Browse Source

Put ABL state into a class

vanilla_fb_2.0.x
Scott Lahteine 4 years ago
committed by Scott Lahteine
parent
commit
a572e2ed12
  1. 424
      Marlin/src/gcode/bedlevel/abl/G29.cpp
  2. 2
      Marlin/src/inc/Conditionals_LCD.h
  3. 2
      Marlin/src/inc/SanityCheck.h
  4. 2
      buildroot/tests/rambo

424
Marlin/src/gcode/bedlevel/abl/G29.cpp

@ -68,22 +68,77 @@
#include "../../../module/tool_change.h" #include "../../../module/tool_change.h"
#endif #endif
#if ABL_GRID #if ABL_USES_GRID
#if ENABLED(PROBE_Y_FIRST) #if ENABLED(PROBE_Y_FIRST)
#define PR_OUTER_VAR meshCount.x #define PR_OUTER_VAR abl.meshCount.x
#define PR_OUTER_END abl_grid_points.x #define PR_OUTER_SIZE abl.grid_points.x
#define PR_INNER_VAR meshCount.y #define PR_INNER_VAR abl.meshCount.y
#define PR_INNER_END abl_grid_points.y #define PR_INNER_SIZE abl.grid_points.y
#else #else
#define PR_OUTER_VAR meshCount.y #define PR_OUTER_VAR abl.meshCount.y
#define PR_OUTER_END abl_grid_points.y #define PR_OUTER_SIZE abl.grid_points.y
#define PR_INNER_VAR meshCount.x #define PR_INNER_VAR abl.meshCount.x
#define PR_INNER_END abl_grid_points.x #define PR_INNER_SIZE abl.grid_points.x
#endif #endif
#endif #endif
#define G29_RETURN(b) return TERN_(G29_RETRY_AND_RECOVER, b) #define G29_RETURN(b) return TERN_(G29_RETRY_AND_RECOVER, b)
// For manual probing values persist over multiple G29
class G29_State {
public:
int verbose_level;
xy_pos_t probePos;
float measured_z;
bool dryrun,
reenable;
#if EITHER(PROBE_MANUALLY, AUTO_BED_LEVELING_LINEAR)
int abl_probe_index;
#endif
#if ABL_USES_GRID
xy_int8_t meshCount;
xy_pos_t probe_position_lf,
probe_position_rb;
xy_float_t gridSpacing; // = { 0.0f, 0.0f }
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
bool topography_map;
xy_uint8_t grid_points;
#else // Bilinear
static constexpr xy_uint8_t grid_points = { GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y };
#endif
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
int abl_points;
#elif ENABLED(AUTO_BED_LEVELING_3POINT)
static constexpr int abl_points = 3;
#else
static constexpr int abl_points = GRID_MAX_POINTS;
#endif
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
float Z_offset;
#endif
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
int indexIntoAB[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
float eqnAMatrix[(GRID_MAX_POINTS) * 3], // "A" matrix of the linear system of equations
eqnBVector[GRID_MAX_POINTS], // "B" vector of Z points
mean;
#endif
#endif
};
#if ABL_USES_GRID && EITHER(AUTO_BED_LEVELING_3POINT, AUTO_BED_LEVELING_BILINEAR)
constexpr xy_uint8_t G29_State::grid_points;
constexpr int G29_State::abl_points;
#endif
/** /**
* G29: Detailed Z probe, probes the bed at 3 or more points. * G29: Detailed Z probe, probes the bed at 3 or more points.
* Will fail if the printer has not been homed with G28. * Will fail if the printer has not been homed with G28.
@ -163,6 +218,8 @@
*/ */
G29_TYPE GcodeSuite::G29() { G29_TYPE GcodeSuite::G29() {
TERN_(PROBE_MANUALLY, static) G29_State abl;
reset_stepper_timeout(); reset_stepper_timeout();
const bool seenQ = EITHER(DEBUG_LEVELING_FEATURE, PROBE_MANUALLY) && parser.seen('Q'); const bool seenQ = EITHER(DEBUG_LEVELING_FEATURE, PROBE_MANUALLY) && parser.seen('Q');
@ -193,63 +250,10 @@ G29_TYPE GcodeSuite::G29() {
// Don't allow auto-leveling without homing first // Don't allow auto-leveling without homing first
if (homing_needed_error()) G29_RETURN(false); if (homing_needed_error()) G29_RETURN(false);
// Define local vars 'static' for manual probing, 'auto' otherwise #if ENABLED(AUTO_BED_LEVELING_3POINT)
#define ABL_VAR TERN_(PROBE_MANUALLY, static)
ABL_VAR int verbose_level;
ABL_VAR xy_pos_t probePos;
ABL_VAR float measured_z;
ABL_VAR bool dryrun, abl_should_enable;
#if EITHER(PROBE_MANUALLY, AUTO_BED_LEVELING_LINEAR)
ABL_VAR int abl_probe_index;
#endif
#if ABL_GRID
#if ENABLED(PROBE_MANUALLY)
ABL_VAR xy_int8_t meshCount;
#endif
ABL_VAR xy_pos_t probe_position_lf, probe_position_rb;
ABL_VAR xy_float_t gridSpacing = { 0, 0 };
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
ABL_VAR bool do_topography_map;
ABL_VAR xy_uint8_t abl_grid_points;
#else // Bilinear
constexpr xy_uint8_t abl_grid_points = { GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y };
#endif
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
ABL_VAR int abl_points;
#else
int constexpr abl_points = GRID_MAX_POINTS;
#endif
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
ABL_VAR float zoffset;
#elif ENABLED(AUTO_BED_LEVELING_LINEAR)
ABL_VAR int indexIntoAB[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
ABL_VAR float eqnAMatrix[(GRID_MAX_POINTS) * 3], // "A" matrix of the linear system of equations
eqnBVector[GRID_MAX_POINTS], // "B" vector of Z points
mean;
#endif
#elif ENABLED(AUTO_BED_LEVELING_3POINT)
#if ENABLED(PROBE_MANUALLY)
int constexpr abl_points = 3; // used to show total points
#endif
vector_3 points[3]; vector_3 points[3];
probe.get_three_points(points); probe.get_three_points(points);
#endif
#endif // AUTO_BED_LEVELING_3POINT
#if ENABLED(AUTO_BED_LEVELING_LINEAR) #if ENABLED(AUTO_BED_LEVELING_LINEAR)
struct linear_fit_data lsf_results; struct linear_fit_data lsf_results;
@ -263,10 +267,10 @@ G29_TYPE GcodeSuite::G29() {
TERN_(HAS_MULTI_HOTEND, if (active_extruder) tool_change(0)); TERN_(HAS_MULTI_HOTEND, if (active_extruder) tool_change(0));
#if EITHER(PROBE_MANUALLY, AUTO_BED_LEVELING_LINEAR) #if EITHER(PROBE_MANUALLY, AUTO_BED_LEVELING_LINEAR)
abl_probe_index = -1; abl.abl_probe_index = -1;
#endif #endif
abl_should_enable = planner.leveling_active; abl.reenable = planner.leveling_active;
#if ENABLED(AUTO_BED_LEVELING_BILINEAR) #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
@ -289,8 +293,8 @@ G29_TYPE GcodeSuite::G29() {
if (!isnan(rx) && !isnan(ry)) { if (!isnan(rx) && !isnan(ry)) {
// Get nearest i / j from rx / ry // Get nearest i / j from rx / ry
i = (rx - bilinear_start.x + 0.5 * gridSpacing.x) / gridSpacing.x; i = (rx - bilinear_start.x + 0.5 * abl.gridSpacing.x) / abl.gridSpacing.x;
j = (ry - bilinear_start.y + 0.5 * gridSpacing.y) / gridSpacing.y; j = (ry - bilinear_start.y + 0.5 * abl.gridSpacing.y) / abl.gridSpacing.y;
LIMIT(i, 0, GRID_MAX_POINTS_X - 1); LIMIT(i, 0, GRID_MAX_POINTS_X - 1);
LIMIT(j, 0, GRID_MAX_POINTS_Y - 1); LIMIT(j, 0, GRID_MAX_POINTS_Y - 1);
} }
@ -299,8 +303,8 @@ G29_TYPE GcodeSuite::G29() {
z_values[i][j] = rz; z_values[i][j] = rz;
TERN_(ABL_BILINEAR_SUBDIVISION, bed_level_virt_interpolate()); TERN_(ABL_BILINEAR_SUBDIVISION, bed_level_virt_interpolate());
TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(i, j, rz)); TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(i, j, rz));
set_bed_leveling_enabled(abl_should_enable); set_bed_leveling_enabled(abl.reenable);
if (abl_should_enable) report_current_position(); if (abl.reenable) report_current_position();
} }
G29_RETURN(false); G29_RETURN(false);
} // parser.seen('W') } // parser.seen('W')
@ -317,47 +321,47 @@ G29_TYPE GcodeSuite::G29() {
G29_RETURN(false); G29_RETURN(false);
} }
verbose_level = parser.intval('V'); abl.verbose_level = parser.intval('V');
if (!WITHIN(verbose_level, 0, 4)) { if (!WITHIN(abl.verbose_level, 0, 4)) {
SERIAL_ECHOLNPGM("?(V)erbose level implausible (0-4)."); SERIAL_ECHOLNPGM("?(V)erbose level implausible (0-4).");
G29_RETURN(false); G29_RETURN(false);
} }
dryrun = parser.boolval('D') || TERN0(PROBE_MANUALLY, no_action); abl.dryrun = parser.boolval('D') || TERN0(PROBE_MANUALLY, no_action);
#if ENABLED(AUTO_BED_LEVELING_LINEAR) #if ENABLED(AUTO_BED_LEVELING_LINEAR)
incremental_LSF_reset(&lsf_results); incremental_LSF_reset(&lsf_results);
do_topography_map = verbose_level > 2 || parser.boolval('T'); abl.topography_map = abl.verbose_level > 2 || parser.boolval('T');
// X and Y specify points in each direction, overriding the default // X and Y specify points in each direction, overriding the default
// These values may be saved with the completed mesh // These values may be saved with the completed mesh
abl_grid_points.set( abl.grid_points.set(
parser.byteval('X', GRID_MAX_POINTS_X), parser.byteval('X', GRID_MAX_POINTS_X),
parser.byteval('Y', GRID_MAX_POINTS_Y) parser.byteval('Y', GRID_MAX_POINTS_Y)
); );
if (parser.seenval('P')) abl_grid_points.x = abl_grid_points.y = parser.value_int(); if (parser.seenval('P')) abl.grid_points.x = abl.grid_points.y = parser.value_int();
if (!WITHIN(abl_grid_points.x, 2, GRID_MAX_POINTS_X)) { if (!WITHIN(abl.grid_points.x, 2, GRID_MAX_POINTS_X)) {
SERIAL_ECHOLNPGM("?Probe points (X) implausible (2-" STRINGIFY(GRID_MAX_POINTS_X) ")."); SERIAL_ECHOLNPGM("?Probe points (X) implausible (2-" STRINGIFY(GRID_MAX_POINTS_X) ").");
G29_RETURN(false); G29_RETURN(false);
} }
if (!WITHIN(abl_grid_points.y, 2, GRID_MAX_POINTS_Y)) { if (!WITHIN(abl.grid_points.y, 2, GRID_MAX_POINTS_Y)) {
SERIAL_ECHOLNPGM("?Probe points (Y) implausible (2-" STRINGIFY(GRID_MAX_POINTS_Y) ")."); SERIAL_ECHOLNPGM("?Probe points (Y) implausible (2-" STRINGIFY(GRID_MAX_POINTS_Y) ").");
G29_RETURN(false); G29_RETURN(false);
} }
abl_points = abl_grid_points.x * abl_grid_points.y; abl.abl_points = abl.grid_points.x * abl.grid_points.y;
mean = 0; abl.mean = 0;
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR) #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
zoffset = parser.linearval('Z'); abl.Z_offset = parser.linearval('Z');
#endif #endif
#if ABL_GRID #if ABL_USES_GRID
xy_probe_feedrate_mm_s = MMM_TO_MMS(parser.linearval('S', XY_PROBE_FEEDRATE)); xy_probe_feedrate_mm_s = MMM_TO_MMS(parser.linearval('S', XY_PROBE_FEEDRATE));
@ -366,32 +370,32 @@ G29_TYPE GcodeSuite::G29() {
if (parser.seen('H')) { if (parser.seen('H')) {
const int16_t size = (int16_t)parser.value_linear_units(); const int16_t size = (int16_t)parser.value_linear_units();
probe_position_lf.set(_MAX((X_CENTER) - size / 2, x_min), _MAX((Y_CENTER) - size / 2, y_min)); abl.probe_position_lf.set(_MAX((X_CENTER) - size / 2, x_min), _MAX((Y_CENTER) - size / 2, y_min));
probe_position_rb.set(_MIN(probe_position_lf.x + size, x_max), _MIN(probe_position_lf.y + size, y_max)); abl.probe_position_rb.set(_MIN(abl.probe_position_lf.x + size, x_max), _MIN(abl.probe_position_lf.y + size, y_max));
} }
else { else {
probe_position_lf.set(parser.linearval('L', x_min), parser.linearval('F', y_min)); abl.probe_position_lf.set(parser.linearval('L', x_min), parser.linearval('F', y_min));
probe_position_rb.set(parser.linearval('R', x_max), parser.linearval('B', y_max)); abl.probe_position_rb.set(parser.linearval('R', x_max), parser.linearval('B', y_max));
} }
if (!probe.good_bounds(probe_position_lf, probe_position_rb)) { if (!probe.good_bounds(abl.probe_position_lf, abl.probe_position_rb)) {
if (DEBUGGING(LEVELING)) { if (DEBUGGING(LEVELING)) {
DEBUG_ECHOLNPAIR("G29 L", probe_position_lf.x, " R", probe_position_rb.x, DEBUG_ECHOLNPAIR("G29 L", abl.probe_position_lf.x, " R", abl.probe_position_rb.x,
" F", probe_position_lf.y, " B", probe_position_rb.y); " F", abl.probe_position_lf.y, " B", abl.probe_position_rb.y);
} }
SERIAL_ECHOLNPGM("? (L,R,F,B) out of bounds."); SERIAL_ECHOLNPGM("? (L,R,F,B) out of bounds.");
G29_RETURN(false); G29_RETURN(false);
} }
// Probe at the points of a lattice grid // Probe at the points of a lattice grid
gridSpacing.set((probe_position_rb.x - probe_position_lf.x) / (abl_grid_points.x - 1), abl.gridSpacing.set((abl.probe_position_rb.x - abl.probe_position_lf.x) / (abl.grid_points.x - 1),
(probe_position_rb.y - probe_position_lf.y) / (abl_grid_points.y - 1)); (abl.probe_position_rb.y - abl.probe_position_lf.y) / (abl.grid_points.y - 1));
#endif // ABL_GRID #endif // ABL_USES_GRID
if (verbose_level > 0) { if (abl.verbose_level > 0) {
SERIAL_ECHOPGM("G29 Auto Bed Leveling"); SERIAL_ECHOPGM("G29 Auto Bed Leveling");
if (dryrun) SERIAL_ECHOPGM(" (DRYRUN)"); if (abl.dryrun) SERIAL_ECHOPGM(" (DRYRUN)");
SERIAL_EOL(); SERIAL_EOL();
} }
@ -410,7 +414,7 @@ G29_TYPE GcodeSuite::G29() {
remember_feedrate_scaling_off(); remember_feedrate_scaling_off();
#if ENABLED(PREHEAT_BEFORE_LEVELING) #if ENABLED(PREHEAT_BEFORE_LEVELING)
if (!dryrun) probe.preheat_for_probing(LEVELING_NOZZLE_TEMP, LEVELING_BED_TEMP); if (!abl.dryrun) probe.preheat_for_probing(LEVELING_NOZZLE_TEMP, LEVELING_BED_TEMP);
#endif #endif
} }
@ -423,24 +427,24 @@ G29_TYPE GcodeSuite::G29() {
if (ENABLED(BLTOUCH)) if (ENABLED(BLTOUCH))
do_z_clearance(Z_CLEARANCE_DEPLOY_PROBE); do_z_clearance(Z_CLEARANCE_DEPLOY_PROBE);
else if (probe.deploy()) { else if (probe.deploy()) {
set_bed_leveling_enabled(abl_should_enable); set_bed_leveling_enabled(abl.reenable);
G29_RETURN(false); G29_RETURN(false);
} }
#endif #endif
#if ENABLED(AUTO_BED_LEVELING_BILINEAR) #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
if (TERN1(PROBE_MANUALLY, !no_action) if (TERN1(PROBE_MANUALLY, !no_action)
&& (gridSpacing != bilinear_grid_spacing || probe_position_lf != bilinear_start) && (abl.gridSpacing != bilinear_grid_spacing || abl.probe_position_lf != bilinear_start)
) { ) {
// Reset grid to 0.0 or "not probed". (Also disables ABL) // Reset grid to 0.0 or "not probed". (Also disables ABL)
reset_bed_level(); reset_bed_level();
// Initialize a grid with the given dimensions // Initialize a grid with the given dimensions
bilinear_grid_spacing = gridSpacing; bilinear_grid_spacing = abl.gridSpacing;
bilinear_start = probe_position_lf; bilinear_start = abl.probe_position_lf;
// Can't re-enable (on error) until the new grid is written // Can't re-enable (on error) until the new grid is written
abl_should_enable = false; abl.reenable = false;
} }
#endif // AUTO_BED_LEVELING_BILINEAR #endif // AUTO_BED_LEVELING_BILINEAR
@ -451,7 +455,7 @@ G29_TYPE GcodeSuite::G29() {
// For manual probing, get the next index to probe now. // For manual probing, get the next index to probe now.
// On the first probe this will be incremented to 0. // On the first probe this will be incremented to 0.
if (!no_action) { if (!no_action) {
++abl_probe_index; ++abl.abl_probe_index;
g29_in_progress = true; g29_in_progress = true;
} }
@ -459,17 +463,17 @@ G29_TYPE GcodeSuite::G29() {
if (seenA && g29_in_progress) { if (seenA && g29_in_progress) {
SERIAL_ECHOLNPGM("Manual G29 aborted"); SERIAL_ECHOLNPGM("Manual G29 aborted");
SET_SOFT_ENDSTOP_LOOSE(false); SET_SOFT_ENDSTOP_LOOSE(false);
set_bed_leveling_enabled(abl_should_enable); set_bed_leveling_enabled(abl.reenable);
g29_in_progress = false; g29_in_progress = false;
TERN_(LCD_BED_LEVELING, ui.wait_for_move = false); TERN_(LCD_BED_LEVELING, ui.wait_for_move = false);
} }
// Query G29 status // Query G29 status
if (verbose_level || seenQ) { if (abl.verbose_level || seenQ) {
SERIAL_ECHOPGM("Manual G29 "); SERIAL_ECHOPGM("Manual G29 ");
if (g29_in_progress) { if (g29_in_progress) {
SERIAL_ECHOPAIR("point ", _MIN(abl_probe_index + 1, abl_points)); SERIAL_ECHOPAIR("point ", _MIN(abl.abl_probe_index + 1, abl.abl_points));
SERIAL_ECHOLNPAIR(" of ", abl_points); SERIAL_ECHOLNPAIR(" of ", abl.abl_points);
} }
else else
SERIAL_ECHOLNPGM("idle"); SERIAL_ECHOLNPGM("idle");
@ -477,7 +481,7 @@ G29_TYPE GcodeSuite::G29() {
if (no_action) G29_RETURN(false); if (no_action) G29_RETURN(false);
if (abl_probe_index == 0) { if (abl.abl_probe_index == 0) {
// For the initial G29 S2 save software endstop state // For the initial G29 S2 save software endstop state
SET_SOFT_ENDSTOP_LOOSE(true); SET_SOFT_ENDSTOP_LOOSE(true);
// Move close to the bed before the first point // Move close to the bed before the first point
@ -486,34 +490,34 @@ G29_TYPE GcodeSuite::G29() {
else { else {
#if EITHER(AUTO_BED_LEVELING_LINEAR, AUTO_BED_LEVELING_3POINT) #if EITHER(AUTO_BED_LEVELING_LINEAR, AUTO_BED_LEVELING_3POINT)
const uint16_t index = abl_probe_index - 1; const uint16_t index = abl.abl_probe_index - 1;
#endif #endif
// For G29 after adjusting Z. // For G29 after adjusting Z.
// Save the previous Z before going to the next point // Save the previous Z before going to the next point
measured_z = current_position.z; abl.measured_z = current_position.z;
#if ENABLED(AUTO_BED_LEVELING_LINEAR) #if ENABLED(AUTO_BED_LEVELING_LINEAR)
mean += measured_z; abl.mean += abl.measured_z;
eqnBVector[index] = measured_z; abl.eqnBVector[index] = abl.measured_z;
eqnAMatrix[index + 0 * abl_points] = probePos.x; abl.eqnAMatrix[index + 0 * abl.abl_points] = abl.probePos.x;
eqnAMatrix[index + 1 * abl_points] = probePos.y; abl.eqnAMatrix[index + 1 * abl.abl_points] = abl.probePos.y;
eqnAMatrix[index + 2 * abl_points] = 1; abl.eqnAMatrix[index + 2 * abl.abl_points] = 1;
incremental_LSF(&lsf_results, probePos, measured_z); incremental_LSF(&lsf_results, abl.probePos, abl.measured_z);
#elif ENABLED(AUTO_BED_LEVELING_3POINT) #elif ENABLED(AUTO_BED_LEVELING_3POINT)
points[index].z = measured_z; points[index].z = abl.measured_z;
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR) #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
const float newz = measured_z + zoffset; const float newz = abl.measured_z + abl.Z_offset;
z_values[meshCount.x][meshCount.y] = newz; z_values[abl.meshCount.x][abl.meshCount.y] = newz;
TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(meshCount, newz)); TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(abl.meshCount, newz));
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR_P(PSTR("Save X"), meshCount.x, SP_Y_STR, meshCount.y, SP_Z_STR, measured_z + zoffset); if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR_P(PSTR("Save X"), abl.meshCount.x, SP_Y_STR, abl.meshCount.y, SP_Z_STR, abl.measured_z + abl.Z_offset);
#endif #endif
} }
@ -522,31 +526,31 @@ G29_TYPE GcodeSuite::G29() {
// If there's another point to sample, move there with optional lift. // If there's another point to sample, move there with optional lift.
// //
#if ABL_GRID #if ABL_USES_GRID
// Skip any unreachable points // Skip any unreachable points
while (abl_probe_index < abl_points) { while (abl.abl_probe_index < abl.abl_points) {
// Set meshCount.x, meshCount.y based on abl_probe_index, with zig-zag // Set abl.meshCount.x, abl.meshCount.y based on abl.abl_probe_index, with zig-zag
PR_OUTER_VAR = abl_probe_index / PR_INNER_END; PR_OUTER_VAR = abl.abl_probe_index / PR_INNER_SIZE;
PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END); PR_INNER_VAR = abl.abl_probe_index - (PR_OUTER_VAR * PR_INNER_SIZE);
// Probe in reverse order for every other row/column // Probe in reverse order for every other row/column
const bool zig = (PR_OUTER_VAR & 1); // != ((PR_OUTER_END) & 1); const bool zig = (PR_OUTER_VAR & 1); // != ((PR_OUTER_SIZE) & 1);
if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR; if (zig) PR_INNER_VAR = (PR_INNER_SIZE - 1) - PR_INNER_VAR;
probePos = probe_position_lf + gridSpacing * meshCount.asFloat(); abl.probePos = abl.probe_position_lf + abl.gridSpacing * abl.meshCount.asFloat();
TERN_(AUTO_BED_LEVELING_LINEAR, indexIntoAB[meshCount.x][meshCount.y] = abl_probe_index); TERN_(AUTO_BED_LEVELING_LINEAR, abl.indexIntoAB[abl.meshCount.x][abl.meshCount.y] = abl.abl_probe_index);
// Keep looping till a reachable point is found // Keep looping till a reachable point is found
if (position_is_reachable(probePos)) break; if (position_is_reachable(abl.probePos)) break;
++abl_probe_index; ++abl.abl_probe_index;
} }
// Is there a next point to move to? // Is there a next point to move to?
if (abl_probe_index < abl_points) { if (abl.abl_probe_index < abl.abl_points) {
_manual_goto_xy(probePos); // Can be used here too! _manual_goto_xy(abl.probePos); // Can be used here too!
// Disable software endstops to allow manual adjustment // Disable software endstops to allow manual adjustment
// If G29 is not completed, they will not be re-enabled // If G29 is not completed, they will not be re-enabled
SET_SOFT_ENDSTOP_LOOSE(true); SET_SOFT_ENDSTOP_LOOSE(true);
@ -562,9 +566,9 @@ G29_TYPE GcodeSuite::G29() {
#elif ENABLED(AUTO_BED_LEVELING_3POINT) #elif ENABLED(AUTO_BED_LEVELING_3POINT)
// Probe at 3 arbitrary points // Probe at 3 arbitrary points
if (abl_probe_index < abl_points) { if (abl.abl_probe_index < abl.abl_points) {
probePos = points[abl_probe_index]; abl.probePos = points[abl.abl_probe_index];
_manual_goto_xy(probePos); _manual_goto_xy(abl.probePos);
// Disable software endstops to allow manual adjustment // Disable software endstops to allow manual adjustment
// If G29 is not completed, they will not be re-enabled // If G29 is not completed, they will not be re-enabled
SET_SOFT_ENDSTOP_LOOSE(true); SET_SOFT_ENDSTOP_LOOSE(true);
@ -577,13 +581,13 @@ G29_TYPE GcodeSuite::G29() {
// Re-enable software endstops, if needed // Re-enable software endstops, if needed
SET_SOFT_ENDSTOP_LOOSE(false); SET_SOFT_ENDSTOP_LOOSE(false);
if (!dryrun) { if (!abl.dryrun) {
vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal(); vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
if (planeNormal.z < 0) planeNormal *= -1; if (planeNormal.z < 0) planeNormal *= -1;
planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal); planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
// Can't re-enable (on error) until the new grid is written // Can't re-enable (on error) until the new grid is written
abl_should_enable = false; abl.reenable = false;
} }
} }
@ -594,84 +598,82 @@ G29_TYPE GcodeSuite::G29() {
{ {
const ProbePtRaise raise_after = parser.boolval('E') ? PROBE_PT_STOW : PROBE_PT_RAISE; const ProbePtRaise raise_after = parser.boolval('E') ? PROBE_PT_STOW : PROBE_PT_RAISE;
measured_z = 0; abl.measured_z = 0;
#if ABL_GRID
bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION #if ABL_USES_GRID
measured_z = 0; bool zig = PR_OUTER_SIZE & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
xy_int8_t meshCount; abl.measured_z = 0;
// Outer loop is X with PROBE_Y_FIRST enabled // Outer loop is X with PROBE_Y_FIRST enabled
// Outer loop is Y with PROBE_Y_FIRST disabled // Outer loop is Y with PROBE_Y_FIRST disabled
for (PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END && !isnan(measured_z); PR_OUTER_VAR++) { for (PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_SIZE && !isnan(abl.measured_z); PR_OUTER_VAR++) {
int8_t inStart, inStop, inInc; int8_t inStart, inStop, inInc;
if (zig) { // Zig away from origin if (zig) { // Zig away from origin
inStart = 0; // Left or front inStart = 0; // Left or front
inStop = PR_INNER_END; // Right or back inStop = PR_INNER_SIZE; // Right or back
inInc = 1; // Zig right inInc = 1; // Zig right
} }
else { // Zag towards origin else { // Zag towards origin
inStart = PR_INNER_END - 1; // Right or back inStart = PR_INNER_SIZE - 1; // Right or back
inStop = -1; // Left or front inStop = -1; // Left or front
inInc = -1; // Zag left inInc = -1; // Zag left
} }
zig ^= true; // zag zig ^= true; // zag
// An index to print current state // An index to print current state
uint8_t pt_index = (PR_OUTER_VAR) * (PR_INNER_END) + 1; uint8_t pt_index = (PR_OUTER_VAR) * (PR_INNER_SIZE) + 1;
// Inner loop is Y with PROBE_Y_FIRST enabled // Inner loop is Y with PROBE_Y_FIRST enabled
// Inner loop is X with PROBE_Y_FIRST disabled // Inner loop is X with PROBE_Y_FIRST disabled
for (PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; pt_index++, PR_INNER_VAR += inInc) { for (PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; pt_index++, PR_INNER_VAR += inInc) {
probePos = probe_position_lf + gridSpacing * meshCount.asFloat(); abl.probePos = abl.probe_position_lf + abl.gridSpacing * abl.meshCount.asFloat();
TERN_(AUTO_BED_LEVELING_LINEAR, indexIntoAB[meshCount.x][meshCount.y] = ++abl_probe_index); // 0... TERN_(AUTO_BED_LEVELING_LINEAR, abl.indexIntoAB[abl.meshCount.x][abl.meshCount.y] = ++abl.abl_probe_index); // 0...
// Avoid probing outside the round or hexagonal area // Avoid probing outside the round or hexagonal area
if (TERN0(IS_KINEMATIC, !probe.can_reach(probePos))) continue; if (TERN0(IS_KINEMATIC, !probe.can_reach(abl.probePos))) continue;
if (verbose_level) SERIAL_ECHOLNPAIR("Probing mesh point ", pt_index, "/", abl_points, "."); if (abl.verbose_level) SERIAL_ECHOLNPAIR("Probing mesh point ", pt_index, "/", abl.abl_points, ".");
TERN_(HAS_STATUS_MESSAGE, ui.status_printf_P(0, PSTR(S_FMT " %i/%i"), GET_TEXT(MSG_PROBING_MESH), int(pt_index), int(abl_points))); TERN_(HAS_STATUS_MESSAGE, ui.status_printf_P(0, PSTR(S_FMT " %i/%i"), GET_TEXT(MSG_PROBING_MESH), int(pt_index), int(abl.abl_points)));
measured_z = faux ? 0.001f * random(-100, 101) : probe.probe_at_point(probePos, raise_after, verbose_level); abl.measured_z = faux ? 0.001f * random(-100, 101) : probe.probe_at_point(abl.probePos, raise_after, abl.verbose_level);
if (isnan(measured_z)) { if (isnan(abl.measured_z)) {
set_bed_leveling_enabled(abl_should_enable); set_bed_leveling_enabled(abl.reenable);
break; // Breaks out of both loops break; // Breaks out of both loops
} }
#if ENABLED(PROBE_TEMP_COMPENSATION) #if ENABLED(PROBE_TEMP_COMPENSATION)
temp_comp.compensate_measurement(TSI_BED, thermalManager.degBed(), measured_z); temp_comp.compensate_measurement(TSI_BED, thermalManager.degBed(), abl.measured_z);
temp_comp.compensate_measurement(TSI_PROBE, thermalManager.degProbe(), measured_z); temp_comp.compensate_measurement(TSI_PROBE, thermalManager.degProbe(), abl.measured_z);
TERN_(USE_TEMP_EXT_COMPENSATION, temp_comp.compensate_measurement(TSI_EXT, thermalManager.degHotend(), measured_z)); TERN_(USE_TEMP_EXT_COMPENSATION, temp_comp.compensate_measurement(TSI_EXT, thermalManager.degHotend(), abl.measured_z));
#endif #endif
#if ENABLED(AUTO_BED_LEVELING_LINEAR) #if ENABLED(AUTO_BED_LEVELING_LINEAR)
mean += measured_z; abl.mean += abl.measured_z;
eqnBVector[abl_probe_index] = measured_z; abl.eqnBVector[abl.abl_probe_index] = abl.measured_z;
eqnAMatrix[abl_probe_index + 0 * abl_points] = probePos.x; abl.eqnAMatrix[abl.abl_probe_index + 0 * abl.abl_points] = abl.probePos.x;
eqnAMatrix[abl_probe_index + 1 * abl_points] = probePos.y; abl.eqnAMatrix[abl.abl_probe_index + 1 * abl.abl_points] = abl.probePos.y;
eqnAMatrix[abl_probe_index + 2 * abl_points] = 1; abl.eqnAMatrix[abl.abl_probe_index + 2 * abl.abl_points] = 1;
incremental_LSF(&lsf_results, probePos, measured_z); incremental_LSF(&lsf_results, abl.probePos, abl.measured_z);
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR) #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
const float z = measured_z + zoffset; const float z = abl.measured_z + abl.Z_offset;
z_values[meshCount.x][meshCount.y] = z; z_values[abl.meshCount.x][abl.meshCount.y] = z;
TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(meshCount, z)); TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(abl.meshCount, z));
#endif #endif
abl_should_enable = false; abl.reenable = false;
idle_no_sleep(); idle_no_sleep();
} // inner } // inner
@ -682,26 +684,26 @@ G29_TYPE GcodeSuite::G29() {
// Probe at 3 arbitrary points // Probe at 3 arbitrary points
LOOP_L_N(i, 3) { LOOP_L_N(i, 3) {
if (verbose_level) SERIAL_ECHOLNPAIR("Probing point ", i + 1, "/3."); if (abl.verbose_level) SERIAL_ECHOLNPAIR("Probing point ", i + 1, "/3.");
TERN_(HAS_STATUS_MESSAGE, ui.status_printf_P(0, PSTR(S_FMT " %i/3"), GET_TEXT(MSG_PROBING_MESH), int(i + 1))); TERN_(HAS_STATUS_MESSAGE, ui.status_printf_P(0, PSTR(S_FMT " %i/3"), GET_TEXT(MSG_PROBING_MESH), int(i + 1)));
// Retain the last probe position // Retain the last probe position
probePos = points[i]; abl.probePos = points[i];
measured_z = faux ? 0.001 * random(-100, 101) : probe.probe_at_point(probePos, raise_after, verbose_level); abl.measured_z = faux ? 0.001 * random(-100, 101) : probe.probe_at_point(abl.probePos, raise_after, abl.verbose_level);
if (isnan(measured_z)) { if (isnan(abl.measured_z)) {
set_bed_leveling_enabled(abl_should_enable); set_bed_leveling_enabled(abl.reenable);
break; break;
} }
points[i].z = measured_z; points[i].z = abl.measured_z;
} }
if (!dryrun && !isnan(measured_z)) { if (!abl.dryrun && !isnan(abl.measured_z)) {
vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal(); vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
if (planeNormal.z < 0) planeNormal *= -1; if (planeNormal.z < 0) planeNormal *= -1;
planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal); planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
// Can't re-enable (on error) until the new grid is written // Can't re-enable (on error) until the new grid is written
abl_should_enable = false; abl.reenable = false;
} }
#endif // AUTO_BED_LEVELING_3POINT #endif // AUTO_BED_LEVELING_3POINT
@ -710,8 +712,8 @@ G29_TYPE GcodeSuite::G29() {
// Stow the probe. No raise for FIX_MOUNTED_PROBE. // Stow the probe. No raise for FIX_MOUNTED_PROBE.
if (probe.stow()) { if (probe.stow()) {
set_bed_leveling_enabled(abl_should_enable); set_bed_leveling_enabled(abl.reenable);
measured_z = NAN; abl.measured_z = NAN;
} }
} }
#endif // !PROBE_MANUALLY #endif // !PROBE_MANUALLY
@ -734,10 +736,10 @@ G29_TYPE GcodeSuite::G29() {
#endif #endif
// Calculate leveling, print reports, correct the position // Calculate leveling, print reports, correct the position
if (!isnan(measured_z)) { if (!isnan(abl.measured_z)) {
#if ENABLED(AUTO_BED_LEVELING_BILINEAR) #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
if (!dryrun) extrapolate_unprobed_bed_level(); if (!abl.dryrun) extrapolate_unprobed_bed_level();
print_bilinear_leveling_grid(); print_bilinear_leveling_grid();
refresh_bed_level(); refresh_bed_level();
@ -763,39 +765,39 @@ G29_TYPE GcodeSuite::G29() {
plane_equation_coefficients.b = -lsf_results.B; // but that is not yet tested. plane_equation_coefficients.b = -lsf_results.B; // but that is not yet tested.
plane_equation_coefficients.d = -lsf_results.D; plane_equation_coefficients.d = -lsf_results.D;
mean /= abl_points; abl.mean /= abl.abl_points;
if (verbose_level) { if (abl.verbose_level) {
SERIAL_ECHOPAIR_F("Eqn coefficients: a: ", plane_equation_coefficients.a, 8); SERIAL_ECHOPAIR_F("Eqn coefficients: a: ", plane_equation_coefficients.a, 8);
SERIAL_ECHOPAIR_F(" b: ", plane_equation_coefficients.b, 8); SERIAL_ECHOPAIR_F(" b: ", plane_equation_coefficients.b, 8);
SERIAL_ECHOPAIR_F(" d: ", plane_equation_coefficients.d, 8); SERIAL_ECHOPAIR_F(" d: ", plane_equation_coefficients.d, 8);
if (verbose_level > 2) if (abl.verbose_level > 2)
SERIAL_ECHOPAIR_F("\nMean of sampled points: ", mean, 8); SERIAL_ECHOPAIR_F("\nMean of sampled points: ", abl.mean, 8);
SERIAL_EOL(); SERIAL_EOL();
} }
// Create the matrix but don't correct the position yet // Create the matrix but don't correct the position yet
if (!dryrun) if (!abl.dryrun)
planner.bed_level_matrix = matrix_3x3::create_look_at( planner.bed_level_matrix = matrix_3x3::create_look_at(
vector_3(-plane_equation_coefficients.a, -plane_equation_coefficients.b, 1) // We can eliminate the '-' here and up above vector_3(-plane_equation_coefficients.a, -plane_equation_coefficients.b, 1) // We can eliminate the '-' here and up above
); );
// Show the Topography map if enabled // Show the Topography map if enabled
if (do_topography_map) { if (abl.topography_map) {
float min_diff = 999; float min_diff = 999;
auto print_topo_map = [&](PGM_P const title, const bool get_min) { auto print_topo_map = [&](PGM_P const title, const bool get_min) {
SERIAL_ECHOPGM_P(title); SERIAL_ECHOPGM_P(title);
for (int8_t yy = abl_grid_points.y - 1; yy >= 0; yy--) { for (int8_t yy = abl.grid_points.y - 1; yy >= 0; yy--) {
LOOP_L_N(xx, abl_grid_points.x) { LOOP_L_N(xx, abl.grid_points.x) {
const int ind = indexIntoAB[xx][yy]; const int ind = abl.indexIntoAB[xx][yy];
xyz_float_t tmp = { eqnAMatrix[ind + 0 * abl_points], xyz_float_t tmp = { abl.eqnAMatrix[ind + 0 * abl.abl_points],
eqnAMatrix[ind + 1 * abl_points], 0 }; abl.eqnAMatrix[ind + 1 * abl.abl_points], 0 };
apply_rotation_xyz(planner.bed_level_matrix, tmp); apply_rotation_xyz(planner.bed_level_matrix, tmp);
if (get_min) NOMORE(min_diff, eqnBVector[ind] - tmp.z); if (get_min) NOMORE(min_diff, abl.eqnBVector[ind] - tmp.z);
const float subval = get_min ? mean : tmp.z + min_diff, const float subval = get_min ? abl.mean : tmp.z + min_diff,
diff = eqnBVector[ind] - subval; diff = abl.eqnBVector[ind] - subval;
SERIAL_CHAR(' '); if (diff >= 0.0) SERIAL_CHAR('+'); // Include + for column alignment SERIAL_CHAR(' '); if (diff >= 0.0) SERIAL_CHAR('+'); // Include + for column alignment
SERIAL_ECHO_F(diff, 5); SERIAL_ECHO_F(diff, 5);
} // xx } // xx
@ -815,10 +817,10 @@ G29_TYPE GcodeSuite::G29() {
" | |\n" " | |\n"
" O-- FRONT --+\n" " O-- FRONT --+\n"
" (0,0)\n"), true); " (0,0)\n"), true);
if (verbose_level > 3) if (abl.verbose_level > 3)
print_topo_map(PSTR("\nCorrected Bed Height vs. Bed Topology:\n"), false); print_topo_map(PSTR("\nCorrected Bed Height vs. Bed Topology:\n"), false);
} //do_topography_map } // abl.topography_map
#endif // AUTO_BED_LEVELING_LINEAR #endif // AUTO_BED_LEVELING_LINEAR
@ -826,10 +828,10 @@ G29_TYPE GcodeSuite::G29() {
// For LINEAR and 3POINT leveling correct the current position // For LINEAR and 3POINT leveling correct the current position
if (verbose_level > 0) if (abl.verbose_level > 0)
planner.bed_level_matrix.debug(PSTR("\n\nBed Level Correction Matrix:")); planner.bed_level_matrix.debug(PSTR("\n\nBed Level Correction Matrix:"));
if (!dryrun) { if (!abl.dryrun) {
// //
// Correct the current XYZ position based on the tilted plane. // Correct the current XYZ position based on the tilted plane.
// //
@ -840,10 +842,10 @@ G29_TYPE GcodeSuite::G29() {
planner.force_unapply_leveling(converted); // use conversion machinery planner.force_unapply_leveling(converted); // use conversion machinery
// Use the last measured distance to the bed, if possible // Use the last measured distance to the bed, if possible
if ( NEAR(current_position.x, probePos.x - probe.offset_xy.x) if ( NEAR(current_position.x, abl.probePos.x - probe.offset_xy.x)
&& NEAR(current_position.y, probePos.y - probe.offset_xy.y) && NEAR(current_position.y, abl.probePos.y - probe.offset_xy.y)
) { ) {
const float simple_z = current_position.z - measured_z; const float simple_z = current_position.z - abl.measured_z;
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Probed Z", simple_z, " Matrix Z", converted.z, " Discrepancy ", simple_z - converted.z); if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Probed Z", simple_z, " Matrix Z", converted.z, " Discrepancy ", simple_z - converted.z);
converted.z = simple_z; converted.z = simple_z;
} }
@ -856,7 +858,7 @@ G29_TYPE GcodeSuite::G29() {
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR) #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
if (!dryrun) { if (!abl.dryrun) {
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("G29 uncorrected Z:", current_position.z); if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("G29 uncorrected Z:", current_position.z);
// Unapply the offset because it is going to be immediately applied // Unapply the offset because it is going to be immediately applied
@ -870,8 +872,8 @@ G29_TYPE GcodeSuite::G29() {
#endif // ABL_PLANAR #endif // ABL_PLANAR
// Auto Bed Leveling is complete! Enable if possible. // Auto Bed Leveling is complete! Enable if possible.
planner.leveling_active = dryrun ? abl_should_enable : true; planner.leveling_active = !abl.dryrun || abl.reenable;
} // !isnan(measured_z) } // !isnan(abl.measured_z)
// Restore state after probing // Restore state after probing
if (!faux) restore_feedrate_and_scaling(); if (!faux) restore_feedrate_and_scaling();
@ -895,7 +897,7 @@ G29_TYPE GcodeSuite::G29() {
report_current_position(); report_current_position();
G29_RETURN(isnan(measured_z)); G29_RETURN(isnan(abl.measured_z));
} }
#endif // HAS_ABL_NOT_UBL #endif // HAS_ABL_NOT_UBL

2
Marlin/src/inc/Conditionals_LCD.h

@ -842,7 +842,7 @@
#define ABL_PLANAR 1 #define ABL_PLANAR 1
#endif #endif
#if EITHER(AUTO_BED_LEVELING_LINEAR, AUTO_BED_LEVELING_BILINEAR) #if EITHER(AUTO_BED_LEVELING_LINEAR, AUTO_BED_LEVELING_BILINEAR)
#define ABL_GRID 1 #define ABL_USES_GRID 1
#endif #endif
#if ANY(AUTO_BED_LEVELING_LINEAR, AUTO_BED_LEVELING_BILINEAR, AUTO_BED_LEVELING_3POINT) #if ANY(AUTO_BED_LEVELING_LINEAR, AUTO_BED_LEVELING_BILINEAR, AUTO_BED_LEVELING_3POINT)
#define HAS_ABL_NOT_UBL 1 #define HAS_ABL_NOT_UBL 1

2
Marlin/src/inc/SanityCheck.h

@ -1262,7 +1262,7 @@ static_assert(Y_MAX_LENGTH >= Y_BED_SIZE, "Movement bounds (Y_MIN_POS, Y_MAX_POS
#error "DELTA_AUTO_CALIBRATION requires a probe or LCD Controller." #error "DELTA_AUTO_CALIBRATION requires a probe or LCD Controller."
#elif ENABLED(DELTA_CALIBRATION_MENU) && !HAS_LCD_MENU #elif ENABLED(DELTA_CALIBRATION_MENU) && !HAS_LCD_MENU
#error "DELTA_CALIBRATION_MENU requires an LCD Controller." #error "DELTA_CALIBRATION_MENU requires an LCD Controller."
#elif ABL_GRID #elif ABL_USES_GRID
#if (GRID_MAX_POINTS_X & 1) == 0 || (GRID_MAX_POINTS_Y & 1) == 0 #if (GRID_MAX_POINTS_X & 1) == 0 || (GRID_MAX_POINTS_Y & 1) == 0
#error "DELTA requires GRID_MAX_POINTS_X and GRID_MAX_POINTS_Y to be odd numbers." #error "DELTA requires GRID_MAX_POINTS_X and GRID_MAX_POINTS_Y to be odd numbers."
#elif GRID_MAX_POINTS_X < 3 #elif GRID_MAX_POINTS_X < 3

2
buildroot/tests/rambo

@ -88,7 +88,7 @@ opt_enable EEPROM_SETTINGS EEPROM_CHITCHAT REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CO
PRINTCOUNTER SERVICE_NAME_1 SERVICE_INTERVAL_1 M114_DETAIL PRINTCOUNTER SERVICE_NAME_1 SERVICE_INTERVAL_1 M114_DETAIL
opt_add M100_FREE_MEMORY_DUMPER opt_add M100_FREE_MEMORY_DUMPER
opt_add M100_FREE_MEMORY_CORRUPTOR opt_add M100_FREE_MEMORY_CORRUPTOR
exec_test $1 $2 "MINIRAMBO | RRDGFSC | M100 | PWM_MOTOR_CURRENT | PRINTCOUNTER | Advanced Pause ..." "$3" exec_test $1 $2 "MINIRAMBO | RRDGFSC | ABL Bilinear Manual | M100 | PWM_MOTOR_CURRENT | M600..." "$3"
# #
# Test many less common options # Test many less common options

Loading…
Cancel
Save