|
|
@ -2390,13 +2390,26 @@ bool Planner::_populate_block(block_t * const block, bool split_move, |
|
|
|
sin_theta_d2 = SQRT(0.5f * (1.0f - junction_cos_theta)); // Trig half angle identity. Always positive.
|
|
|
|
|
|
|
|
vmax_junction_sqr = (junction_acceleration * junction_deviation_mm * sin_theta_d2) / (1.0f - sin_theta_d2); |
|
|
|
if (block->millimeters < 1) { |
|
|
|
|
|
|
|
// Fast acos approximation, minus the error bar to be safe
|
|
|
|
const float junction_theta = (RADIANS(-40) * sq(junction_cos_theta) - RADIANS(50)) * junction_cos_theta + RADIANS(90) - 0.18f; |
|
|
|
if (block->millimeters < 1) { |
|
|
|
// Fast acos approximation (max. error +-0.033 rads)
|
|
|
|
// Based on MinMax polynomial published by W. Randolph Franklin, see
|
|
|
|
// https://wrf.ecse.rpi.edu/Research/Short_Notes/arcsin/onlyelem.html
|
|
|
|
// (acos(x) = pi / 2 - asin(x))
|
|
|
|
|
|
|
|
const float neg = junction_cos_theta < 0 ? -1 : 1, |
|
|
|
t = neg * junction_cos_theta, |
|
|
|
asinx = 0.032843707f |
|
|
|
+ t * (-1.451838349f |
|
|
|
+ t * ( 29.66153956f |
|
|
|
+ t * (-131.1123477f |
|
|
|
+ t * ( 262.8130562f |
|
|
|
+ t * (-242.7199627f + t * 84.31466202f) )))), |
|
|
|
junction_theta = RADIANS(90) - neg * asinx; |
|
|
|
|
|
|
|
// If angle is greater than 135 degrees (octagon), find speed for approximate arc
|
|
|
|
if (junction_theta > RADIANS(135)) { |
|
|
|
// NOTE: MinMax acos approximation and thereby also junction_theta top out at pi-0.033, which avoids division by 0
|
|
|
|
const float limit_sqr = block->millimeters / (RADIANS(180) - junction_theta) * junction_acceleration; |
|
|
|
NOMORE(vmax_junction_sqr, limit_sqr); |
|
|
|
} |
|
|
|