|
|
@ -330,6 +330,7 @@ float position_shift[3] = { 0 }; |
|
|
|
// Set by M206, M428, or menu item. Saved to EEPROM.
|
|
|
|
float home_offset[3] = { 0 }; |
|
|
|
|
|
|
|
#define LOGICAL_POSITION(POS, AXIS) (POS + home_offset[AXIS] + position_shift[AXIS]) |
|
|
|
#define RAW_POSITION(POS, AXIS) (POS - home_offset[AXIS] - position_shift[AXIS]) |
|
|
|
#define RAW_CURRENT_POSITION(AXIS) (RAW_POSITION(current_position[AXIS], AXIS)) |
|
|
|
|
|
|
@ -1402,7 +1403,7 @@ XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR); |
|
|
|
|
|
|
|
static float x_home_pos(int extruder) { |
|
|
|
if (extruder == 0) |
|
|
|
return base_home_pos(X_AXIS) + home_offset[X_AXIS]; |
|
|
|
return LOGICAL_POSITION(base_home_pos(X_AXIS), X_AXIS); |
|
|
|
else |
|
|
|
/**
|
|
|
|
* In dual carriage mode the extruder offset provides an override of the |
|
|
@ -1437,7 +1438,7 @@ XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR); |
|
|
|
* at the same positions relative to the machine. |
|
|
|
*/ |
|
|
|
static void update_software_endstops(AxisEnum axis) { |
|
|
|
float offs = home_offset[axis] + position_shift[axis]; |
|
|
|
float offs = LOGICAL_POSITION(0, axis); |
|
|
|
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE) |
|
|
|
if (axis == X_AXIS) { |
|
|
@ -1508,7 +1509,7 @@ static void set_axis_is_at_home(AxisEnum axis) { |
|
|
|
if (active_extruder != 0) |
|
|
|
current_position[X_AXIS] = x_home_pos(active_extruder); |
|
|
|
else |
|
|
|
current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS]; |
|
|
|
current_position[X_AXIS] = LOGICAL_POSITION(base_home_pos(X_AXIS), X_AXIS); |
|
|
|
update_software_endstops(X_AXIS); |
|
|
|
return; |
|
|
|
} |
|
|
@ -1519,7 +1520,8 @@ static void set_axis_is_at_home(AxisEnum axis) { |
|
|
|
if (axis == X_AXIS || axis == Y_AXIS) { |
|
|
|
|
|
|
|
float homeposition[3]; |
|
|
|
for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i); |
|
|
|
for (uint8_t i = X_AXIS; i <= Z_AXIS; i++) |
|
|
|
homeposition[i] = LOGICAL_POSITION(base_home_pos(i), i); |
|
|
|
|
|
|
|
// SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
|
|
|
|
// SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
|
|
|
@ -1529,23 +1531,12 @@ static void set_axis_is_at_home(AxisEnum axis) { |
|
|
|
* and calculates homing offset using forward kinematics |
|
|
|
*/ |
|
|
|
inverse_kinematics(homeposition); |
|
|
|
|
|
|
|
// SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
|
|
|
|
// SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
|
|
|
|
|
|
|
for (int i = 0; i < 2; i++) delta[i] -= home_offset[i]; |
|
|
|
|
|
|
|
// SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
|
|
|
|
// SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
|
|
|
|
// SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
|
|
|
|
// SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
|
|
|
|
|
|
|
forward_kinematics_SCARA(delta); |
|
|
|
|
|
|
|
// SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
|
|
|
|
// SERIAL_ECHOPAIR("Delta X=", delta[X_AXIS]);
|
|
|
|
// SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
|
|
|
|
|
|
|
current_position[axis] = delta[axis]; |
|
|
|
current_position[axis] = LOGICAL_POSITION(delta[axis], axis); |
|
|
|
|
|
|
|
/**
|
|
|
|
* SCARA home positions are based on configuration since the actual |
|
|
@ -1557,7 +1548,7 @@ static void set_axis_is_at_home(AxisEnum axis) { |
|
|
|
else |
|
|
|
#endif |
|
|
|
{ |
|
|
|
current_position[axis] = base_home_pos(axis) + home_offset[axis]; |
|
|
|
current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis); |
|
|
|
update_software_endstops(axis); |
|
|
|
|
|
|
|
#if HAS_BED_PROBE && Z_HOME_DIR < 0 && DISABLED(Z_MIN_PROBE_ENDSTOP) |
|
|
@ -1786,7 +1777,7 @@ static void clean_up_after_endstop_or_probe_move() { |
|
|
|
SERIAL_ECHOLNPGM(")"); |
|
|
|
} |
|
|
|
#endif |
|
|
|
float z_dest = home_offset[Z_AXIS] + z_raise; |
|
|
|
float z_dest = LOGICAL_POSITION(z_raise, Z_AXIS); |
|
|
|
|
|
|
|
if (zprobe_zoffset < 0) |
|
|
|
z_dest -= zprobe_zoffset; |
|
|
@ -2089,7 +2080,7 @@ static void clean_up_after_endstop_or_probe_move() { |
|
|
|
#if ENABLED(DELTA) |
|
|
|
#define SET_Z_FROM_STEPPERS() set_current_from_steppers() |
|
|
|
#else |
|
|
|
#define SET_Z_FROM_STEPPERS() current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS) |
|
|
|
#define SET_Z_FROM_STEPPERS() current_position[Z_AXIS] = LOGICAL_POSITION(stepper.get_axis_position_mm(Z_AXIS), Z_AXIS) |
|
|
|
#endif |
|
|
|
|
|
|
|
// Do a single Z probe and return with current_position[Z_AXIS]
|
|
|
@ -2958,7 +2949,7 @@ inline void gcode_G28() { |
|
|
|
|
|
|
|
if (home_all_axis || homeX || homeY) { |
|
|
|
// Raise Z before homing any other axes and z is not already high enough (never lower z)
|
|
|
|
destination[Z_AXIS] = home_offset[Z_AXIS] + MIN_Z_HEIGHT_FOR_HOMING; |
|
|
|
destination[Z_AXIS] = LOGICAL_POSITION(MIN_Z_HEIGHT_FOR_HOMING, Z_AXIS); |
|
|
|
if (destination[Z_AXIS] > current_position[Z_AXIS]) { |
|
|
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE) |
|
|
@ -3213,12 +3204,12 @@ inline void gcode_G28() { |
|
|
|
; |
|
|
|
line_to_current_position(); |
|
|
|
|
|
|
|
current_position[X_AXIS] = x + home_offset[X_AXIS]; |
|
|
|
current_position[Y_AXIS] = y + home_offset[Y_AXIS]; |
|
|
|
current_position[X_AXIS] = LOGICAL_POSITION(x, X_AXIS); |
|
|
|
current_position[Y_AXIS] = LOGICAL_POSITION(y, Y_AXIS); |
|
|
|
line_to_current_position(); |
|
|
|
|
|
|
|
#if Z_RAISE_BETWEEN_PROBINGS > 0 || MIN_Z_HEIGHT_FOR_HOMING > 0 |
|
|
|
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z; |
|
|
|
current_position[Z_AXIS] = LOGICAL_POSITION(MESH_HOME_SEARCH_Z, Z_AXIS); |
|
|
|
line_to_current_position(); |
|
|
|
#endif |
|
|
|
|
|
|
@ -3636,14 +3627,14 @@ inline void gcode_G28() { |
|
|
|
#endif |
|
|
|
|
|
|
|
// Probe at 3 arbitrary points
|
|
|
|
float z_at_pt_1 = probe_pt( ABL_PROBE_PT_1_X + home_offset[X_AXIS], |
|
|
|
ABL_PROBE_PT_1_Y + home_offset[Y_AXIS], |
|
|
|
float z_at_pt_1 = probe_pt( LOGICAL_POSITION(ABL_PROBE_PT_1_X, X_AXIS), |
|
|
|
LOGICAL_POSITION(ABL_PROBE_PT_1_Y, Y_AXIS), |
|
|
|
stow_probe_after_each, verbose_level), |
|
|
|
z_at_pt_2 = probe_pt( ABL_PROBE_PT_2_X + home_offset[X_AXIS], |
|
|
|
ABL_PROBE_PT_2_Y + home_offset[Y_AXIS], |
|
|
|
z_at_pt_2 = probe_pt( LOGICAL_POSITION(ABL_PROBE_PT_2_X, X_AXIS), |
|
|
|
LOGICAL_POSITION(ABL_PROBE_PT_2_Y, Y_AXIS), |
|
|
|
stow_probe_after_each, verbose_level), |
|
|
|
z_at_pt_3 = probe_pt( ABL_PROBE_PT_3_X + home_offset[X_AXIS], |
|
|
|
ABL_PROBE_PT_3_Y + home_offset[Y_AXIS], |
|
|
|
z_at_pt_3 = probe_pt( LOGICAL_POSITION(ABL_PROBE_PT_3_X, X_AXIS), |
|
|
|
LOGICAL_POSITION(ABL_PROBE_PT_3_Y, Y_AXIS), |
|
|
|
stow_probe_after_each, verbose_level); |
|
|
|
|
|
|
|
if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3); |
|
|
@ -5174,9 +5165,9 @@ static void report_current_position() { |
|
|
|
SERIAL_EOL; |
|
|
|
|
|
|
|
SERIAL_PROTOCOLPGM("SCARA Cal - Theta:"); |
|
|
|
SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]); |
|
|
|
SERIAL_PROTOCOL(delta[X_AXIS]); |
|
|
|
SERIAL_PROTOCOLPGM(" Psi+Theta (90):"); |
|
|
|
SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]); |
|
|
|
SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90); |
|
|
|
SERIAL_EOL; |
|
|
|
|
|
|
|
SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:"); |
|
|
@ -6143,7 +6134,7 @@ inline void gcode_M428() { |
|
|
|
for (int8_t i = X_AXIS; i <= Z_AXIS; i++) { |
|
|
|
if (axis_homed[i]) { |
|
|
|
float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) / 2) ? base_home_pos(i) : 0, |
|
|
|
diff = current_position[i] - base; |
|
|
|
diff = current_position[i] - LOGICAL_POSITION(base, i); |
|
|
|
if (diff > -20 && diff < 20) { |
|
|
|
set_home_offset((AxisEnum)i, home_offset[i] - diff); |
|
|
|
} |
|
|
@ -7739,6 +7730,12 @@ void clamp_to_software_endstops(float target[3]) { |
|
|
|
|
|
|
|
void inverse_kinematics(const float in_cartesian[3]) { |
|
|
|
|
|
|
|
const float cartesian[3] = { |
|
|
|
RAW_POSITION(in_cartesian[X_AXIS], X_AXIS), |
|
|
|
RAW_POSITION(in_cartesian[Y_AXIS], Y_AXIS), |
|
|
|
RAW_POSITION(in_cartesian[Z_AXIS], Z_AXIS) |
|
|
|
}; |
|
|
|
|
|
|
|
delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1 |
|
|
|
- sq(delta_tower1_x - cartesian[X_AXIS]) |
|
|
|
- sq(delta_tower1_y - cartesian[Y_AXIS]) |
|
|
@ -7763,10 +7760,14 @@ void clamp_to_software_endstops(float target[3]) { |
|
|
|
} |
|
|
|
|
|
|
|
float delta_safe_distance_from_top() { |
|
|
|
float cartesian[3] = { 0 }; |
|
|
|
float cartesian[3] = { |
|
|
|
LOGICAL_POSITION(0, X_AXIS), |
|
|
|
LOGICAL_POSITION(0, Y_AXIS), |
|
|
|
LOGICAL_POSITION(0, Z_AXIS) |
|
|
|
}; |
|
|
|
inverse_kinematics(cartesian); |
|
|
|
float distance = delta[TOWER_3]; |
|
|
|
cartesian[Y_AXIS] = DELTA_PRINTABLE_RADIUS; |
|
|
|
cartesian[Y_AXIS] = LOGICAL_POSITION(DELTA_PRINTABLE_RADIUS, Y_AXIS); |
|
|
|
inverse_kinematics(cartesian); |
|
|
|
return abs(distance - delta[TOWER_3]); |
|
|
|
} |
|
|
@ -7846,8 +7847,8 @@ void clamp_to_software_endstops(float target[3]) { |
|
|
|
|
|
|
|
void set_cartesian_from_steppers() { |
|
|
|
forward_kinematics_DELTA(stepper.get_axis_position_mm(X_AXIS), |
|
|
|
stepper.get_axis_position_mm(Y_AXIS), |
|
|
|
stepper.get_axis_position_mm(Z_AXIS)); |
|
|
|
stepper.get_axis_position_mm(Y_AXIS), |
|
|
|
stepper.get_axis_position_mm(Z_AXIS)); |
|
|
|
} |
|
|
|
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE) |
|
|
@ -7858,8 +7859,8 @@ void clamp_to_software_endstops(float target[3]) { |
|
|
|
|
|
|
|
int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2; |
|
|
|
float h1 = 0.001 - half, h2 = half - 0.001, |
|
|
|
grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])), |
|
|
|
grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1])); |
|
|
|
grid_x = max(h1, min(h2, RAW_POSITION(cartesian[X_AXIS], X_AXIS) / delta_grid_spacing[0])), |
|
|
|
grid_y = max(h1, min(h2, RAW_POSITION(cartesian[Y_AXIS], Y_AXIS) / delta_grid_spacing[1])); |
|
|
|
int floor_x = floor(grid_x), floor_y = floor(grid_y); |
|
|
|
float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y, |
|
|
|
z1 = bed_level[floor_x + half][floor_y + half], |
|
|
@ -7910,6 +7911,9 @@ void set_current_from_steppers() { |
|
|
|
current_position[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS); |
|
|
|
current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS); |
|
|
|
#endif |
|
|
|
|
|
|
|
for (uint8_t i = X_AXIS; i <= Z_AXIS; i++) |
|
|
|
current_position[i] += LOGICAL_POSITION(0, i); |
|
|
|
} |
|
|
|
|
|
|
|
#if ENABLED(MESH_BED_LEVELING) |
|
|
@ -7940,14 +7944,14 @@ void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_ |
|
|
|
int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2); |
|
|
|
if (cx2 != cx1 && TEST(x_splits, gcx)) { |
|
|
|
memcpy(end, destination, sizeof(end)); |
|
|
|
destination[X_AXIS] = mbl.get_probe_x(gcx) + home_offset[X_AXIS] + position_shift[X_AXIS]; |
|
|
|
destination[X_AXIS] = LOGICAL_POSITION(mbl.get_probe_x(gcx), X_AXIS); |
|
|
|
normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]); |
|
|
|
destination[Y_AXIS] = MBL_SEGMENT_END(Y); |
|
|
|
CBI(x_splits, gcx); |
|
|
|
} |
|
|
|
else if (cy2 != cy1 && TEST(y_splits, gcy)) { |
|
|
|
memcpy(end, destination, sizeof(end)); |
|
|
|
destination[Y_AXIS] = mbl.get_probe_y(gcy) + home_offset[Y_AXIS] + position_shift[Y_AXIS]; |
|
|
|
destination[Y_AXIS] = LOGICAL_POSITION(mbl.get_probe_y(gcy), Y_AXIS); |
|
|
|
normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]); |
|
|
|
destination[X_AXIS] = MBL_SEGMENT_END(X); |
|
|
|
CBI(y_splits, gcy); |
|
|
@ -8362,8 +8366,8 @@ void prepare_move_to_destination() { |
|
|
|
float SCARA_pos[2]; |
|
|
|
static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi; |
|
|
|
|
|
|
|
SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
|
|
|
|
SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
|
|
|
|
SCARA_pos[X_AXIS] = RAW_POSITION(cartesian[X_AXIS], X_AXIS) * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
|
|
|
|
SCARA_pos[Y_AXIS] = RAW_POSITION(cartesian[Y_AXIS], Y_AXIS) * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
|
|
|
|
|
|
|
|
#if (Linkage_1 == Linkage_2) |
|
|
|
SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1; |
|
|
@ -8381,7 +8385,7 @@ void prepare_move_to_destination() { |
|
|
|
|
|
|
|
delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
|
|
|
|
delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
|
|
|
|
delta[Z_AXIS] = cartesian[Z_AXIS]; |
|
|
|
delta[Z_AXIS] = RAW_POSITION(cartesian[Z_AXIS], Z_AXIS); |
|
|
|
|
|
|
|
/**
|
|
|
|
SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]); |
|
|
|