|
|
@ -1110,14 +1110,10 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const |
|
|
|
} |
|
|
|
#endif |
|
|
|
|
|
|
|
// Calculate and limit speed in mm/sec for each axis, calculate minimum acceleration ratio
|
|
|
|
// Calculate and limit speed in mm/sec for each axis
|
|
|
|
float current_speed[NUM_AXIS], speed_factor = 1.0; // factor <1 decreases speed
|
|
|
|
float max_stepper_speed = 0, min_axis_accel_ratio = 1; // ratio < 1 means acceleration ramp needed
|
|
|
|
LOOP_XYZE(i) { |
|
|
|
const float cs = FABS((current_speed[i] = delta_mm[i] * inverse_secs)); |
|
|
|
if (cs > max_jerk[i]) |
|
|
|
NOMORE(min_axis_accel_ratio, max_jerk[i] / cs); |
|
|
|
NOLESS(max_stepper_speed, cs); |
|
|
|
#if ENABLED(DISTINCT_E_FACTORS) |
|
|
|
if (i == E_AXIS) i += extruder; |
|
|
|
#endif |
|
|
@ -1162,9 +1158,6 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const |
|
|
|
} |
|
|
|
#endif // XY_FREQUENCY_LIMIT
|
|
|
|
|
|
|
|
block->nominal_speed = max_stepper_speed; // (mm/sec) Always > 0
|
|
|
|
block->nominal_rate = CEIL(block->step_event_count * inverse_secs); // (step/sec) Always > 0
|
|
|
|
|
|
|
|
// Correct the speed
|
|
|
|
if (speed_factor < 1.0) { |
|
|
|
LOOP_XYZE(i) current_speed[i] *= speed_factor; |
|
|
@ -1172,9 +1165,6 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const |
|
|
|
block->nominal_rate *= speed_factor; |
|
|
|
} |
|
|
|
|
|
|
|
float safe_speed = block->nominal_speed * min_axis_accel_ratio; |
|
|
|
static float previous_safe_speed; |
|
|
|
|
|
|
|
// Compute and limit the acceleration rate for the trapezoid generator.
|
|
|
|
const float steps_per_mm = block->step_event_count * inverse_millimeters; |
|
|
|
uint32_t accel; |
|
|
@ -1276,6 +1266,32 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const |
|
|
|
} |
|
|
|
#endif |
|
|
|
|
|
|
|
/**
|
|
|
|
* Adapted from Průša MKS firmware |
|
|
|
* https://github.com/prusa3d/Prusa-Firmware
|
|
|
|
* |
|
|
|
* Start with a safe speed (from which the machine may halt to stop immediately). |
|
|
|
*/ |
|
|
|
|
|
|
|
// Exit speed limited by a jerk to full halt of a previous last segment
|
|
|
|
static float previous_safe_speed; |
|
|
|
|
|
|
|
float safe_speed = block->nominal_speed; |
|
|
|
uint8_t limited = 0; |
|
|
|
LOOP_XYZE(i) { |
|
|
|
const float jerk = FABS(current_speed[i]), maxj = max_jerk[i]; |
|
|
|
if (jerk > maxj) { |
|
|
|
if (limited) { |
|
|
|
const float mjerk = maxj * block->nominal_speed; |
|
|
|
if (jerk * safe_speed > mjerk) safe_speed = mjerk / jerk; |
|
|
|
} |
|
|
|
else { |
|
|
|
++limited; |
|
|
|
safe_speed = maxj; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
if (moves_queued && !UNEAR_ZERO(previous_nominal_speed)) { |
|
|
|
// Estimate a maximum velocity allowed at a joint of two successive segments.
|
|
|
|
// If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
|
|
|
@ -1287,7 +1303,7 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const |
|
|
|
|
|
|
|
// Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
|
|
|
|
float v_factor = 1; |
|
|
|
uint8_t limited = 0; |
|
|
|
limited = 0; |
|
|
|
|
|
|
|
// Now limit the jerk in all axes.
|
|
|
|
const float smaller_speed_factor = vmax_junction / previous_nominal_speed; |
|
|
|