diff --git a/Marlin/Configuration.h b/Marlin/Configuration.h index 066e610058..08bf6ea9e2 100644 --- a/Marlin/Configuration.h +++ b/Marlin/Configuration.h @@ -278,8 +278,8 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th #ifdef ADVANCE #define EXTRUDER_ADVANCE_K .3 - #define D_FILAMENT 1.7 - #define STEPS_MM_E 65 + #define D_FILAMENT 2.85 + #define STEPS_MM_E 836 #define EXTRUTION_AREA (0.25 * D_FILAMENT * D_FILAMENT * 3.14159) #define STEPS_PER_CUBIC_MM_E (axis_steps_per_unit[E_AXIS]/ EXTRUTION_AREA) diff --git a/Marlin/planner.cpp b/Marlin/planner.cpp index 1674fcc7d9..7a7a35db4d 100644 --- a/Marlin/planner.cpp +++ b/Marlin/planner.cpp @@ -198,7 +198,6 @@ void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exi // block->accelerate_until = accelerate_steps; // block->decelerate_after = accelerate_steps+plateau_steps; - CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section if(block->busy == false) { // Don't update variables if block is busy. block->accelerate_until = accelerate_steps; @@ -482,7 +481,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa // Bail if this is a zero-length block if (block->step_event_count <=dropsegments) { return; }; - // Compute direction bits for this block + // Compute direction bits for this block block->direction_bits = 0; if (target[X_AXIS] < position[X_AXIS]) { block->direction_bits |= (1<direction_bits |= (1<nominal_rate, block->acceleration_st); float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) * - (current_speed[E_AXIS] * current_speed[E_AXIS] * EXTRUTION_AREA * EXTRUTION_AREA / 3600.0)*65536; + (current_speed[E_AXIS] * current_speed[E_AXIS] * EXTRUTION_AREA * EXTRUTION_AREA)*256; block->advance = advance; if(acc_dist == 0) { block->advance_rate = 0; @@ -731,6 +730,13 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa block->advance_rate = advance / (float)acc_dist; } } + /* + SERIAL_ECHO_START; + SERIAL_ECHOPGM("advance :"); + SERIAL_ECHO(block->advance/256.0); + SERIAL_ECHOPGM("advance rate :"); + SERIAL_ECHOLN(block->advance_rate/256.0); + */ #endif // ADVANCE diff --git a/Marlin/stepper.cpp b/Marlin/stepper.cpp index 0eabc753d7..bcad026fbe 100644 --- a/Marlin/stepper.cpp +++ b/Marlin/stepper.cpp @@ -55,9 +55,9 @@ static long counter_x, // Counter variables for the bresenham line tracer volatile static unsigned long step_events_completed; // The number of step events executed in the current block #ifdef ADVANCE static long advance_rate, advance, final_advance = 0; - static short old_advance = 0; + static long old_advance = 0; #endif -static short e_steps; +static long e_steps; static unsigned char busy = false; // TRUE when SIG_OUTPUT_COMPARE1A is being serviced. Used to avoid retriggering that handler. static long acceleration_time, deceleration_time; //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate; @@ -253,6 +253,9 @@ FORCE_INLINE void trapezoid_generator_reset() { #ifdef ADVANCE advance = current_block->initial_advance; final_advance = current_block->final_advance; + // Do E steps + advance steps + e_steps += ((advance >>8) - old_advance); + old_advance = advance >>8; #endif deceleration_time = 0; // step_rate to timer interval @@ -260,6 +263,17 @@ FORCE_INLINE void trapezoid_generator_reset() { acceleration_time = calc_timer(acc_step_rate); OCR1A = acceleration_time; OCR1A_nominal = calc_timer(current_block->nominal_rate); + +// SERIAL_ECHO_START; +// SERIAL_ECHOPGM("advance :"); +// SERIAL_ECHO(current_block->advance/256.0); +// SERIAL_ECHOPGM("advance rate :"); +// SERIAL_ECHO(current_block->advance_rate/256.0); +// SERIAL_ECHOPGM("initial advance :"); +// SERIAL_ECHO(current_block->initial_advance/256.0); +// SERIAL_ECHOPGM("final advance :"); +// SERIAL_ECHOLN(current_block->final_advance/256.0); + } // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse. @@ -382,6 +396,9 @@ ISR(TIMER1_COMPA_vect) count_direction[E_AXIS]=-1; } #endif //!ADVANCE + + + for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves) MSerial.checkRx(); // Check for serial chars. @@ -390,19 +407,12 @@ ISR(TIMER1_COMPA_vect) if (counter_e > 0) { counter_e -= current_block->step_event_count; if ((out_bits & (1<> 16) - old_advance); - old_advance = advance >> 16; #endif //ADVANCE counter_x += current_block->steps_x; @@ -461,6 +471,11 @@ ISR(TIMER1_COMPA_vect) for(int8_t i=0; i < step_loops; i++) { advance += advance_rate; } + //if(advance > current_block->advance) advance = current_block->advance; + // Do E steps + advance steps + e_steps += ((advance >>8) - old_advance); + old_advance = advance >>8; + #endif } else if (step_events_completed > current_block->decelerate_after) { @@ -485,8 +500,10 @@ ISR(TIMER1_COMPA_vect) for(int8_t i=0; i < step_loops; i++) { advance -= advance_rate; } - if(advance < final_advance) - advance = final_advance; + if(advance < final_advance) advance = final_advance; + // Do E steps + advance steps + e_steps += ((advance >>8) - old_advance); + old_advance = advance >>8; #endif //ADVANCE } else { @@ -507,7 +524,7 @@ ISR(TIMER1_COMPA_vect) // Timer 0 is shared with millies ISR(TIMER0_COMPA_vect) { - old_OCR0A += 25; // ~10kHz interrupt + old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz) OCR0A = old_OCR0A; // Set E direction (Depends on E direction + advance) for(unsigned char i=0; i<4;) { @@ -519,7 +536,7 @@ ISR(TIMER1_COMPA_vect) e_steps++; WRITE(E_STEP_PIN, HIGH); } - if (e_steps > 0) { + else if (e_steps > 0) { WRITE(E_DIR_PIN,!INVERT_E_DIR); e_steps--; WRITE(E_STEP_PIN, HIGH);