Browse Source

TPARA - 3DOF robot arm IK (#21005)

Co-authored-by: Scott Lahteine <github@thinkyhead.com>
vanilla_fb_2.0.x
Axel 3 years ago
committed by GitHub
parent
commit
a46e025725
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
  1. 13
      Marlin/Configuration.h
  2. 1
      Marlin/src/core/macros.h
  3. 10
      Marlin/src/gcode/calibrate/G28.cpp
  4. 26
      Marlin/src/gcode/calibrate/M665.cpp
  5. 2
      Marlin/src/inc/Conditionals_LCD.h
  6. 4
      Marlin/src/inc/Conditionals_post.h
  7. 4
      Marlin/src/inc/SanityCheck.h
  8. 12
      Marlin/src/module/delta.cpp
  9. 19
      Marlin/src/module/motion.cpp
  10. 14
      Marlin/src/module/motion.h
  11. 278
      Marlin/src/module/scara.cpp
  12. 25
      Marlin/src/module/scara.h

13
Marlin/Configuration.h

@ -58,18 +58,13 @@
*/
//===========================================================================
//============================= DELTA Printer ===============================
//========================== DELTA / SCARA / TPARA ==========================
//===========================================================================
// For a Delta printer, start with one of the configuration files in the config/examples/delta directory
// from https://github.com/MarlinFirmware/Configurations/branches/all and customize for your machine.
//
//===========================================================================
//============================= SCARA Printer ===============================
//===========================================================================
// For a SCARA printer, start with one of the configuration files in the config/examples/SCARA directory
// from https://github.com/MarlinFirmware/Configurations/branches/all and customize for your machine.
// Download configurations from the link above and customize for your machine.
// Examples are located in config/examples/delta, .../SCARA, and .../TPARA.
//
//===========================================================================
// @section info

1
Marlin/src/core/macros.h

@ -104,6 +104,7 @@
#define RADIANS(d) ((d)*float(M_PI)/180.0f)
#define DEGREES(r) ((r)*180.0f/float(M_PI))
#define HYPOT2(x,y) (sq(x)+sq(y))
#define NORMSQ(x,y,z) (sq(x)+sq(y)+sq(z))
#define CIRCLE_AREA(R) (float(M_PI) * sq(float(R)))
#define CIRCLE_CIRC(R) (2 * float(M_PI) * float(R))

10
Marlin/src/gcode/calibrate/G28.cpp

@ -311,7 +311,13 @@ void GcodeSuite::G28() {
TERN_(IMPROVE_HOMING_RELIABILITY, end_slow_homing(slow_homing));
#else // NOT DELTA
#elif ENABLED(AXEL_TPARA)
constexpr bool doZ = true; // for NANODLP_Z_SYNC if your DLP is on a TPARA
home_TPARA();
#else
const bool homeZ = parser.seen('Z'),
needX = homeZ && TERN0(Z_SAFE_HOMING, axes_should_home(_BV(X_AXIS))),
@ -392,7 +398,7 @@ void GcodeSuite::G28() {
sync_plan_position();
#endif // !DELTA (G28)
#endif
/**
* Preserve DXC mode across a G28 for IDEX printers in DXC_DUPLICATION_MODE.

26
Marlin/src/gcode/calibrate/M665.cpp

@ -40,21 +40,21 @@
* X = Alpha (Tower 1) angle trim
* Y = Beta (Tower 2) angle trim
* Z = Gamma (Tower 3) angle trim
* A = Alpha (Tower 1) digonal rod trim
* B = Beta (Tower 2) digonal rod trim
* C = Gamma (Tower 3) digonal rod trim
* A = Alpha (Tower 1) diagonal rod trim
* B = Beta (Tower 2) diagonal rod trim
* C = Gamma (Tower 3) diagonal rod trim
*/
void GcodeSuite::M665() {
if (parser.seen('H')) delta_height = parser.value_linear_units();
if (parser.seen('L')) delta_diagonal_rod = parser.value_linear_units();
if (parser.seen('R')) delta_radius = parser.value_linear_units();
if (parser.seen('S')) delta_segments_per_second = parser.value_float();
if (parser.seen('X')) delta_tower_angle_trim.a = parser.value_float();
if (parser.seen('Y')) delta_tower_angle_trim.b = parser.value_float();
if (parser.seen('Z')) delta_tower_angle_trim.c = parser.value_float();
if (parser.seen('A')) delta_diagonal_rod_trim.a = parser.value_float();
if (parser.seen('B')) delta_diagonal_rod_trim.b = parser.value_float();
if (parser.seen('C')) delta_diagonal_rod_trim.c = parser.value_float();
if (parser.seenval('H')) delta_height = parser.value_linear_units();
if (parser.seenval('L')) delta_diagonal_rod = parser.value_linear_units();
if (parser.seenval('R')) delta_radius = parser.value_linear_units();
if (parser.seenval('S')) delta_segments_per_second = parser.value_float();
if (parser.seenval('X')) delta_tower_angle_trim.a = parser.value_float();
if (parser.seenval('Y')) delta_tower_angle_trim.b = parser.value_float();
if (parser.seenval('Z')) delta_tower_angle_trim.c = parser.value_float();
if (parser.seenval('A')) delta_diagonal_rod_trim.a = parser.value_float();
if (parser.seenval('B')) delta_diagonal_rod_trim.b = parser.value_float();
if (parser.seenval('C')) delta_diagonal_rod_trim.c = parser.value_float();
recalc_delta_settings();
}

2
Marlin/src/inc/Conditionals_LCD.h

@ -924,7 +924,7 @@
#define NORMAL_AXIS Z_AXIS
#endif
#if ENABLED(MORGAN_SCARA)
#if EITHER(MORGAN_SCARA, AXEL_TPARA)
#define IS_SCARA 1
#define IS_KINEMATIC 1
#elif ENABLED(DELTA)

4
Marlin/src/inc/Conditionals_post.h

@ -143,7 +143,9 @@
*/
#if IS_SCARA
#undef SLOWDOWN
#define QUICK_HOME
#if DISABLED(AXEL_TPARA)
#define QUICK_HOME
#endif
#define SCARA_PRINTABLE_RADIUS (SCARA_LINKAGE_1 + SCARA_LINKAGE_2)
#endif

4
Marlin/src/inc/SanityCheck.h

@ -1227,8 +1227,8 @@ static_assert(Y_MAX_LENGTH >= Y_BED_SIZE, "Movement bounds (Y_MIN_POS, Y_MAX_POS
/**
* Allow only one kinematic type to be defined
*/
#if MANY(DELTA, MORGAN_SCARA, COREXY, COREXZ, COREYZ, COREYX, COREZX, COREZY, MARKFORGED_XY)
#error "Please enable only one of DELTA, MORGAN_SCARA, COREXY, COREYX, COREXZ, COREZX, COREYZ, COREZY, or MARKFORGED_XY."
#if MANY(DELTA, MORGAN_SCARA, AXEL_TPARA, COREXY, COREXZ, COREYZ, COREYX, COREZX, COREZY, MARKFORGED_XY)
#error "Please enable only one of DELTA, MORGAN_SCARA, AXEL_TPARA, COREXY, COREYX, COREXZ, COREZX, COREYZ, COREZY, or MARKFORGED_XY."
#endif
/**

12
Marlin/src/module/delta.cpp

@ -242,9 +242,9 @@ void home_delta() {
// Disable stealthChop if used. Enable diag1 pin on driver.
#if ENABLED(SENSORLESS_HOMING)
TERN_(X_SENSORLESS, sensorless_t stealth_states_x = start_sensorless_homing_per_axis(X_AXIS));
TERN_(Y_SENSORLESS, sensorless_t stealth_states_y = start_sensorless_homing_per_axis(Y_AXIS));
TERN_(Z_SENSORLESS, sensorless_t stealth_states_z = start_sensorless_homing_per_axis(Z_AXIS));
TERN_(X_SENSORLESS, sensorless_t stealth_states_x = start_sensorless_homing_per_axis(X_AXIS));
TERN_(Y_SENSORLESS, sensorless_t stealth_states_y = start_sensorless_homing_per_axis(Y_AXIS));
TERN_(Z_SENSORLESS, sensorless_t stealth_states_z = start_sensorless_homing_per_axis(Z_AXIS));
#endif
// Move all carriages together linearly until an endstop is hit.
@ -254,9 +254,9 @@ void home_delta() {
// Re-enable stealthChop if used. Disable diag1 pin on driver.
#if ENABLED(SENSORLESS_HOMING)
TERN_(X_SENSORLESS, end_sensorless_homing_per_axis(X_AXIS, stealth_states_x));
TERN_(Y_SENSORLESS, end_sensorless_homing_per_axis(Y_AXIS, stealth_states_y));
TERN_(Z_SENSORLESS, end_sensorless_homing_per_axis(Z_AXIS, stealth_states_z));
TERN_(X_SENSORLESS, end_sensorless_homing_per_axis(X_AXIS, stealth_states_x));
TERN_(Y_SENSORLESS, end_sensorless_homing_per_axis(Y_AXIS, stealth_states_y));
TERN_(Z_SENSORLESS, end_sensorless_homing_per_axis(Z_AXIS, stealth_states_z));
#endif
endstops.validate_homing_move();

19
Marlin/src/module/motion.cpp

@ -267,11 +267,15 @@ void get_cartesian_from_steppers() {
#else
#if IS_SCARA
forward_kinematics_SCARA(
planner.get_axis_position_degrees(A_AXIS),
planner.get_axis_position_degrees(B_AXIS)
planner.get_axis_position_degrees(A_AXIS)
, planner.get_axis_position_degrees(B_AXIS)
#if ENABLED(AXEL_TPARA)
, planner.get_axis_position_degrees(C_AXIS)
#endif
);
#else
cartes.set(planner.get_axis_position_mm(X_AXIS), planner.get_axis_position_mm(Y_AXIS));
cartes.x = planner.get_axis_position_mm(X_AXIS);
cartes.y = planner.get_axis_position_mm(Y_AXIS);
#endif
cartes.z = planner.get_axis_position_mm(Z_AXIS);
#endif
@ -1340,7 +1344,7 @@ void prepare_line_to_destination() {
TERN_(SENSORLESS_HOMING, stealth_states = start_sensorless_homing_per_axis(axis));
}
#if IS_SCARA
#if EITHER(MORGAN_SCARA, MP_SCARA)
// Tell the planner the axis is at 0
current_position[axis] = 0;
sync_plan_position();
@ -1490,7 +1494,7 @@ void prepare_line_to_destination() {
void homeaxis(const AxisEnum axis) {
#if IS_SCARA
#if EITHER(MORGAN_SCARA, MP_SCARA)
// Only Z homing (with probe) is permitted
if (axis != Z_AXIS) { BUZZ(100, 880); return; }
#else
@ -1732,7 +1736,8 @@ void prepare_line_to_destination() {
TERN_(Z_MULTI_ENDSTOPS, case Z_AXIS:)
stepper.set_separate_multi_axis(false);
}
#endif
#endif // HAS_EXTRA_ENDSTOPS
#ifdef TMC_HOME_PHASE
// move back to homing phase if configured and capable
@ -1839,7 +1844,7 @@ void set_axis_is_at_home(const AxisEnum axis) {
}
#endif
#if ENABLED(MORGAN_SCARA)
#if EITHER(MORGAN_SCARA, AXEL_TPARA)
scara_set_axis_is_at_home(axis);
#elif ENABLED(DELTA)
current_position[axis] = (axis == Z_AXIS) ? delta_height - TERN0(HAS_BED_PROBE, probe.offset.z) : base_home_pos(axis);

14
Marlin/src/module/motion.h

@ -395,8 +395,21 @@ FORCE_INLINE bool all_axes_trusted() { return xyz_bits ==
// Return true if the given point is within the printable area
inline bool position_is_reachable(const float &rx, const float &ry, const float inset=0) {
#if ENABLED(DELTA)
return HYPOT2(rx, ry) <= sq(DELTA_PRINTABLE_RADIUS - inset + fslop);
#elif ENABLED(AXEL_TPARA)
const float R2 = HYPOT2(rx - TPARA_OFFSET_X, ry - TPARA_OFFSET_Y);
return (
R2 <= sq(L1 + L2) - inset
#if MIDDLE_DEAD_ZONE_R > 0
&& R2 >= sq(float(MIDDLE_DEAD_ZONE_R))
#endif
);
#elif IS_SCARA
const float R2 = HYPOT2(rx - SCARA_OFFSET_X, ry - SCARA_OFFSET_Y);
return (
R2 <= sq(L1 + L2) - inset
@ -404,6 +417,7 @@ FORCE_INLINE bool all_axes_trusted() { return xyz_bits ==
&& R2 >= sq(float(MIDDLE_DEAD_ZONE_R))
#endif
);
#endif
}

278
Marlin/src/module/scara.cpp

@ -32,26 +32,29 @@
#include "motion.h"
#include "planner.h"
float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
#if ENABLED(AXEL_TPARA)
// For homing, as in delta
#include "planner.h"
#include "endstops.h"
#include "../lcd/marlinui.h"
#include "../MarlinCore.h"
#endif
float delta_segments_per_second = TERN(AXEL_TPARA, TPARA_SEGMENTS_PER_SECOND, SCARA_SEGMENTS_PER_SECOND);
void scara_set_axis_is_at_home(const AxisEnum axis) {
if (axis == Z_AXIS)
current_position.z = Z_HOME_POS;
else {
/**
* SCARA homes XY at the same time
*/
xyz_pos_t homeposition;
LOOP_XYZ(i) homeposition[i] = base_home_pos((AxisEnum)i);
#if ENABLED(MORGAN_SCARA)
// MORGAN_SCARA uses arm angles for AB home position
//DEBUG_ECHOLNPAIR("homeposition A:", homeposition.a, " B:", homeposition.b);
inverse_kinematics(homeposition);
forward_kinematics_SCARA(delta.a, delta.b);
current_position[axis] = cartes[axis];
#else
#elif ENABLED(MP_SCARA)
// MP_SCARA uses a Cartesian XY home position
//DEBUG_ECHOPGM("homeposition");
//DEBUG_ECHOLNPAIR_P(SP_X_LBL, homeposition.x, SP_Y_LBL, homeposition.y);
@ -59,6 +62,12 @@ void scara_set_axis_is_at_home(const AxisEnum axis) {
delta.b = SCARA_OFFSET_THETA2;
forward_kinematics_SCARA(delta.a, delta.b);
current_position[axis] = cartes[axis];
#elif ENABLED(AXEL_TPARA)
//DEBUG_ECHOPGM("homeposition");
//DEBUG_ECHOLNPAIR_P(SP_X_LBL, homeposition.x, SP_Y_LBL, homeposition.y, SP_Z_LBL, homeposition.z);
inverse_kinematics(homeposition);
forward_kinematics_TPARA(delta.a, delta.b, delta.c);
current_position[axis] = cartes[axis];
#endif
//DEBUG_ECHOPGM("Cartesian");
@ -67,85 +76,210 @@ void scara_set_axis_is_at_home(const AxisEnum axis) {
}
}
static constexpr xy_pos_t scara_offset = { SCARA_OFFSET_X, SCARA_OFFSET_Y };
#if EITHER(MORGAN_SCARA, MP_SCARA)
/**
* Morgan SCARA Forward Kinematics. Results in 'cartes'.
* Maths and first version by QHARLEY.
* Integrated into Marlin and slightly restructured by Joachim Cerny.
*/
void forward_kinematics_SCARA(const float &a, const float &b) {
const float a_sin = sin(RADIANS(a)) * L1,
a_cos = cos(RADIANS(a)) * L1,
b_sin = sin(RADIANS(b + TERN0(MP_SCARA, a))) * L2,
b_cos = cos(RADIANS(b + TERN0(MP_SCARA, a))) * L2;
cartes.set(a_cos + b_cos + scara_offset.x, // theta
a_sin + b_sin + scara_offset.y); // phi
/*
DEBUG_ECHOLNPAIR(
"SCARA FK Angle a=", a,
" b=", b,
" a_sin=", a_sin,
" a_cos=", a_cos,
" b_sin=", b_sin,
" b_cos=", b_cos
);
DEBUG_ECHOLNPAIR(" cartes (X,Y) = "(cartes.x, ", ", cartes.y, ")");
//*/
}
static constexpr xy_pos_t scara_offset = { SCARA_OFFSET_X, SCARA_OFFSET_Y };
/**
* SCARA Inverse Kinematics. Results in 'delta'.
*
* See https://reprap.org/forum/read.php?185,283327
*
* Maths and first version by QHARLEY.
* Integrated into Marlin and slightly restructured by Joachim Cerny.
*/
void inverse_kinematics(const xyz_pos_t &raw) {
float C2, S2, SK1, SK2, THETA, PSI;
/**
* Morgan SCARA Forward Kinematics. Results in 'cartes'.
* Maths and first version by QHARLEY.
* Integrated into Marlin and slightly restructured by Joachim Cerny.
*/
void forward_kinematics_SCARA(const float &a, const float &b) {
const float a_sin = sin(RADIANS(a)) * L1,
a_cos = cos(RADIANS(a)) * L1,
b_sin = sin(RADIANS(b + TERN0(MP_SCARA, a))) * L2,
b_cos = cos(RADIANS(b + TERN0(MP_SCARA, a))) * L2;
// Translate SCARA to standard XY with scaling factor
const xy_pos_t spos = raw - scara_offset;
cartes.x = a_cos + b_cos + scara_offset.x; // theta
cartes.y = a_sin + b_sin + scara_offset.y; // phi
const float H2 = HYPOT2(spos.x, spos.y);
if (L1 == L2)
C2 = H2 / L1_2_2 - 1;
else
C2 = (H2 - (L1_2 + L2_2)) / (2.0f * L1 * L2);
/*
DEBUG_ECHOLNPAIR(
"SCARA FK Angle a=", a,
" b=", b,
" a_sin=", a_sin,
" a_cos=", a_cos,
" b_sin=", b_sin,
" b_cos=", b_cos
);
DEBUG_ECHOLNPAIR(" cartes (X,Y) = "(cartes.x, ", ", cartes.y, ")");
//*/
}
LIMIT(C2, -1, 1);
/**
* Morgan SCARA Inverse Kinematics. Results are stored in 'delta'.
*
* See https://reprap.org/forum/read.php?185,283327
*
* Maths and first version by QHARLEY.
* Integrated into Marlin and slightly restructured by Joachim Cerny.
*/
void inverse_kinematics(const xyz_pos_t &raw) {
float C2, S2, SK1, SK2, THETA, PSI;
S2 = SQRT(1.0f - sq(C2));
// Translate SCARA to standard XY with scaling factor
const xy_pos_t spos = raw - scara_offset;
// Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
SK1 = L1 + L2 * C2;
const float H2 = HYPOT2(spos.x, spos.y);
if (L1 == L2)
C2 = H2 / L1_2_2 - 1;
else
C2 = (H2 - (L1_2 + L2_2)) / (2.0f * L1 * L2);
// Rotated Arm2 gives the distance from Arm1 to Arm2
SK2 = L2 * S2;
LIMIT(C2, -1, 1);
// Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
THETA = ATAN2(SK1, SK2) - ATAN2(spos.x, spos.y);
S2 = SQRT(1.0f - sq(C2));
// Angle of Arm2
PSI = ATAN2(S2, C2);
// Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
SK1 = L1 + L2 * C2;
delta.set(DEGREES(THETA), DEGREES(PSI + TERN0(MORGAN_SCARA, THETA)), raw.z);
// Rotated Arm2 gives the distance from Arm1 to Arm2
SK2 = L2 * S2;
/*
DEBUG_POS("SCARA IK", raw);
DEBUG_POS("SCARA IK", delta);
DEBUG_ECHOLNPAIR(" SCARA (x,y) ", sx, ",", sy, " C2=", C2, " S2=", S2, " Theta=", THETA, " Psi=", PSI);
//*/
}
// Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
THETA = ATAN2(SK1, SK2) - ATAN2(spos.x, spos.y);
// Angle of Arm2
PSI = ATAN2(S2, C2);
delta.set(DEGREES(THETA), DEGREES(PSI + TERN0(MORGAN_SCARA, THETA)), raw.z);
/*
DEBUG_POS("SCARA IK", raw);
DEBUG_POS("SCARA IK", delta);
DEBUG_ECHOLNPAIR(" SCARA (x,y) ", sx, ",", sy, " C2=", C2, " S2=", S2, " Theta=", THETA, " Psi=", PSI);
//*/
}
#elif ENABLED(MP_SCARA)
void inverse_kinematics(const xyz_pos_t &raw) {
const float x = raw.x, y = raw.y, c = HYPOT(x, y),
THETA3 = ATAN2(y, x),
THETA1 = THETA3 + ACOS((sq(c) + sq(L1) - sq(L2)) / (2.0f * c * L1)),
THETA2 = THETA3 - ACOS((sq(c) + sq(L2) - sq(L1)) / (2.0f * c * L2));
delta.set(DEGREES(THETA1), DEGREES(THETA2), raw.z);
/*
DEBUG_POS("SCARA IK", raw);
DEBUG_POS("SCARA IK", delta);
SERIAL_ECHOLNPAIR(" SCARA (x,y) ", x, ",", y," Theta1=", THETA1, " Theta2=", THETA2);
//*/
}
#elif ENABLED(AXEL_TPARA)
static constexpr xyz_pos_t robot_offset = { TPARA_OFFSET_X, TPARA_OFFSET_Y, TPARA_OFFSET_Z };
// Convert ABC inputs in degrees to XYZ outputs in mm
void forward_kinematics_TPARA(const float &a, const float &b, const float &c) {
const float w = c - b,
r = L1 * cos(RADIANS(b)) + L2 * sin(RADIANS(w - (90 - b))),
x = r * cos(RADIANS(a)),
y = r * sin(RADIANS(a)),
rho2 = L1_2 + L2_2 - 2.0f * L1 * L2 * cos(RADIANS(w));
cartes = robot_offset + xyz_pos_t({ x, y, SQRT(rho2 - x * x - y * y) });
}
// Home YZ together, then X (or all at once). Based on quick_home_xy & home_delta
void home_TPARA() {
// Init the current position of all carriages to 0,0,0
current_position.reset();
destination.reset();
sync_plan_position();
// Disable stealthChop if used. Enable diag1 pin on driver.
#if ENABLED(SENSORLESS_HOMING)
TERN_(X_SENSORLESS, sensorless_t stealth_states_x = start_sensorless_homing_per_axis(X_AXIS));
TERN_(Y_SENSORLESS, sensorless_t stealth_states_y = start_sensorless_homing_per_axis(Y_AXIS));
TERN_(Z_SENSORLESS, sensorless_t stealth_states_z = start_sensorless_homing_per_axis(Z_AXIS));
#endif
// const int x_axis_home_dir = x_home_dir(active_extruder);
// const xy_pos_t pos { max_length(X_AXIS) , max_length(Y_AXIS) };
// const float mlz = max_length(X_AXIS),
// Move all carriages together linearly until an endstop is hit.
//do_blocking_move_to_xy_z(pos, mlz, homing_feedrate(Z_AXIS));
current_position.x = 0 ;
current_position.y = 0 ;
current_position.z = max_length(Z_AXIS) ;
line_to_current_position(homing_feedrate(Z_AXIS));
planner.synchronize();
// Re-enable stealthChop if used. Disable diag1 pin on driver.
#if ENABLED(SENSORLESS_HOMING)
TERN_(X_SENSORLESS, end_sensorless_homing_per_axis(X_AXIS, stealth_states_x));
TERN_(Y_SENSORLESS, end_sensorless_homing_per_axis(Y_AXIS, stealth_states_y));
TERN_(Z_SENSORLESS, end_sensorless_homing_per_axis(Z_AXIS, stealth_states_z));
#endif
endstops.validate_homing_move();
// At least one motor has reached its endstop.
// Now re-home each motor separately.
homeaxis(A_AXIS);
homeaxis(C_AXIS);
homeaxis(B_AXIS);
// Set all carriages to their home positions
// Do this here all at once for Delta, because
// XYZ isn't ABC. Applying this per-tower would
// give the impression that they are the same.
LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
sync_plan_position();
}
void inverse_kinematics(const xyz_pos_t &raw) {
const xyz_pos_t spos = raw - robot_offset;
const float RXY = SQRT(HYPOT2(spos.x, spos.y)),
RHO2 = NORMSQ(spos.x, spos.y, spos.z),
//RHO = SQRT(RHO2),
LSS = L1_2 + L2_2,
LM = 2.0f * L1 * L2,
CG = (LSS - RHO2) / LM,
SG = SQRT(1 - POW(CG, 2)), // Method 2
K1 = L1 - L2 * CG,
K2 = L2 * SG,
// Angle of Body Joint
THETA = ATAN2(spos.y, spos.x),
// Angle of Elbow Joint
//GAMMA = ACOS(CG),
GAMMA = ATAN2(SG, CG), // Method 2
// Angle of Shoulder Joint, elevation angle measured from horizontal (r+)
//PHI = asin(spos.z/RHO) + asin(L2 * sin(GAMMA) / RHO),
PHI = ATAN2(spos.z, RXY) + ATAN2(K2, K1), // Method 2
// Elbow motor angle measured from horizontal, same frame as shoulder (r+)
PSI = PHI + GAMMA;
delta.set(DEGREES(THETA), DEGREES(PHI), DEGREES(PSI));
//SERIAL_ECHOLNPAIR(" SCARA (x,y,z) ", spos.x , ",", spos.y, ",", spos.z, " Rho=", RHO, " Rho2=", RHO2, " Theta=", THETA, " Phi=", PHI, " Psi=", PSI, " Gamma=", GAMMA);
}
#endif
void scara_report_positions() {
SERIAL_ECHOLNPAIR(
"SCARA Theta:", planner.get_axis_position_degrees(A_AXIS),
" Psi" TERN_(MORGAN_SCARA, "+Theta") ":", planner.get_axis_position_degrees(B_AXIS)
SERIAL_ECHOLNPAIR("SCARA Theta:", planner.get_axis_position_degrees(A_AXIS)
#if ENABLED(AXEL_TPARA)
, " Phi:", planner.get_axis_position_degrees(B_AXIS)
, " Psi:", planner.get_axis_position_degrees(C_AXIS)
#else
, " Psi" TERN_(MORGAN_SCARA, "+Theta") ":", planner.get_axis_position_degrees(B_AXIS)
#endif
);
SERIAL_EOL();
}

25
Marlin/src/module/scara.h

@ -29,14 +29,25 @@
extern float delta_segments_per_second;
// Float constants for SCARA calculations
float constexpr L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
L2_2 = sq(float(L2));
#if ENABLED(AXEL_TPARA)
void scara_set_axis_is_at_home(const AxisEnum axis);
float constexpr L1 = TPARA_LINKAGE_1, L2 = TPARA_LINKAGE_2, // Float constants for Robot arm calculations
L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
L2_2 = sq(float(L2));
void inverse_kinematics(const xyz_pos_t &raw);
void forward_kinematics_SCARA(const float &a, const float &b);
void forward_kinematics_TPARA(const float &a, const float &b, const float &c);
void home_TPARA();
#else
float constexpr L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2, // Float constants for SCARA calculations
L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
L2_2 = sq(float(L2));
void forward_kinematics_SCARA(const float &a, const float &b);
#endif
void inverse_kinematics(const xyz_pos_t &raw);
void scara_set_axis_is_at_home(const AxisEnum axis);
void scara_report_positions();

Loading…
Cancel
Save