|
|
@ -35,32 +35,29 @@ volatile uint32_t UART0RxQueueWritePos = 0, UART1RxQueueWritePos = 0, UART2RxQue |
|
|
|
volatile uint32_t UART0RxQueueReadPos = 0, UART1RxQueueReadPos = 0, UART2RxQueueReadPos = 0, UART3RxQueueReadPos = 0; |
|
|
|
volatile uint8_t dummy; |
|
|
|
|
|
|
|
void HardwareSerial::begin(uint32_t baudrate) { |
|
|
|
uint32_t Fdiv; |
|
|
|
uint32_t pclkdiv, pclk; |
|
|
|
void HardwareSerial::begin(uint32_t baudrate) { |
|
|
|
uint32_t Fdiv, pclkdiv, pclk; |
|
|
|
|
|
|
|
if ( PortNum == 0 ) |
|
|
|
{ |
|
|
|
if (PortNum == 0) { |
|
|
|
LPC_PINCON->PINSEL0 &= ~0x000000F0; |
|
|
|
LPC_PINCON->PINSEL0 |= 0x00000050; /* RxD0 is P0.3 and TxD0 is P0.2 */ |
|
|
|
/* By default, the PCLKSELx value is zero, thus, the PCLK for
|
|
|
|
all the peripherals is 1/4 of the SystemFrequency. */ |
|
|
|
/* Bit 6~7 is for UART0 */ |
|
|
|
pclkdiv = (LPC_SC->PCLKSEL0 >> 6) & 0x03; |
|
|
|
switch ( pclkdiv ) |
|
|
|
{ |
|
|
|
switch (pclkdiv) { |
|
|
|
case 0x00: |
|
|
|
default: |
|
|
|
pclk = SystemCoreClock/4; |
|
|
|
pclk = SystemCoreClock / 4; |
|
|
|
break; |
|
|
|
case 0x01: |
|
|
|
pclk = SystemCoreClock; |
|
|
|
break; |
|
|
|
case 0x02: |
|
|
|
pclk = SystemCoreClock/2; |
|
|
|
pclk = SystemCoreClock / 2; |
|
|
|
break; |
|
|
|
case 0x03: |
|
|
|
pclk = SystemCoreClock/8; |
|
|
|
pclk = SystemCoreClock / 8; |
|
|
|
break; |
|
|
|
} |
|
|
|
|
|
|
@ -75,8 +72,7 @@ volatile uint8_t dummy; |
|
|
|
|
|
|
|
LPC_UART0->IER = IER_RBR | IER_THRE | IER_RLS; /* Enable UART0 interrupt */ |
|
|
|
} |
|
|
|
else if ( PortNum == 1 ) |
|
|
|
{ |
|
|
|
else if (PortNum == 1) { |
|
|
|
LPC_PINCON->PINSEL4 &= ~0x0000000F; |
|
|
|
LPC_PINCON->PINSEL4 |= 0x0000000A; /* Enable RxD1 P2.1, TxD1 P2.0 */ |
|
|
|
|
|
|
@ -84,20 +80,19 @@ volatile uint8_t dummy; |
|
|
|
all the peripherals is 1/4 of the SystemFrequency. */ |
|
|
|
/* Bit 8,9 are for UART1 */ |
|
|
|
pclkdiv = (LPC_SC->PCLKSEL0 >> 8) & 0x03; |
|
|
|
switch ( pclkdiv ) |
|
|
|
{ |
|
|
|
switch (pclkdiv) { |
|
|
|
case 0x00: |
|
|
|
default: |
|
|
|
pclk = SystemCoreClock/4; |
|
|
|
pclk = SystemCoreClock / 4; |
|
|
|
break; |
|
|
|
case 0x01: |
|
|
|
pclk = SystemCoreClock; |
|
|
|
break; |
|
|
|
case 0x02: |
|
|
|
pclk = SystemCoreClock/2; |
|
|
|
pclk = SystemCoreClock / 2; |
|
|
|
break; |
|
|
|
case 0x03: |
|
|
|
pclk = SystemCoreClock/8; |
|
|
|
pclk = SystemCoreClock / 8; |
|
|
|
break; |
|
|
|
} |
|
|
|
|
|
|
@ -112,38 +107,36 @@ volatile uint8_t dummy; |
|
|
|
|
|
|
|
LPC_UART1->IER = IER_RBR | IER_THRE | IER_RLS; /* Enable UART1 interrupt */ |
|
|
|
} |
|
|
|
else if ( PortNum == 2 ) |
|
|
|
{ |
|
|
|
else if (PortNum == 2) { |
|
|
|
//LPC_PINCON->PINSEL4 &= ~0x000F0000; /*Pinsel4 Bits 16-19*/
|
|
|
|
//LPC_PINCON->PINSEL4 |= 0x000A0000; /* RxD2 is P2.9 and TxD2 is P2.8, value 10*/
|
|
|
|
LPC_PINCON->PINSEL0 &= ~0x00F00000; /*Pinsel0 Bits 20-23*/ |
|
|
|
LPC_PINCON->PINSEL0 |= 0x00500000; /* RxD2 is P0.11 and TxD2 is P0.10, value 01*/ |
|
|
|
|
|
|
|
LPC_SC->PCONP |= 1<<24; //Enable PCUART2
|
|
|
|
LPC_SC->PCONP |= 1 << 24; //Enable PCUART2
|
|
|
|
/* By default, the PCLKSELx value is zero, thus, the PCLK for
|
|
|
|
all the peripherals is 1/4 of the SystemFrequency. */ |
|
|
|
/* Bit 6~7 is for UART3 */ |
|
|
|
pclkdiv = (LPC_SC->PCLKSEL1 >> 16) & 0x03; |
|
|
|
switch ( pclkdiv ) |
|
|
|
{ |
|
|
|
switch (pclkdiv) { |
|
|
|
case 0x00: |
|
|
|
default: |
|
|
|
pclk = SystemCoreClock/4; |
|
|
|
pclk = SystemCoreClock / 4; |
|
|
|
break; |
|
|
|
case 0x01: |
|
|
|
pclk = SystemCoreClock; |
|
|
|
break; |
|
|
|
case 0x02: |
|
|
|
pclk = SystemCoreClock/2; |
|
|
|
pclk = SystemCoreClock / 2; |
|
|
|
break; |
|
|
|
case 0x03: |
|
|
|
pclk = SystemCoreClock/8; |
|
|
|
pclk = SystemCoreClock / 8; |
|
|
|
break; |
|
|
|
} |
|
|
|
LPC_UART2->LCR = 0x83; /* 8 bits, no Parity, 1 Stop bit */ |
|
|
|
Fdiv = ( pclk / 16 ) / baudrate ; /*baud rate */ |
|
|
|
LPC_UART2->DLM = Fdiv / 256; |
|
|
|
LPC_UART2->DLL = Fdiv % 256; |
|
|
|
Fdiv = (pclk / 16) / baudrate; /*baud rate */ |
|
|
|
LPC_UART2->DLM = Fdiv >> 8; |
|
|
|
LPC_UART2->DLL = Fdiv & 0xFF; |
|
|
|
LPC_UART2->LCR = 0x03; /* DLAB = 0 */ |
|
|
|
LPC_UART2->FCR = 0x07; /* Enable and reset TX and RX FIFO. */ |
|
|
|
|
|
|
@ -151,35 +144,33 @@ volatile uint8_t dummy; |
|
|
|
|
|
|
|
LPC_UART2->IER = IER_RBR | IER_THRE | IER_RLS; /* Enable UART3 interrupt */ |
|
|
|
} |
|
|
|
else if ( PortNum == 3 ) |
|
|
|
{ |
|
|
|
else if (PortNum == 3) { |
|
|
|
LPC_PINCON->PINSEL0 &= ~0x0000000F; |
|
|
|
LPC_PINCON->PINSEL0 |= 0x0000000A; /* RxD3 is P0.1 and TxD3 is P0.0 */ |
|
|
|
LPC_SC->PCONP |= 1<<4 | 1<<25; //Enable PCUART1
|
|
|
|
LPC_SC->PCONP |= 1 << 4 | 1 << 25; //Enable PCUART1
|
|
|
|
/* By default, the PCLKSELx value is zero, thus, the PCLK for
|
|
|
|
all the peripherals is 1/4 of the SystemFrequency. */ |
|
|
|
/* Bit 6~7 is for UART3 */ |
|
|
|
pclkdiv = (LPC_SC->PCLKSEL1 >> 18) & 0x03; |
|
|
|
switch ( pclkdiv ) |
|
|
|
{ |
|
|
|
switch (pclkdiv) { |
|
|
|
case 0x00: |
|
|
|
default: |
|
|
|
pclk = SystemCoreClock/4; |
|
|
|
pclk = SystemCoreClock / 4; |
|
|
|
break; |
|
|
|
case 0x01: |
|
|
|
pclk = SystemCoreClock; |
|
|
|
break; |
|
|
|
case 0x02: |
|
|
|
pclk = SystemCoreClock/2; |
|
|
|
pclk = SystemCoreClock / 2; |
|
|
|
break; |
|
|
|
case 0x03: |
|
|
|
pclk = SystemCoreClock/8; |
|
|
|
pclk = SystemCoreClock / 8; |
|
|
|
break; |
|
|
|
} |
|
|
|
LPC_UART3->LCR = 0x83; /* 8 bits, no Parity, 1 Stop bit */ |
|
|
|
Fdiv = ( pclk / 16 ) / baudrate ; /*baud rate */ |
|
|
|
LPC_UART3->DLM = Fdiv / 256; |
|
|
|
LPC_UART3->DLL = Fdiv % 256; |
|
|
|
Fdiv = (pclk / 16) / baudrate ; /*baud rate */ |
|
|
|
LPC_UART3->DLM = Fdiv >> 8; |
|
|
|
LPC_UART3->DLL = Fdiv & 0xFF; |
|
|
|
LPC_UART3->LCR = 0x03; /* DLAB = 0 */ |
|
|
|
LPC_UART3->FCR = 0x07; /* Enable and reset TX and RX FIFO. */ |
|
|
|
|
|
|
@ -187,454 +178,158 @@ volatile uint8_t dummy; |
|
|
|
|
|
|
|
LPC_UART3->IER = IER_RBR | IER_THRE | IER_RLS; /* Enable UART3 interrupt */ |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
int HardwareSerial::read() { |
|
|
|
int HardwareSerial::read() { |
|
|
|
uint8_t rx; |
|
|
|
if ( PortNum == 0 ) |
|
|
|
{ |
|
|
|
if (UART0RxQueueReadPos == UART0RxQueueWritePos) |
|
|
|
return -1; |
|
|
|
|
|
|
|
if (PortNum == 0) { |
|
|
|
if (UART0RxQueueReadPos == UART0RxQueueWritePos) return -1; |
|
|
|
// Read from "head"
|
|
|
|
rx = UART0Buffer[UART0RxQueueReadPos]; // grab next byte
|
|
|
|
UART0RxQueueReadPos = (UART0RxQueueReadPos + 1) % UARTRXQUEUESIZE; |
|
|
|
return rx; |
|
|
|
} |
|
|
|
if ( PortNum == 1 ) |
|
|
|
{ |
|
|
|
if (UART1RxQueueReadPos == UART1RxQueueWritePos) |
|
|
|
return -1; |
|
|
|
|
|
|
|
// Read from "head"
|
|
|
|
rx = UART1Buffer[UART1RxQueueReadPos]; // grab next byte
|
|
|
|
if (PortNum == 1) { |
|
|
|
if (UART1RxQueueReadPos == UART1RxQueueWritePos) return -1; |
|
|
|
rx = UART1Buffer[UART1RxQueueReadPos]; |
|
|
|
UART1RxQueueReadPos = (UART1RxQueueReadPos + 1) % UARTRXQUEUESIZE; |
|
|
|
return rx; |
|
|
|
} |
|
|
|
if ( PortNum == 2 ) |
|
|
|
{ |
|
|
|
if (UART2RxQueueReadPos == UART2RxQueueWritePos) |
|
|
|
return -1; |
|
|
|
|
|
|
|
// Read from "head"
|
|
|
|
rx = UART2Buffer[UART2RxQueueReadPos]; // grab next byte
|
|
|
|
if (PortNum == 2) { |
|
|
|
if (UART2RxQueueReadPos == UART2RxQueueWritePos) return -1; |
|
|
|
rx = UART2Buffer[UART2RxQueueReadPos]; |
|
|
|
UART2RxQueueReadPos = (UART2RxQueueReadPos + 1) % UARTRXQUEUESIZE; |
|
|
|
return rx; |
|
|
|
} |
|
|
|
if ( PortNum == 3 ) |
|
|
|
{ |
|
|
|
if (UART3RxQueueReadPos == UART3RxQueueWritePos) |
|
|
|
return -1; |
|
|
|
|
|
|
|
// Read from "head"
|
|
|
|
rx = UART3Buffer[UART3RxQueueReadPos]; // grab next byte
|
|
|
|
if (PortNum == 3) { |
|
|
|
if (UART3RxQueueReadPos == UART3RxQueueWritePos) return -1; |
|
|
|
rx = UART3Buffer[UART3RxQueueReadPos]; |
|
|
|
UART3RxQueueReadPos = (UART3RxQueueReadPos + 1) % UARTRXQUEUESIZE; |
|
|
|
return rx; |
|
|
|
} |
|
|
|
return 0; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
size_t HardwareSerial::write(uint8_t send) { |
|
|
|
if ( PortNum == 0 ) |
|
|
|
{ |
|
|
|
size_t HardwareSerial::write(uint8_t send) { |
|
|
|
if (PortNum == 0) { |
|
|
|
/* THRE status, contain valid data */ |
|
|
|
while ( !(UART0TxEmpty & 0x01) ); |
|
|
|
while (!(UART0TxEmpty & 0x01)); |
|
|
|
LPC_UART0->THR = send; |
|
|
|
UART0TxEmpty = 0; /* not empty in the THR until it shifts out */ |
|
|
|
} |
|
|
|
else if (PortNum == 1) |
|
|
|
{ |
|
|
|
|
|
|
|
/* THRE status, contain valid data */ |
|
|
|
while ( !(UART1TxEmpty & 0x01) ); |
|
|
|
else if (PortNum == 1) { |
|
|
|
while (!(UART1TxEmpty & 0x01)); |
|
|
|
LPC_UART1->THR = send; |
|
|
|
UART1TxEmpty = 0; /* not empty in the THR until it shifts out */ |
|
|
|
|
|
|
|
|
|
|
|
UART1TxEmpty = 0; |
|
|
|
} |
|
|
|
else if ( PortNum == 2 ) |
|
|
|
{ |
|
|
|
/* THRE status, contain valid data */ |
|
|
|
while ( !(UART2TxEmpty & 0x01) ); |
|
|
|
else if (PortNum == 2) { |
|
|
|
while (!(UART2TxEmpty & 0x01)); |
|
|
|
LPC_UART2->THR = send; |
|
|
|
UART2TxEmpty = 0; /* not empty in the THR until it shifts out */ |
|
|
|
|
|
|
|
UART2TxEmpty = 0; |
|
|
|
} |
|
|
|
else if ( PortNum == 3 ) |
|
|
|
{ |
|
|
|
/* THRE status, contain valid data */ |
|
|
|
while ( !(UART3TxEmpty & 0x01) ); |
|
|
|
else if (PortNum == 3) { |
|
|
|
while (!(UART3TxEmpty & 0x01)); |
|
|
|
LPC_UART3->THR = send; |
|
|
|
UART3TxEmpty = 0; /* not empty in the THR until it shifts out */ |
|
|
|
|
|
|
|
UART3TxEmpty = 0; |
|
|
|
} |
|
|
|
return 0; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
int HardwareSerial::available() { |
|
|
|
if ( PortNum == 0 ) |
|
|
|
{ |
|
|
|
int HardwareSerial::available() { |
|
|
|
if (PortNum == 0) |
|
|
|
return (UART0RxQueueWritePos + UARTRXQUEUESIZE - UART0RxQueueReadPos) % UARTRXQUEUESIZE; |
|
|
|
} |
|
|
|
if ( PortNum == 1 ) |
|
|
|
{ |
|
|
|
if (PortNum == 1) |
|
|
|
return (UART1RxQueueWritePos + UARTRXQUEUESIZE - UART1RxQueueReadPos) % UARTRXQUEUESIZE; |
|
|
|
} |
|
|
|
if ( PortNum == 2 ) |
|
|
|
{ |
|
|
|
if (PortNum == 2) |
|
|
|
return (UART2RxQueueWritePos + UARTRXQUEUESIZE - UART2RxQueueReadPos) % UARTRXQUEUESIZE; |
|
|
|
} |
|
|
|
if ( PortNum == 3 ) |
|
|
|
{ |
|
|
|
if (PortNum == 3) |
|
|
|
return (UART3RxQueueWritePos + UARTRXQUEUESIZE - UART3RxQueueReadPos) % UARTRXQUEUESIZE; |
|
|
|
return 0; |
|
|
|
} |
|
|
|
return 0; |
|
|
|
} |
|
|
|
|
|
|
|
void HardwareSerial::flush() { |
|
|
|
if ( PortNum == 0 ) |
|
|
|
{ |
|
|
|
UART0RxQueueWritePos = 0; |
|
|
|
UART0RxQueueReadPos = 0; |
|
|
|
|
|
|
|
} |
|
|
|
if ( PortNum == 1 ) |
|
|
|
{ |
|
|
|
UART1RxQueueWritePos = 0; |
|
|
|
UART1RxQueueReadPos = 0; |
|
|
|
} |
|
|
|
if ( PortNum == 2 ) |
|
|
|
{ |
|
|
|
UART2RxQueueWritePos = 0; |
|
|
|
UART2RxQueueReadPos = 0; |
|
|
|
} |
|
|
|
if ( PortNum == 3 ) |
|
|
|
{ |
|
|
|
UART3RxQueueWritePos = 0; |
|
|
|
UART3RxQueueReadPos = 0; |
|
|
|
void HardwareSerial::flush() { |
|
|
|
if (PortNum == 0) |
|
|
|
UART0RxQueueWritePos = UART0RxQueueReadPos = 0; |
|
|
|
if (PortNum == 1) |
|
|
|
UART1RxQueueWritePos = UART1RxQueueReadPos = 0; |
|
|
|
if (PortNum == 2) |
|
|
|
UART2RxQueueWritePos = UART2RxQueueReadPos = 0; |
|
|
|
if (PortNum == 3) |
|
|
|
UART3RxQueueWritePos = UART3RxQueueReadPos = 0; |
|
|
|
} |
|
|
|
return; |
|
|
|
} |
|
|
|
|
|
|
|
void HardwareSerial::printf(const char *format, ...) { |
|
|
|
void HardwareSerial::printf(const char *format, ...) { |
|
|
|
static char buffer[256]; |
|
|
|
va_list vArgs; |
|
|
|
va_start(vArgs, format); |
|
|
|
int length = vsnprintf((char *) buffer, 256, (char const *) format, vArgs); |
|
|
|
va_end(vArgs); |
|
|
|
if (length > 0 && length < 256) { |
|
|
|
for (int i = 0; i < length;) { |
|
|
|
if (length > 0 && length < 256) |
|
|
|
for (int i = 0; i < length; ++i) |
|
|
|
write(buffer[i]); |
|
|
|
++i; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
#ifdef __cplusplus |
|
|
|
extern "C" { |
|
|
|
#endif |
|
|
|
|
|
|
|
/*****************************************************************************
|
|
|
|
** Function name: UART0_IRQHandler |
|
|
|
** |
|
|
|
** Descriptions: UART0 interrupt handler |
|
|
|
** |
|
|
|
** parameters: None |
|
|
|
** Returned value: None |
|
|
|
** |
|
|
|
*****************************************************************************/ |
|
|
|
void UART0_IRQHandler (void) |
|
|
|
{ |
|
|
|
uint8_t IIRValue, LSRValue; |
|
|
|
uint8_t Dummy = Dummy; |
|
|
|
|
|
|
|
IIRValue = LPC_UART0->IIR; |
|
|
|
|
|
|
|
IIRValue >>= 1; /* skip pending bit in IIR */ |
|
|
|
IIRValue &= 0x07; /* check bit 1~3, interrupt identification */ |
|
|
|
if ( IIRValue == IIR_RLS ) /* Receive Line Status */ |
|
|
|
{ |
|
|
|
LSRValue = LPC_UART0->LSR; |
|
|
|
/* Receive Line Status */ |
|
|
|
if ( LSRValue & (LSR_OE|LSR_PE|LSR_FE|LSR_RXFE|LSR_BI) ) |
|
|
|
{ |
|
|
|
/* There are errors or break interrupt */ |
|
|
|
/* Read LSR will clear the interrupt */ |
|
|
|
UART0Status = LSRValue; |
|
|
|
Dummy = LPC_UART0->RBR; /* Dummy read on RX to clear
|
|
|
|
interrupt, then bail out */ |
|
|
|
return; |
|
|
|
} |
|
|
|
if ( LSRValue & LSR_RDR ) /* Receive Data Ready */ |
|
|
|
{ |
|
|
|
/* If no error on RLS, normal ready, save into the data buffer. */ |
|
|
|
/* Note: read RBR will clear the interrupt */ |
|
|
|
if ((UART0RxQueueWritePos+1) % UARTRXQUEUESIZE != UART0RxQueueReadPos) |
|
|
|
{ |
|
|
|
UART0Buffer[UART0RxQueueWritePos] = LPC_UART0->RBR; |
|
|
|
UART0RxQueueWritePos = (UART0RxQueueWritePos+1) % UARTRXQUEUESIZE; |
|
|
|
} |
|
|
|
else |
|
|
|
dummy = LPC_UART0->RBR;; |
|
|
|
} |
|
|
|
} |
|
|
|
else if ( IIRValue == IIR_RDA ) /* Receive Data Available */ |
|
|
|
{ |
|
|
|
/* Receive Data Available */ |
|
|
|
if ((UART0RxQueueWritePos+1) % UARTRXQUEUESIZE != UART0RxQueueReadPos) |
|
|
|
{ |
|
|
|
UART0Buffer[UART0RxQueueWritePos] = LPC_UART0->RBR; |
|
|
|
UART0RxQueueWritePos = (UART0RxQueueWritePos+1) % UARTRXQUEUESIZE; |
|
|
|
} |
|
|
|
else |
|
|
|
dummy = LPC_UART1->RBR;; |
|
|
|
} |
|
|
|
else if ( IIRValue == IIR_CTI ) /* Character timeout indicator */ |
|
|
|
{ |
|
|
|
/* Character Time-out indicator */ |
|
|
|
UART0Status |= 0x100; /* Bit 9 as the CTI error */ |
|
|
|
} |
|
|
|
else if ( IIRValue == IIR_THRE ) /* THRE, transmit holding register empty */ |
|
|
|
{ |
|
|
|
/* THRE interrupt */ |
|
|
|
LSRValue = LPC_UART0->LSR; /* Check status in the LSR to see if
|
|
|
|
valid data in U0THR or not */ |
|
|
|
if ( LSRValue & LSR_THRE ) |
|
|
|
{ |
|
|
|
UART0TxEmpty = 1; |
|
|
|
} |
|
|
|
else |
|
|
|
{ |
|
|
|
UART0TxEmpty = 0; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
/*****************************************************************************
|
|
|
|
** Function name: UART1_IRQHandler |
|
|
|
** |
|
|
|
** Descriptions: UART1 interrupt handler |
|
|
|
** |
|
|
|
** parameters: None |
|
|
|
** Returned value: None |
|
|
|
** |
|
|
|
*****************************************************************************/ |
|
|
|
void UART1_IRQHandler (void) |
|
|
|
{ |
|
|
|
uint8_t IIRValue, LSRValue; |
|
|
|
uint8_t Dummy = Dummy; |
|
|
|
|
|
|
|
IIRValue = LPC_UART1->IIR; |
|
|
|
|
|
|
|
IIRValue >>= 1; /* skip pending bit in IIR */ |
|
|
|
IIRValue &= 0x07; /* check bit 1~3, interrupt identification */ |
|
|
|
if ( IIRValue == IIR_RLS ) /* Receive Line Status */ |
|
|
|
{ |
|
|
|
LSRValue = LPC_UART1->LSR; |
|
|
|
/* Receive Line Status */ |
|
|
|
if ( LSRValue & (LSR_OE|LSR_PE|LSR_FE|LSR_RXFE|LSR_BI) ) |
|
|
|
{ |
|
|
|
/* There are errors or break interrupt */ |
|
|
|
/* Read LSR will clear the interrupt */ |
|
|
|
UART1Status = LSRValue; |
|
|
|
Dummy = LPC_UART1->RBR; /* Dummy read on RX to clear
|
|
|
|
interrupt, then bail out */ |
|
|
|
return; |
|
|
|
} |
|
|
|
if ( LSRValue & LSR_RDR ) /* Receive Data Ready */ |
|
|
|
{ |
|
|
|
/* If no error on RLS, normal ready, save into the data buffer. */ |
|
|
|
/* Note: read RBR will clear the interrupt */ |
|
|
|
if ((UART1RxQueueWritePos+1) % UARTRXQUEUESIZE != UART1RxQueueReadPos) |
|
|
|
{ |
|
|
|
UART1Buffer[UART1RxQueueWritePos] = LPC_UART1->RBR; |
|
|
|
UART1RxQueueWritePos =(UART1RxQueueWritePos+1) % UARTRXQUEUESIZE; |
|
|
|
} |
|
|
|
else |
|
|
|
dummy = LPC_UART1->RBR;; |
|
|
|
} |
|
|
|
} |
|
|
|
else if ( IIRValue == IIR_RDA ) /* Receive Data Available */ |
|
|
|
{ |
|
|
|
/* Receive Data Available */ |
|
|
|
if ((UART1RxQueueWritePos+1) % UARTRXQUEUESIZE != UART1RxQueueReadPos) |
|
|
|
{ |
|
|
|
UART1Buffer[UART1RxQueueWritePos] = LPC_UART1->RBR; |
|
|
|
UART1RxQueueWritePos = (UART1RxQueueWritePos+1) % UARTRXQUEUESIZE; |
|
|
|
} |
|
|
|
else |
|
|
|
dummy = LPC_UART1->RBR;; |
|
|
|
} |
|
|
|
else if ( IIRValue == IIR_CTI ) /* Character timeout indicator */ |
|
|
|
{ |
|
|
|
/* Character Time-out indicator */ |
|
|
|
UART1Status |= 0x100; /* Bit 9 as the CTI error */ |
|
|
|
} |
|
|
|
else if ( IIRValue == IIR_THRE ) /* THRE, transmit holding register empty */ |
|
|
|
{ |
|
|
|
/* THRE interrupt */ |
|
|
|
LSRValue = LPC_UART1->LSR; /* Check status in the LSR to see if
|
|
|
|
valid data in U0THR or not */ |
|
|
|
if ( LSRValue & LSR_THRE ) |
|
|
|
{ |
|
|
|
UART1TxEmpty = 1; |
|
|
|
} |
|
|
|
else |
|
|
|
{ |
|
|
|
UART1TxEmpty = 0; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
} |
|
|
|
/*****************************************************************************
|
|
|
|
** Function name: UART2_IRQHandler |
|
|
|
** |
|
|
|
** Descriptions: UART2 interrupt handler |
|
|
|
** |
|
|
|
** parameters: None |
|
|
|
** Returned value: None |
|
|
|
** |
|
|
|
*****************************************************************************/ |
|
|
|
void UART2_IRQHandler (void) |
|
|
|
{ |
|
|
|
uint8_t IIRValue, LSRValue; |
|
|
|
uint8_t Dummy = Dummy; |
|
|
|
|
|
|
|
IIRValue = LPC_UART2->IIR; |
|
|
|
|
|
|
|
IIRValue >>= 1; /* skip pending bit in IIR */ |
|
|
|
IIRValue &= 0x07; /* check bit 1~3, interrupt identification */ |
|
|
|
if ( IIRValue == IIR_RLS ) /* Receive Line Status */ |
|
|
|
{ |
|
|
|
LSRValue = LPC_UART2->LSR; |
|
|
|
/* Receive Line Status */ |
|
|
|
if ( LSRValue & (LSR_OE|LSR_PE|LSR_FE|LSR_RXFE|LSR_BI) ) |
|
|
|
{ |
|
|
|
/* There are errors or break interrupt */ |
|
|
|
/* Read LSR will clear the interrupt */ |
|
|
|
UART2Status = LSRValue; |
|
|
|
Dummy = LPC_UART2->RBR; /* Dummy read on RX to clear
|
|
|
|
interrupt, then bail out */ |
|
|
|
return; |
|
|
|
} |
|
|
|
if ( LSRValue & LSR_RDR ) /* Receive Data Ready */ |
|
|
|
{ |
|
|
|
/* If no error on RLS, normal ready, save into the data buffer. */ |
|
|
|
/* Note: read RBR will clear the interrupt */ |
|
|
|
if ((UART2RxQueueWritePos+1) % UARTRXQUEUESIZE != UART2RxQueueReadPos) |
|
|
|
{ |
|
|
|
UART2Buffer[UART2RxQueueWritePos] = LPC_UART2->RBR; |
|
|
|
UART2RxQueueWritePos = (UART2RxQueueWritePos+1) % UARTRXQUEUESIZE; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
else if ( IIRValue == IIR_RDA ) /* Receive Data Available */ |
|
|
|
{ |
|
|
|
/* Receive Data Available */ |
|
|
|
if ((UART2RxQueueWritePos+1) % UARTRXQUEUESIZE != UART2RxQueueReadPos) |
|
|
|
{ |
|
|
|
UART2Buffer[UART2RxQueueWritePos] = LPC_UART2->RBR; |
|
|
|
UART2RxQueueWritePos = (UART2RxQueueWritePos+1) % UARTRXQUEUESIZE; |
|
|
|
} |
|
|
|
else |
|
|
|
dummy = LPC_UART2->RBR;; |
|
|
|
} |
|
|
|
else if ( IIRValue == IIR_CTI ) /* Character timeout indicator */ |
|
|
|
{ |
|
|
|
/* Character Time-out indicator */ |
|
|
|
UART2Status |= 0x100; /* Bit 9 as the CTI error */ |
|
|
|
} |
|
|
|
else if ( IIRValue == IIR_THRE ) /* THRE, transmit holding register empty */ |
|
|
|
{ |
|
|
|
/* THRE interrupt */ |
|
|
|
LSRValue = LPC_UART2->LSR; /* Check status in the LSR to see if
|
|
|
|
valid data in U0THR or not */ |
|
|
|
if ( LSRValue & LSR_THRE ) |
|
|
|
{ |
|
|
|
UART2TxEmpty = 1; |
|
|
|
} |
|
|
|
else |
|
|
|
{ |
|
|
|
UART2TxEmpty = 0; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
/*****************************************************************************
|
|
|
|
** Function name: UART3_IRQHandler |
|
|
|
** Function name: UARTn_IRQHandler |
|
|
|
** |
|
|
|
** Descriptions: UART0 interrupt handler |
|
|
|
** Descriptions: UARTn interrupt handler |
|
|
|
** |
|
|
|
** parameters: None |
|
|
|
** Returned value: None |
|
|
|
** |
|
|
|
*****************************************************************************/ |
|
|
|
void UART3_IRQHandler (void) |
|
|
|
{ |
|
|
|
uint8_t IIRValue, LSRValue; |
|
|
|
uint8_t Dummy = Dummy; |
|
|
|
#define DEFINE_UART_HANDLER(NUM) \ |
|
|
|
void UART3_IRQHandler(void) { \ |
|
|
|
uint8_t IIRValue, LSRValue; \ |
|
|
|
uint8_t Dummy = Dummy; \ |
|
|
|
IIRValue = LPC_UART ##NUM## ->IIR; \ |
|
|
|
IIRValue >>= 1; \ |
|
|
|
IIRValue &= 0x07; \ |
|
|
|
switch (IIRValue) { \ |
|
|
|
case IIR_RLS: \ |
|
|
|
LSRValue = LPC_UART ##NUM## ->LSR; \ |
|
|
|
if (LSRValue & (LSR_OE|LSR_PE|LSR_FE|LSR_RXFE|LSR_BI)) { \ |
|
|
|
UART ##NUM## Status = LSRValue; \ |
|
|
|
Dummy = LPC_UART ##NUM## ->RBR; \ |
|
|
|
return; \ |
|
|
|
} \ |
|
|
|
if (LSRValue & LSR_RDR) { \ |
|
|
|
if ((UART ##NUM## RxQueueWritePos+1) % UARTRXQUEUESIZE != UART ##NUM## RxQueueReadPos) { \ |
|
|
|
UART ##NUM## Buffer[UART ##NUM## RxQueueWritePos] = LPC_UART ##NUM## ->RBR; \ |
|
|
|
UART ##NUM## RxQueueWritePos = (UART ##NUM## RxQueueWritePos+1) % UARTRXQUEUESIZE; \ |
|
|
|
} \ |
|
|
|
} \ |
|
|
|
break; \ |
|
|
|
case IIR_RDA: \ |
|
|
|
if ((UART ##NUM## RxQueueWritePos+1) % UARTRXQUEUESIZE != UART ##NUM## RxQueueReadPos) { \ |
|
|
|
UART ##NUM## Buffer[UART ##NUM## RxQueueWritePos] = LPC_UART ##NUM## ->RBR; \ |
|
|
|
UART ##NUM## RxQueueWritePos = (UART ##NUM## RxQueueWritePos+1) % UARTRXQUEUESIZE; \ |
|
|
|
} \ |
|
|
|
else \ |
|
|
|
dummy = LPC_UART ##NUM## ->RBR;; \ |
|
|
|
break; \ |
|
|
|
case IIR_CTI: \ |
|
|
|
UART ##NUM## Status |= 0x100; \ |
|
|
|
break; \ |
|
|
|
case IIR_THRE: \ |
|
|
|
LSRValue = LPC_UART ##NUM## ->LSR; \ |
|
|
|
UART ##NUM## TxEmpty = (LSRValue & LSR_THRE) ? 1 : 0; \ |
|
|
|
break; \ |
|
|
|
} \ |
|
|
|
} \ |
|
|
|
typedef void _uart_ ## NUM |
|
|
|
|
|
|
|
IIRValue = LPC_UART3->IIR; |
|
|
|
#ifdef __cplusplus |
|
|
|
extern "C" { |
|
|
|
#endif |
|
|
|
|
|
|
|
IIRValue >>= 1; /* skip pending bit in IIR */ |
|
|
|
IIRValue &= 0x07; /* check bit 1~3, interrupt identification */ |
|
|
|
if ( IIRValue == IIR_RLS ) /* Receive Line Status */ |
|
|
|
{ |
|
|
|
LSRValue = LPC_UART3->LSR; |
|
|
|
/* Receive Line Status */ |
|
|
|
if ( LSRValue & (LSR_OE|LSR_PE|LSR_FE|LSR_RXFE|LSR_BI) ) |
|
|
|
{ |
|
|
|
/* There are errors or break interrupt */ |
|
|
|
/* Read LSR will clear the interrupt */ |
|
|
|
UART3Status = LSRValue; |
|
|
|
Dummy = LPC_UART3->RBR; /* Dummy read on RX to clear
|
|
|
|
interrupt, then bail out */ |
|
|
|
return; |
|
|
|
} |
|
|
|
if ( LSRValue & LSR_RDR ) /* Receive Data Ready */ |
|
|
|
{ |
|
|
|
/* If no error on RLS, normal ready, save into the data buffer. */ |
|
|
|
/* Note: read RBR will clear the interrupt */ |
|
|
|
if ((UART3RxQueueWritePos+1) % UARTRXQUEUESIZE != UART3RxQueueReadPos) |
|
|
|
{ |
|
|
|
UART3Buffer[UART3RxQueueWritePos] = LPC_UART3->RBR; |
|
|
|
UART3RxQueueWritePos = (UART3RxQueueWritePos+1) % UARTRXQUEUESIZE; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
else if ( IIRValue == IIR_RDA ) /* Receive Data Available */ |
|
|
|
{ |
|
|
|
/* Receive Data Available */ |
|
|
|
if ((UART3RxQueueWritePos+1) % UARTRXQUEUESIZE != UART3RxQueueReadPos) |
|
|
|
{ |
|
|
|
UART3Buffer[UART3RxQueueWritePos] = LPC_UART3->RBR; |
|
|
|
UART3RxQueueWritePos = (UART3RxQueueWritePos+1) % UARTRXQUEUESIZE; |
|
|
|
} |
|
|
|
else |
|
|
|
dummy = LPC_UART3->RBR;; |
|
|
|
} |
|
|
|
else if ( IIRValue == IIR_CTI ) /* Character timeout indicator */ |
|
|
|
{ |
|
|
|
/* Character Time-out indicator */ |
|
|
|
UART3Status |= 0x100; /* Bit 9 as the CTI error */ |
|
|
|
} |
|
|
|
else if ( IIRValue == IIR_THRE ) /* THRE, transmit holding register empty */ |
|
|
|
{ |
|
|
|
/* THRE interrupt */ |
|
|
|
LSRValue = LPC_UART3->LSR; /* Check status in the LSR to see if
|
|
|
|
valid data in U0THR or not */ |
|
|
|
if ( LSRValue & LSR_THRE ) |
|
|
|
{ |
|
|
|
UART3TxEmpty = 1; |
|
|
|
} |
|
|
|
else |
|
|
|
{ |
|
|
|
UART3TxEmpty = 0; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
DEFINE_UART_HANDLER(0); |
|
|
|
DEFINE_UART_HANDLER(1); |
|
|
|
DEFINE_UART_HANDLER(2); |
|
|
|
DEFINE_UART_HANDLER(3); |
|
|
|
|
|
|
|
#ifdef __cplusplus |
|
|
|
} |
|
|
|
} |
|
|
|
#endif |
|
|
|
|
|
|
|
#endif // TARGET_LPC1768
|
|
|
|