC_SSP_TypeDef *peripheral;
IRQn_Type IRQn;
uint8_t clk_port;
uint8_t clk_pin;
uint8_t mosi_port;
uint8_t mosi_pin;
uint8_t miso_port;
uint8_t miso_pin;
SSP_DATA_SETUP_Type xfer_config;
volatile FlagStatus xfer_complete;
bool initialised;
volatile bool in_use;
LogicalChannel* active_channel;
} hardware_channels[2] = {
{LPC_SSP0, SSP0_IRQn, 0, 15, 0, 18, 0, 17, { nullptr, 0, nullptr, 0, 0, SSP_STAT_DONE }, RESET, false, false, nullptr},
{LPC_SSP1, SSP1_IRQn, 0, 7, 0, 9, 0, 8 , { nullptr, 0, nullptr, 0, 0, SSP_STAT_DONE }, RESET, false, false, nullptr}
};
/*
* Define all available logical SPI ports
*/
struct LogicalChannel {
HardwareChannel& hw_channel;
uint8_t ssel_port;
uint8_t ssel_pin;
SignalPolarity ssel_polarity;
bool ssel_override;
SSP_CFG_Type config;
uint32_t CR0;
uint32_t CPSR;
} logical_channels[3] = {
{ hardware_channels[1], 0, 6, SignalPolarity::ACTIVE_LOW, false, { SSP_DATABIT_8, SSP_CPHA_FIRST, SSP_CPOL_HI, SSP_MASTER_MODE, SSP_FRAME_SPI, 1000000 }, 0, 0 },
{ hardware_channels[0], 0, 16, SignalPolarity::ACTIVE_HIGH, true, { SSP_DATABIT_8, SSP_CPHA_FIRST, SSP_CPOL_HI, SSP_MASTER_MODE, SSP_FRAME_SPI, 1000000 }, 0, 0 },
{ hardware_channels[0], 1, 23, SignalPolarity::ACTIVE_LOW, true, { SSP_DATABIT_8, SSP_CPHA_FIRST, SSP_CPOL_HI, SSP_MASTER_MODE, SSP_FRAME_SPI, 1000000 }, 0, 0 }
};
//Internal functions
extern "C" void ssp_irq_handler(uint8_t hw_channel);
LogicalChannel* get_logical_channel(uint8_t channel);
bool set_ssel(LogicalChannel* logical_channel);
void clear_ssel(LogicalChannel* logical_channel);
void restore_frequency(LogicalChannel* logical_channel);
LogicalChannel* get_logical_channel(uint8_t channel) {
if(channel > sizeof(logical_channels) - 1) {
return nullptr;
}
return &logical_channels[channel];
}
bool set_ssel(LogicalChannel* logical_channel) {
if(logical_channel->hw_channel.in_use == true) {
return false;
}
if(logical_channel->ssel_polarity == SignalPolarity::ACTIVE_HIGH) {
GPIO_SetValue(logical_channel->ssel_port, (1 << logical_channel->ssel_pin));
} else {
GPIO_ClearValue(logical_channel->ssel_port, (1 << logical_channel->ssel_pin));
}
logical_channel->hw_channel.in_use = true;
return true;
}
void clear_ssel(LogicalChannel* logical_channel) {
if(logical_channel->ssel_polarity == SignalPolarity::ACTIVE_HIGH) {
GPIO_ClearValue(logical_channel->ssel_port, (1 << logical_channel->ssel_pin));
} else {
GPIO_SetValue(logical_channel->ssel_port, (1 << logical_channel->ssel_pin));
}
logical_channel->hw_channel.in_use = false;
}
void restore_frequency(LogicalChannel* logical_channel) {
logical_channel->hw_channel.peripheral->CR0 = logical_channel->CR0;
logical_channel->hw_channel.peripheral->CPSR = logical_channel->CPSR;
}
/*
* SPI API Implementation
*/
bool initialise(uint8_t channel) {
LogicalChannel* logical_channel = get_logical_channel(channel);
if(logical_channel == nullptr) return false;
HardwareChannel& hw_channel = logical_channel->hw_channel;
PINSEL_CFG_Type pin_cfg;
pin_cfg.OpenDrain = PINSEL_PINMODE_NORMAL;
pin_cfg.Pinmode = PINSEL_PINMODE_PULLUP;
if(hw_channel.initialised == false) {
pin_cfg.Funcnum = 2; //ssp (spi) function
pin_cfg.Portnum = hw_channel.clk_port;
pin_cfg.Pinnum = hw_channel.clk_pin;
PINSEL_ConfigPin(&pin_cfg); //clk
pin_cfg.Portnum = hw_channel.miso_port;
pin_cfg.Pinnum = hw_channel.miso_pin;
PINSEL_ConfigPin(&pin_cfg); //miso
pin_cfg.Portnum = hw_channel.mosi_port;
pin_cfg.Pinnum = hw_channel.mosi_pin;
PINSEL_ConfigPin(&pin_cfg); //mosi
SSP_Init(hw_channel.peripheral, &logical_channel->config);
logical_channel->CR0 = logical_channel->hw_channel.peripheral->CR0; // preserve for restore
logical_channel->CPSR = logical_channel->hw_channel.peripheral->CPSR; // preserve for restore
SSP_Cmd(hw_channel.peripheral, ENABLE);
hw_channel.initialised = true;
hw_channel.active_channel = logical_channel;
//NVIC_SetPriority(hw_channel.IRQn, NVIC_EncodePriority(0, 3, 0)); //Very Low priority
//NVIC_EnableIRQ(hw_channel.IRQn);
}
pin_cfg.Portnum = logical_channel->ssel_port;
pin_cfg.Pinnum = logical_channel->ssel_pin;
pin_cfg.Pinmode = logical_channel->ssel_polarity == SignalPolarity::ACTIVE_LOW ? PINSEL_PINMODE_PULLUP : PINSEL_PINMODE_PULLDOWN;
pin_cfg.Funcnum = 0; //gpio function
PINSEL_ConfigPin(&pin_cfg); //ssel
GPIO_SetDir(logical_channel->ssel_port, (1 << logical_channel->ssel_pin), 1);
GPIO_SetValue(logical_channel->ssel_port, (1 << logical_channel->ssel_pin));
return true;
}
bool enable_cs(uint8_t channel) {
LogicalChannel* logical_channel = get_logical_channel(channel);
if(logical_channel == nullptr) return false;
return set_ssel(logical_channel);
}
void disable_cs(uint8_t channel) {
LogicalChannel* logical_channel = get_logical_channel(channel);
if(logical_channel == nullptr) return;
if(logical_channel->hw_channel.in_use && !logical_channel->ssel_override) return; //automatic SSel wasn't overridden
clear_ssel(logical_channel);
}
void set_frequency(uint8_t channel, uint32_t frequency) {
LogicalChannel* logical_channel = get_logical_channel(channel);
if(logical_channel == nullptr) return;
SSP_Cmd(logical_channel->hw_channel.peripheral, DISABLE);
uint32_t prescale, cr0_div, cmp_clk, ssp_clk;
if (logical_channel->hw_channel.peripheral == LPC_SSP0){
ssp_clk = CLKPWR_GetPCLK (CLKPWR_PCLKSEL_SSP0);
} else if (logical_channel->hw_channel.peripheral == LPC_SSP1) {
ssp_clk = CLKPWR_GetPCLK (CLKPWR_PCLKSEL_SSP1);
} else {
return;
}
//find the closest clock divider / prescaler
cr0_div = 0;
cmp_clk = 0xFFFFFFFF;
prescale = 2;
while (cmp_clk > frequency) {
cmp_clk = ssp_clk / ((cr0_div + 1) * prescale);
if (cmp_clk > frequency) {
cr0_div++;
if (cr0_div > 0xFF) {
cr0_div = 0;
prescale += 2;
}
}
}
logical_channel->hw_channel.peripheral->CR0 &= (~SSP_CR0_SCR(0xFF)) & SSP_CR0_BITMASK;
logical_channel->hw_channel.peripheral->CR0 |= (SSP_CR0_SCR(cr0_div)) & SSP_CR0_BITMASK;
logical_channel->CR0 = logical_channel->hw_channel.peripheral->CR0; // preserve for restore
logical_channel->hw_channel.peripheral->CPSR = prescale & SSP_CPSR_BITMASK;
logical_channel->CPSR = logical_channel->hw_channel.peripheral->CPSR; // preserve for restore
logical_channel->config.ClockRate = ssp_clk / ((cr0_div + 1) * prescale);
SSP_Cmd(logical_channel->hw_channel.peripheral, ENABLE);
}
void read(uint8_t channel, uint8_t *buffer, uint32_t length) {
transfer(channel, nullptr, buffer, length);
}
uint8_t read(uint8_t channel) {
uint8_t buffer;
transfer(channel, nullptr, &buffer, 1);
return buffer;
}
void write(uint8_t channel, const uint8_t *buffer, uint32_t length) {
transfer(channel, buffer, nullptr, length);
}
void write(uint8_t channel, uint8_t value) {
transfer(channel, &value, nullptr, 1);
}
void transfer(uint8_t channel, const uint8_t *buffer_write, uint8_t *buffer_read, uint32_t length) {
LogicalChannel* logical_channel = get_logical_channel(channel);
if(logical_channel == nullptr) return;
if((logical_channel->hw_channel.in_use && !logical_channel->ssel_override) || !logical_channel->hw_channel.initialised) return;
if(!logical_channel->ssel_override) {
if(!set_ssel(logical_channel)) return;
}
if(logical_channel != logical_channel->hw_channel.active_channel) {
restore_frequency(logical_channel);
logical_channel->hw_channel.active_channel = logical_channel;
}
logical_channel->hw_channel.xfer_config.tx_data = (void *)buffer_write;
logical_channel->hw_channel.xfer_config.rx_data = (void *)buffer_read;
logical_channel->hw_channel.xfer_config.length = length;
(void)SSP_ReadWrite(logical_channel->hw_channel.peripheral, &logical_channel->hw_channel.xfer_config, SSP_TRANSFER_POLLING); //SSP_TRANSFER_INTERRUPT
if(!logical_channel->ssel_override) {
clear_ssel(logical_channel->hw_channel.active_channel);
}
}
uint8_t transfer(uint8_t channel, uint8_t value) {
uint8_t buffer;
transfer(channel, &value, &buffer, 1);
return buffer;
}
/*
* Interrupt Handlers
*/
extern "C" void ssp_irq_handler(uint8_t hw_channel) {
SSP_DATA_SETUP_Type *xf_setup;
uint32_t tmp;
uint8_t dataword;
// Disable all SSP interrupts
SSP_IntConfig(hardware_channels[hw_channel].peripheral, SSP_INTCFG_ROR | SSP_INTCFG_RT | SSP_INTCFG_RX | SSP_INTCFG_TX, DISABLE);
dataword = (SSP_GetDataSize(hardware_channels[hw_channel].peripheral) > 8) ? 1 : 0;
xf_setup = &hardware_channels[hw_channel].xfer_config;
// save status
tmp = SSP_GetRawIntStatusReg(hardware_channels[hw_channel].peripheral);
xf_setup->status = tmp;
// Check overrun error
if (tmp & SSP_RIS_ROR) {
// Clear interrupt
SSP_ClearIntPending(hardware_channels[hw_channel].peripheral, SSP_INTCLR_ROR);
// update status
xf_setup->status |= SSP_STAT_ERROR;
// Set Complete Flag
hardware_channels[hw_channel].xfer_complete = SET;
if(!hardware_channels[hw_channel].active_channel->ssel_override) clear_ssel(hardware_channels[hw_channel].active_channel);
return;
}
if ((xf_setup->tx_cnt != xf_setup->length) || (xf_setup->rx_cnt != xf_setup->length)) {
/* check if RX FIFO contains data */
while ((SSP_GetStatus(hardware_channels[hw_channel].peripheral, SSP_STAT_RXFIFO_NOTEMPTY)) && (xf_setup->rx_cnt != xf_setup->length)) {
// Read data from SSP data
tmp = SSP_ReceiveData(hardware_channels[hw_channel].peripheral);
// Store data to destination
if (xf_setup->rx_data != nullptr) {
if (dataword == 0) {
*(uint8_t *) ((uint32_t) xf_setup->rx_data + xf_setup->rx_cnt) = (uint8_t) tmp;
} else {
*(uint16_t *) ((uint32_t) xf_setup->rx_data + xf_setup->rx_cnt) = (uint16_t) tmp;
}
}
// Increase counter
if (dataword == 0) {
xf_setup->rx_cnt++;
} else {
xf_setup->rx_cnt += 2;
}
}
while ((SSP_GetStatus(hardware_channels[hw_channel].peripheral, SSP_STAT_TXFIFO_NOTFULL)) && (xf_setup->tx_cnt != xf_setup->length)) {
// Write data to buffer
if (xf_setup->tx_data == nullptr) {
if (dataword == 0) {
SSP_SendData(hardware_channels[hw_channel].peripheral, 0xFF);
xf_setup->tx_cnt++;
} else {
SSP_SendData(hardware_channels[hw_channel].peripheral, 0xFFFF);
xf_setup->tx_cnt += 2;
}
} else {
if (dataword == 0) {
SSP_SendData(hardware_channels[hw_channel].peripheral, (*(uint8_t *) ((uint32_t) xf_setup->tx_data + xf_setup->tx_cnt)));
xf_setup->tx_cnt++;
} else {
SSP_SendData(hardware_channels[hw_channel].peripheral, (*(uint16_t *) ((uint32_t) xf_setup->tx_data + xf_setup->tx_cnt)));
xf_setup->tx_cnt += 2;
}
}
// Check overrun error
if (SSP_GetRawIntStatus(hardware_channels[hw_channel].peripheral, SSP_INTSTAT_RAW_ROR)) {
// update status
xf_setup->status |= SSP_STAT_ERROR;
// Set Complete Flag
hardware_channels[hw_channel].xfer_complete = SET;
if(!hardware_channels[hw_channel].active_channel->ssel_override) clear_ssel(hardware_channels[hw_channel].active_channel);
return;
}
// Check for any data available in RX FIFO
while ((SSP_GetStatus(hardware_channels[hw_channel].peripheral, SSP_STAT_RXFIFO_NOTEMPTY)) && (xf_setup->rx_cnt != xf_setup->length)) {
// Read data from SSP data
tmp = SSP_ReceiveData(hardware_channels[hw_channel].peripheral);
// Store data to destination
if (xf_setup->rx_data != nullptr) {
if (dataword == 0) {
*(uint8_t *) ((uint32_t) xf_setup->rx_data + xf_setup->rx_cnt) = (uint8_t) tmp;
} else {
*(uint16_t *) ((uint32_t) xf_setup->rx_data + xf_setup->rx_cnt) = (uint16_t) tmp;
}
}
// Increase counter
if (dataword == 0) {
xf_setup->rx_cnt++;
} else {
xf_setup->rx_cnt += 2;
}
}
}
}
// If there more data to sent or receive
if ((xf_setup->rx_cnt != xf_setup->length) || (xf_setup->tx_cnt != xf_setup->length)) {
// Enable all interrupt
SSP_IntConfig(hardware_channels[hw_channel].peripheral, SSP_INTCFG_ROR | SSP_INTCFG_RT | SSP_INTCFG_RX | SSP_INTCFG_TX, ENABLE);
} else {
// Save status
xf_setup->status = SSP_STAT_DONE;
// Set Complete Flag
hardware_channels[hw_channel].xfer_complete = SET;
if(!hardware_channels[hw_channel].active_channel->ssel_override) clear_ssel(hardware_channels[hw_channel].active_channel);
}
}
}
}
extern "C" void SSP0_IRQHandler(void) {
HAL::SPI::ssp_irq_handler(0);
}
extern "C" void SSP1_IRQHandler(void) {
HAL::SPI::ssp_irq_handler(1);
}
#endif

7
Marlin/src/HAL/HAL_LPC1768/spi_pins.h

@ -21,7 +21,12 @@
#ifndef SPI_PINS_LPC1768_H #ifndef SPI_PINS_LPC1768_H
#define SPI_PINS_LPC1768_H #define SPI_PINS_LPC1768_H
#define SOFTWARE_SPI //new config options
#define SD_SPI_CHANNEL (HAL::SPI::CHANNEL_2)
#define LCD_SPI_FREQUENCY 4000000
#define LCD_SPI_CHANNEL (HAL::SPI::CHANNEL_1)
//#define SOFTWARE_SPI
/** onboard SD card */ /** onboard SD card */
//#define SCK_PIN P0_7 //#define SCK_PIN P0_7
//#define MISO_PIN P0_8 //#define MISO_PIN P0_8

46
Marlin/src/HAL/spi_api.h

@ -0,0 +1,46 @@
#ifndef _SPI_API_H_
#define _SPI_API_H_
#include <stdint.h>
#include "HAL_spi_pins.h"
namespace HAL {
namespace SPI {
enum SPI_CHANNELS {
CHANNEL_0 = 0,
CHANNEL_1,
CHANNEL_2,
CHANNEL_3,
CHANNEL_4,
CHANNEL_5
};
/*
* Initialise the hardware layer (pins and peripheral)
*/
bool initialise(uint8_t channel);
/*
* Allow override of automatic Chip Select
*/
bool enable_cs(uint8_t channel);
void disable_cs(uint8_t channel);
void set_frequency(uint8_t channel, uint32_t frequency);
void read(uint8_t channel, uint8_t *buffer, uint32_t length);
uint8_t read(uint8_t channel);
void write(uint8_t channel, const uint8_t *buffer, uint32_t length);
void write(uint8_t channel, uint8_t value);
void transfer(uint8_t channel, const uint8_t *buffer_write, uint8_t *buffer_read, uint32_t length);
uint8_t transfer(uint8_t channel, uint8_t value);
}
}
#endif /* _SPI_API_H_ */
Loading…
Cancel
Save